Topographic Thresholds and Soil Preservation along the Southern High Plains Eastern Escarpment, Northwest Texas, USA
Abstract
:1. Introduction
Research Area
2. Materials and Methods
2.1. Soil and Sediment Analysis
2.2. Thin-Section Analysis
2.3. Radiocarbon Dating
2.4. Topographic Threshold Analysis
3. Results
3.1. Pedological Analysis
3.1.1. Late-Pleistocene to Early Holocene Soils
3.1.2. Middle-Holocene Soil
3.1.3. Late-Holocene Soils
3.2. Radiocarbon Dating
3.3. Topographic Position Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dietrich, W.E.; Wilson, C.J.; Montgomery, D.R.; McKean, J.; Bauer, R. Erosion Thresholds and Land Surface Morphology. Geology 1992, 20, 675–679. [Google Scholar] [CrossRef]
- McNamara, J.P.; Ziegler, A.D.; Wood, S.H. Channel Head Locations with Respect to Geomorphologic Thresholds Derived from a Digital Elevation Model: A Case Study in Northern Thailand. For. Ecol. Manag. 2006, 224, 147–156. [Google Scholar] [CrossRef]
- Phillips, J.D. Thresholds, Mode Switching, and Emergent Equilibrium in Geomorphic Systems. Earth Surf. Process. Landf. 2014, 39, 71–79. [Google Scholar] [CrossRef]
- Maugnard, A.; Dyck, S.V.; Bielders, C. Assessing the Regional and Temporal Variability of the Topographic Threshold for Ephemeral Gully Initiation using Quantile Regression in Wallonia (Belgium). Geomorphology 2014, 206, 165–177. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Wilson, C.J.; Montgomery, D.R.; McKean, J. Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology using a Digital Terrain Model. J. Geol. 1993, 101, 259–278. [Google Scholar] [CrossRef] [Green Version]
- Bryan, R.B. Soil Erodibility and Processes of Water Erosion on Hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Prosser, I.P.; Abernethy, B. Predicting the Topographic Limits to a Gully Network Using a Digital Terrain Model and Process Thresholds. Water Resour. Res. 1996, 32, 2289–2298. [Google Scholar] [CrossRef]
- Samani, A.; Ahmadi, H.; Jafari, M.; Boggs, G. Geomorphic Threshold Conditions for Gully Erosion in Southwestern Iran (Boushehr-Samal Watershed). J. Asian Earth Sci. 2009, 35, 180–189. [Google Scholar] [CrossRef]
- Svoray, T.; Michailov, E.; Cohen, A.; Rokah, L.; Sturm, A. Predicting Gully Initiation: Comparing Data Mining Techniques, Analytical Hierarchy Processes and the Topographic Threshold. Earth Surf. Process. Landf. 2012, 37, 607–619. [Google Scholar] [CrossRef]
- Fox, D.M.; Bryan, R.B. The Relationship of Soil Loss by Interrill Erosion to Slope Gradient. Catena 2000, 38, 211–222. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J. Soil Erosion Resistance Effects on Rill and Gully Initiation Points and Dimensions. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2010, 35, 217–228. [Google Scholar] [CrossRef]
- Poesen, J.; Torri, D.; Vanwalleghem, T. Gully Erosion: Procedures to Adopt when Modelling Soil Erosion in Landscapes Affected by Gullying. Handb. Eros. Model. 2011, 360–386. [Google Scholar] [CrossRef] [Green Version]
- Buol, S.W.; Hole, F.D.; McCracken, R.J.; Southard, R.J. Soil Genesis and Classification, 4th ed.; Iowa State University Press: Ames, IA, USA, 1997. [Google Scholar]
- Holliday, V.T. Soils in Archaeological Research; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Arauza, H.M.; Simms, A.R.; Bement, L.C.; Carter, B.J.; Conley, T.O.; Woldergauy, A.; Johnson, W.C.; Jaiswal, P. Geomorphic and Sedimentary Responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene Environmental Change. Quat. Res. 2016, 85, 118–132. [Google Scholar] [CrossRef]
- Mandel, R.D. Buried Paleoindian-age Landscapes in Stream Valleys of the Central Plains, USA. Geomorphology 2008, 101, 342–361. [Google Scholar] [CrossRef]
- Schumm, S.A. Geomorphic Thresholds: The Concept and its Applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Muhs, D.R. Intrinsic Thresholds in Soil Systems. Phys. Geogr. 1984, 5, 99–110. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Birkeland, P.W. Soils and Geomorphology, 3rd ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Butler, B.E. A New System for Soil Studies. J. Soil Sci. 1982, 33, 581–595. [Google Scholar] [CrossRef]
- Murphy, L.; Hurst, S.; Holliday, V.; Johnson, E. Late Quaternary Landscape Evolution, Soil Stratigraphy, and Geoarchaeology of the Caprock Canyonlands, Northwest Texas, USA. Quat. Int. 2014, 342, 57–72. [Google Scholar] [CrossRef]
- Sabin, T.J.; Holliday, V.T. Playas and Lunettes on the Southern High Plains: Morphometric and Spatial Relationships. Ann. Assoc. Am. Geogr. 1995, 85, 286–305. [Google Scholar] [CrossRef]
- Lehman, T.; Chatterjee, S. Depositional Setting and Vertebrate Biostratigraphy of the Triassic Dockum Group of Texas. J. Earth Syst. Sci. 2005, 114, 325–351. [Google Scholar] [CrossRef]
- Gustavson, T.C.; Baumgardner, R.W., Jr.; Caran, S.C.; Holliday, V.T.; Mehnert, H.H.; O’Neill, J.M. Quaternary Geology of the Southern Great Plains and an Adjacent Segment of the Rolling Plains. In Quaternary Nonglacial Geology: Conterminous U.S. Centennial Volume K-2; Geological Society of America: Boulder, CO, USA, 1991; pp. 477–501. [Google Scholar]
- Gustavson, T.C.; Winkler, D.A. Depositional Facies of the Miocene-Pliocene Ogallala Formation, Northwestern Texas and Eastern New Mexico. Geology 1988, 16, 203–206. [Google Scholar] [CrossRef]
- Ferring, C.R. Archaeological Geology of the Southern Plains. In Archaeological Geology of North America; Lasca, N.P., Donahue, J., Eds.; Geological Society of America: Boulder, CO, USA, 1990; pp. 253–266. [Google Scholar]
- Bomar, G.W. Texas Weather; University of Texas Press: Austin, TX, USA, 1995. [Google Scholar]
- Harragan, D. Blue Northers to Sea Breezes: Texas Weather and Climate; Hendrick Long Publishing Co.: Dallas, TX, USA, 1983. [Google Scholar]
- Brune, G. Springs of Texas; Branch-Smith: Fort Worth, TX, USA, 1981.
- Soil Survey Staff. Soil Survey Laboratory Information Manual. Soil Survey Investigations (Report 45); U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 1995.
- Soil Survey Staff. Soil Taxonomy (Agricultural Handbook 436); U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual (Soil Survey Investigations Report 42); U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2014.
- Clark, C.W.; Hudnall, W.H. Field Method for Determining Carbonate. In Proceedings of the 2006 Soil Science Society of America Conference, Indianapolis, IN, USA, 12–16 November 2006. [Google Scholar]
- Holliday, V.T. Stratigraphy and Paleoenvironments of Late Quaternary Valley Fills on the Southern High Plains (Memoir 186); Geological Society of America: Boulder, CO, USA, 1995. [Google Scholar]
- Johnson, E.; Holliday, V.T.; Martínez, G.; Gutiérrez, M.; Politis, G. Geochronology and Landscape Development along the Middle Río Quequén Grande at the Paso Otero Locality, Pampa Interserrana, Argentina. Geoarchaeology 2012, 27, 300–323. [Google Scholar] [CrossRef]
- Hammond, A.; Goh, K.; Tonkin, P.; Manning, M.R. Chemical Pretreatments for Improving the Radiocarbon Dates of Peats and Organic Silts in a Gley Podzol Environment: Grahams Terrace, North Westland. N. Z. J. Geol. Phys. 1991, 34, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Head, M.; Zhou, W.; Zhou, M. Evaluation of 14C Ages of Organic Fractions of Paleosols from Loess-Paleosol Sequences Near Xian, China. Radiocarbon 1989, 31, 680–695. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Amundson, R.; Trumbore, S. Radiocarbon Dating of Soil Oganic Matter. Quat. Res. 1996, 45, 282–288. [Google Scholar] [CrossRef] [Green Version]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P. Application of the Topographic Position Index to Heterogeneous Landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; De Smedt, P.; Zwertvaegher, A.; Antrop, M.; Bats, M.; De Maeyer, P.; Finke, P.; Van Meirvenne, M.; Verniers, J. Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze Age barrows in northwest Belgium. J. Archaeol. Sci. 2011, 38, 3435–3446. [Google Scholar] [CrossRef]
- Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the 2001 ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Conley, T.O. Paleo-Environmental Landscape Evolution on the Eastern Caprock Escarpment of the Southern High Plains, Texas. Ph.D. Thesis, Department of Geosciences, Texas Tech University, Lubbock, TX, USA, 2016. [Google Scholar]
- Blum, M.D.; Abbott, J.T.; Valastro, S., Jr. Evolution of Landscapes on the Double Mountain Fork of the Brazos River, West Texas: Implications for Preservation and Visibility of the Archaeological Record. Geoarchaeology 1992, 7, 339–370. [Google Scholar] [CrossRef]
- Church, M. Geomorphic Thresholds in Riverine Landscapes. Freshw. Biol. 2002, 47, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, K.B.; Moe, J.R.; Johnson, E.; Hurst, S. Trade on the Llano Estacado: A Protohistoric Site (41GR793) at the Base of the Southern High Plains, Texas. In Proceedings of the 69th Plains Anthropological Conference, Tucson, AZ, USA, 26–29 October 2011. [Google Scholar]
- Hurst, S.; Ward, D.C.; Johnson, E.; Cunningham, D. Cowboy Life along the Llano Estacado Eastern Escarpment of Northwest Texas: Insights from Macy Locality 16 (41GR722). Hist. Archaeol. 2018, 52, 332–347. [Google Scholar] [CrossRef]
- Moretti, J.; Johnson, E. The First Record of the Jumping Mouse Zapus from the Southern High Plains. PaleoAmerica 2015, 1, 121–123. [Google Scholar] [CrossRef]
- Moretti, J.A. The Vertebrate Fauna of Macy Locality 100: Exploring Late Pleistocene Community Composition in Non-Analog North America. Master’s Thesis, Interdisciplinary Studies, Texas Tech University, Lubbock, TX, USA, 2018. [Google Scholar]
- Hurst, S.; Johnson, E.; Cunningham, D. Macy Locality-15, a Late-Paleoindian Site along the Caprock Escarpment of Texas. Curr. Res. Pleistocene 2008, 25, 68–69. [Google Scholar]
- Hall, S.A. Channel Trenching and Climatic Change in the Southern US Great Plains. Geology 1990, 18, 342–345. [Google Scholar] [CrossRef]
- Cama, M.; Schillaci, C.; Kropácek, J.; Hochschild, V.; Bosino, A.; Märker, M. A Probabilistic Assessment of Soil Erosion Susceptibility in a Head Catchment of the Jemma Basin, Ethiopian Highlands. Geosciences 2020, 10, 248. [Google Scholar] [CrossRef]
- Hancock, G.R.; Evans, K.G. Gully Position, Characteristics and Geomorphic Thresholds in an Undisturbed Catchment in Northern Australia. Hydrol. Process. 2006, 20, 2935–2951. [Google Scholar] [CrossRef]
- Kariminejad, N.; Rossi, M.; Hosseinalizadeph, M.; Pourghasemi, H.R.; Santosh, M. Gully Head Modelling in Iranian Loess Plateau Under Different Scenarios. Catena 2020, 194, 1047693. [Google Scholar] [CrossRef]
Locality | Soil Horizon | Depth (cm) | Material Assayed 1 | 14C Age (yrs. B.P.) 2 | δ13C | cal yr B.P. 2 | Dating Type | Lab No. |
---|---|---|---|---|---|---|---|---|
Macy Locality 45 Profile A | ||||||||
CPMACY45A-01 | 2Ab3 + ky | 130–140 | SOM (r) | 840 ± 65 | −17.6 | 911-835 | Conventional | A15779 |
SOM (h) | 1135 ± 95 | −17.9 | 1282-844 | Conventional | A15779.1 | |||
CPMACY45A-02 | 2ABb3 + ky | 145–155 | SOM (r) | 1200 ± 65 | −17.6 | 1270-980 | Conventional | A15780 |
SOM (h) | 1645 ± 105 | −17.4 | 1812-1343 | Conventional | A15780.1 | |||
CPMACY45A-03 | 2ABb3 + ky | 165–177 | SOM (r) | 1505 ± 70 | −16.7 | 1537-1297 | Conventional | A15781 |
SOM (h) | 1665 ± 115 | −17.0 | 1860-1827 | Conventional | A15781.1 | |||
Macy Locality 45 Profile B | ||||||||
CPMACY45B-01 | Ab1 | 63–76 | SOM (r) | 765 ± 80 | −17.9 | 850-832 | Conventional | A15782 |
SOM (h) | 730 ± 110/105 | −18.4 | 906-831 | Conventional | A15782.1 | |||
CPMACY45B-02 | ABb1 | 76–90 | SOM (r) | 1070 ± 80 | −17.6 | 1180-796 | Conventional | A15783 |
SOM (h) | 975 ± 115 | −18.7 | 1173-1159 | Conventional | A15783.1 | |||
CPMACY45B-03 | ABb1 | 90–106 | SOM (r) | 605 ± 75 | −18.4 | 676-515 | Conventional | A15784 |
SOM (h) | 800 ± 110 | −19.1 | 932-624 | Conventional | A15784.1 | |||
Macy Locality 46 Profile A | ||||||||
CPMACY46A-01 | 2ABtkb | 41–58 | SOM (r) | 920 ± 50 | −15.5 | 928-736 | Conventional | A15785 |
SOM (h) | 625 ± 135/130 | −17.2 | 902-865 | Conventional | A15785.1 | |||
Macy Locality 126 Profile B | ||||||||
CPMACY126B-01 | 2ABk1b2 | 127–137 | SOM (r) | 1240 ± 70/65 | −17.5 | 1293-1050 | Conventional | A15801 |
SOM (h) | 1350 ± 55 | −18.5 | 1367-1176 | AMS | A15801.1 | |||
CPMACY126B-02 | 2ABk2b2 | 143–153 | SOM (r) | 1540 ± 55 | −16.6 | 1546-1328 | Conventional | A15802 |
SOM (h) | 1500 ± 35 | −18.7 | 1520-1458 | AMS | A15802.1 | |||
CPMACY126B-03 | 2AKb3 | 198–208 | SOM (r) | 1970 ± 55 | −15.8 | 2108-2082 | Conventional | A15803 |
SOM (h) | 2020 ± 35 | −18.7 | 2102-2089 | AMS | A15803.1 | |||
CPMACY126B-04 | 2ABkb4 | 292–302 | SOM (r) | 2685 ± 105/100 | −19.2 | 3067-2676 | Conventional | A15804 |
SOM (h) | Insufficient Sample | A15804.1 | ||||||
Macy Locality 263 Profile A | ||||||||
CPMACY263A-01 | 2ABb1 | 40–50 | SOM (r) | Post-Bomb, 101.5 ± −0.9 pMC | −17.2 | Conventional | A15805 | |
SOM (h) | 220 ± 35 | −16.6 | 421-410 | AMS | 15805.1 | |||
CPMACY263A-02 | 2Ab2 | 112–125 | SOM (r) | 930 ± 45 | −15.0 | 929-744 | Conventional | A15806 |
SOM (h) | 1060 ± 35 | −16.4 | 1056-1021 | AMS | A15806.1 | |||
CPMACY263A-03 | 2Ab3 | 162–173 | SOM (r) | 1755 ± 75/70 | −17.6 | 1863-1844 | Conventional | A15807 |
SOM (h) | 1740 ± 35 | −17.7 | 1728-1557 | AMS | A15807.1 | |||
Macy Locality 269 Profile A | ||||||||
CPMACY269A-01 | 2Ab2 | 59–68 | SOM (r) | 720 ± 45 | −15.0 | 733-635 | Conventional | A15808 |
SOM (h) | 740 ± 35 | −15.3 | 732-654 | AMS | A15808.1 | |||
Macy Locality 283, Profile A | ||||||||
CPMACY283A-02 | SOM (h) | 1335 ± 110 | −15.6 | 1518-1490 | Conventional | A15814.1 | ||
2Ab1 | 74–82 | SOM (r) | 970 ± 55 | −15.2 | 971-760 | Conventional | A15815 | |
Macy Locality 285 Profile A | SOM (h) | 1225 ± 130 | −15.8 | 1390-911 | Conventional | A15815.1 | ||
CPMACY285A-01 | ||||||||
2Akb1 | 82–92 | SOM (r) | 870 ± 45 | −16.8 | 910-841 | Conventional | A15816 | |
CPMACY285A-02 | SOM (h) | 960 ± 35 | −21.0 | 933-792 | AMS | A15816.1 | ||
2Akb2 | 133–143 | SOM (r) | 1260 ± 35 | −16.3 | 1283-1160 | Conventional | A15817 | |
CPMACY285A-03 | SOM (h) | 1345 ± 35 | −18.5 | 1315-1227 | AMS | A15817.1 | ||
2Ab3 | 193–203 | SOM (r) | 2355 ± 55 | −16.6 | 2699-2632 | Conventional | A15818 | |
CPMACY285A-04 | SOM (h) | 2255 ± 40 | −17.3 | 2348-2292 | AMS | A15818.1 | ||
2ABkb4 | 235–245 | SOM (r) | 2825 ± 75 | −16.5 | 3156-3089 | Conventional | A15819 | |
Macy Locality 286 Profile A | SOM (h) | 2715 ± 40 | −18.1 | 2918-2912 | AMS | A15819.1 | ||
CPMACY286A-01 | ||||||||
Akb1 | 33–50 | SOM (r) | 545 ± 45 | −16.5 | 647-585 | Conventional | A15820 | |
CPMACY286A-02 | SOM (h) | 640 ± 105/100 | −14.6 | 785-499 | Conventional | A15820.1 | ||
2Akb2 | 82–95 | SOM (r) | 1105 ± 45 | −15.7 | 1237-1206 | Conventional | A15821 | |
CPMACY286A-03 | SOM (h) | 1305 ± 105/100 | −16.6 | 1395-980 | Conventional | A15821.1 | ||
2Akb2 | 95–108 | SOM (r) | 1295 ± 50 | −16.3 | 1302-1172 | Conventional | A15822 | |
CPMACY286A-04 | SOM (h) | 1580 ± 105 | −17.0 | 1705-1299 | Conventional | A15822.1 | ||
2Akb2 | 108–121 | SOM (r) | 1455 ± 65 | −16.2 | 1523-1452 | Conventional | A15823 | |
Macy Locality 286 Profile B | SOM (h) | 1660 ± 105 | −16.8 | 1817-1353 | Conventional | A15823.1 | ||
CPMACY286B-01 | ||||||||
3Akb3 | 111–123 | SOM (r) | 1125 ± 55 | −16.1 | 1176-936 | Conventional | A15824 | |
CPMACY286B-02 | SOM (h) | 1205 ± 40 | −17.3 | 1262-1052 | AMS | A15824.1 | ||
3ABssb4 | 145–155 | SOM (r) | 1365 ± 70 | −16.0 | 1409-1172 | Conventional | A15825 | |
Macy Locality 287 Profile A | SOM (h) | 1195 ± 140/135 | −17.0 | 1363-896 | Conventional | A15825.1 | ||
CPMACY287A-01 | ||||||||
2A2b1 | 35–49 | SOM (r) | 815 ± 60 | −17.0 | 906-853 | Conventional | A15826 | |
U.U. Locality 2 Profile A | SOM (h) | 1330 ± 35 | −19.0 | 1305-1225 | AMS | A15826.1 | ||
CPUU2A-01 | ||||||||
Ab1 | 16–26 | SOM (r) | 800 ± 50 | −16.6 | 895-874 | Conventional | A16085 | |
CPUU2A-02 | SOM (h) | 1010 ± 75 | −16.0 | 1071-738 | Conventional | A16085.1 | ||
ABb1 | 37–47 | SOM (r) | 1195 ± 65 | −16.3 | 1269-976 | Conventional | A16086 | |
CPUU2A-03 | SOM (h) | 1250 ± 110 | −17.3 | 1347-954 | Conventional | A16086.1 | ||
ABkb2 | 83–93 | SOM (r) | 1605 ± 65 | −17.5 | 1690-1671 | Conventional | A16087 | |
CPUU2A-04 | SOM (h) | 1775 ± 110/105 | −17.7 | 1945-1476 | Conventional | A16087.1 | ||
ABkb2 | 100–110 | SOM (r) | 1990 ± 60 | −16.3 | 2114-1821 | Conventional | A16088 | |
CPUU3A-01 | SOM (h) | 1845 ± 25 | −16.7 | 1864-1842 | AMS | A16088.1 | ||
2ABkb2 | 84–94 | SOM (r) | 9290 ± 215/205 | −17.0 | 1186-10,119 | Conventional | A16089 | |
CPUU3A-02 | SOM (h) | 5705 ± 25 | −18.8 | 6560-6411 | AMS | A16089.1 | ||
2ABkb3 | 130–140 | SOM (r) | 11,580 ± 140/135 | −16.6 | 13,719-13,148 | Conventional | A16090 | |
CPUU3A-03 | SOM (h) | Insufficient Sample | A16090.1 | |||||
2ABkb3 | 150–159 | SOM (r) | 11,375 ± 170 | −15.5 | 13,559-12,870 | Conventional | A16091 | |
U.U. Locality 4 Profile A | SOM (h) | Insufficient Sample | A16091.1 | |||||
CPUU4A-01 | ||||||||
2Akb1 | 61–72 | SOM (r) | 4520 ± 120 | −16.5 | 5569-5559 | Conventional | A16096 | |
CPUU4A-02 | SOM (h) | 4655 ± 25 | −16.6 | 5466-5346 | AMS | A16096.1 | ||
2Akb1 | 94–106 | SOM (r) | 10,480 ± 200/195 | −16.2 | 12,745-11,696 | Conventional | A16097 | |
CPUU4A-03 | SOM (h) | 12,275 ± 255/250 | −16.3 | 15,195-13,606 | Conventional | A16097.1 | ||
2ABkb1 | 106–118 | SOM (r) | 10,270 ± 210/205 | −16.1 | 12,600-11,310 | Conventional | A16098 | |
CPUU4A-04 | SOM (h) | 12,120 ± 290/280 | −16.5 | 15,128-13,439 | Conventional | A16098.1 | ||
2ABkb1 | 130–142 | SOM (r) | 11,335 ± 285/275 | −17.3 | 13,752-12,707 | Conventional | A16099 | |
U.U. Locality 5 Profile A | SOM (h) | 12,580 ± 45 | −17.3 | 15,154-14,667 | AMS | A16099.1 | ||
CPUU5A-01 | ||||||||
2ABkb1 | 29–39 | SOM (r) | 600 ± 70 | −14.8 | 671-519 | Conventional | A16100 | |
CPUU5A-02 | SOM (h) | 900 ± 170/165 | −15.9 | 1180-620 | Conventional | A16100.1 | ||
2Akb2 | 63–74 | SOM (r) | 1465 ± 90 | −15.1 | 1556-1240 | Conventional | A16101 | |
CPUU5A-03 | SOM (h) | 1600 ± 145/140 | −15.8 | 1864-1841 | Conventional | A16101.1 | ||
2Akb2 | 74–86 | SOM (r) | 1890 ± 80 | −15.6 | 2001-1617 | Conventional | A16102 | |
CUU5-01 | SOM (h) | 2015 ± 30 | −16.0 | 2044-1889 | Conventional | A16102.1 | ||
CPUU5A-04 | 2Bk2b2 | 85,144.9 | Charcoal | 2210 ± 40 | −22.9 | 2331-2133 | AMS | A16079 |
U.U. Locality 6 Profile A | 2Bk2b2 | 131 | Charcoal | 2340 ± 45 | −21.7 | AMS | A16080 | |
CPUU6A-01 | ||||||||
2ABk1b1 | 65–75 | SOM (r) | 3095 ± 100 | −16.7 | 3557-3531 | Conventional | A16103 | |
CPUU6A-02 | SOM (h) | 5305 ± 185/180 | −17.5 | 6447-5658 | Conventional | A16103.1 | ||
2ABk1b1 | 75–85 | SOM (r) | 4115 ± 100 | −16.8 | 4865-4406 | Conventional | A16104 | |
CPUU6A-03 | SOM (h) | 6515 ± 250/240 | −17.6 | 7927-7896 | Conventional | A16104.1 | ||
2ABk3b1 | 124–136 | SOM (r) | 8155 ± 230/220 | −17.0 | 9547-8516 | Conventional | A16105 | |
CPUU6A-04 | SOM (h) | 9255 ± 240/235 | −17.1 | 11,195-9886 | Conventional | A16105.1 | ||
2Akb2 | 136–146 | SOM (r) | 9100 ± 205/200 | −17.5 | 11,046-11,040 | Conventional | A16106 | |
CPUU6A-05 | SOM (h) | 8770 ± 250/240 | −16.7 | 10,509-9283 | Conventional | A16106.1 | ||
2Akb2 | 154–164 | SOM (r) | 9745 ± 200 | −16.2 | 11,933-11,889 | Conventional | A16107 | |
SOM (h) | 9500 ± 260/250 | −15.8 | 11,700-11,671 | Conventional | A16107.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conley, T.; Hurst, S.; Johnson, E. Topographic Thresholds and Soil Preservation along the Southern High Plains Eastern Escarpment, Northwest Texas, USA. Geosciences 2020, 10, 476. https://doi.org/10.3390/geosciences10120476
Conley T, Hurst S, Johnson E. Topographic Thresholds and Soil Preservation along the Southern High Plains Eastern Escarpment, Northwest Texas, USA. Geosciences. 2020; 10(12):476. https://doi.org/10.3390/geosciences10120476
Chicago/Turabian StyleConley, Travis, Stance Hurst, and Eileen Johnson. 2020. "Topographic Thresholds and Soil Preservation along the Southern High Plains Eastern Escarpment, Northwest Texas, USA" Geosciences 10, no. 12: 476. https://doi.org/10.3390/geosciences10120476
APA StyleConley, T., Hurst, S., & Johnson, E. (2020). Topographic Thresholds and Soil Preservation along the Southern High Plains Eastern Escarpment, Northwest Texas, USA. Geosciences, 10(12), 476. https://doi.org/10.3390/geosciences10120476