Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application
Abstract
1. Introduction
2. Model Formulation
2.1. Model Assumptions and Conceptualization
2.2. Geochemical Modeling
2.3. Mathematical Modeling
3. Description of the Study Area
3.1. Location
3.2. Climatic Conditions
- net radiation at the crop surface ,
- G soil heat flux density ,
- T mean daily air temperature at 2 m height [C],
- wind speed at 2 m height ,
- saturation vapour pressure [KPa],
- actual vapour pressure [KPa],
- saturation vapour pressure deficit [KPa],
- slope vapour pressure curve ,
- psychometric constant .
3.3. Chemical Composition
3.4. Management of the Oasis of Segdoud
4. Modeling of Salt Precipitation Sequences under Evaporation of a Soil Profile Typical of the Oasis of Segdoud
4.1. Problem Setup
4.2. Simulation Results and Discussion
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonn, N.S.; Desarnaud, J.; Bertr, F.; Chateau, X.; Bonn, D. Damage in porous media due to salt crystallization. Phys. Rev. E 2010, 81, 066110. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.G. Application of AVHRR to monitoring a climatically sensitive playa. Case study: Chott el Djerid, Southern Tunisia. Earth Surf. Process. Landforms 1999, 24, 283–302. [Google Scholar] [CrossRef]
- Bryant, R.G.; Sellwood, B.W.; Millington, A.C.; Drake, N.A. Marine-like postash evaporite formation on a continental playa: Case study from Chott el Djerid, southern Tunisia. Sedimentory Geol. 1994, 90, 269–291. [Google Scholar] [CrossRef]
- Nassar, I.N.; Horton, R. Salinity and compaction effects on soil water evaporation and water and solute distribution. Soil Sci. Soc. Am. J. 1999, 63, 752. [Google Scholar] [CrossRef]
- Peyson, Y.; Bazin, B.; Magnier, C.; Kohler, E.; Youssef, S. Permeability alteration due to salt precipitation driven by drying in the context of CO2 injection. Energy Procedia 2011, 4, 4387–4394. [Google Scholar] [CrossRef]
- Eloukabi, H.; Sghaier, N.; Nasrallah, S.B.; Prat, M. Experimental study of the effect of sodium chloride on drying of porous media: The crusty-patchy efflorescence transition. Int. J. Heat Transf. 2013, 56, 80–93. [Google Scholar] [CrossRef]
- Hidri, F. Evaporation from a Porous Medium Containing a Dissolved Salt. Influence of Heterogeneities at Darcy’s Scale on the Distribution of Ions at the Evaporative Surface. Ph.D. Thesis, University of Toulouse, Toulouse, France, 2013. [Google Scholar]
- Veran-Tissoires, S.; Prat, M. Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation. J. Fluid Mech. Camb. Univ. Press 2014, 749, 701–749. [Google Scholar] [CrossRef]
- Bernabé, Y.; Mok, U.; Evans, B. Permeability-porosity Relationships in Rocks Subjected to Various Evolution Processes. Pure Appl. Geophys. 2003, 160, 937–960. [Google Scholar] [CrossRef]
- Fujimaki, H.; Shimano, T.; Inoue, M.; Nakane, K. Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 2006, 5, 1246–1256. [Google Scholar] [CrossRef]
- Le, D.; Hoang, H.; Mahadevan, J. Impact of Capillary-Driven Liquid Films on Salt Crystallization. Transp. Porous Media 2009, 80, 229–252. [Google Scholar] [CrossRef]
- Nachshon, U.; Weisbrod, N.; Dragila, M.I.; Grader, A. Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Shimojima, F.; Yoshioka, R.; Tamagawa, I. Salinization owing to evaporation from bare soil surfaces and its influences on the evaporation. J. Hydrol. 1996, 176, 109–136. [Google Scholar] [CrossRef]
- Tsypkin, G.; Woods, A.W. Precipitate formation in a porous rock through evaporation of saline water. J. Fluid Mech. 2005, 537, 35–53. [Google Scholar] [CrossRef]
- Battistelli, A.; Calore, C.; Pruess, K. Analysis of salt effects on the depletion of fractured reservoir blocks. In Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1995. [Google Scholar]
- Batzle, M.L.; Wang, Z. Seismic properties of pore fluids. Geophysics 1992, 57, 1396–1408. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Papers; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Colon, F.; Oelkers, E.H.; Schott, J. Experimental investigation of the effect of dissolution on sandstone permeability, porosity and reactive surface area. Geomech. Cosmochim. Acta 2004, 68, 805–817. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 2013, 69, 2657–2669. [Google Scholar] [CrossRef]
- Lai, K.H.; Chen, J.S.; Liu, C.W.; Yang, S.Y. Effect of permeability-porosity functions on simulated morphological evolution of a chemical dissolution front. Hydrol. Process. 2012. [Google Scholar] [CrossRef]
- Laabidi, E.; Bouhlila, R. Impact of mixing induced calcite precipitation on the flow and transport. Carbonates Evaporites 2017, 32, 473–485. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffl, J. Permeability prediction based on fractal pore-space geometry. Geophysics 1997, 64, 1447–1460. [Google Scholar] [CrossRef]
- Xu, T.; Ontoy, Y.; Molling, P.; Spycher, N.; Parini, M.; Pruess, K. Reactive transport modeling of injection well scaling and acidizing at Tiwi, Philippines. Geothermics 2004, 33, 447–491. [Google Scholar] [CrossRef]
- Bechtold, M.; Haber-Pohlmeier, S.; Vanderborght, J.; Pohlmeier, A.; Ferre, T.P.A.; Vereecken, H. Near-Surface solute redistribution during evaporation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Feddes, R.A. Numerical simulations of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 2000, 233, 72–85. [Google Scholar] [CrossRef]
- Jambhekar, V.A.; Helmig, R.; Schröder, N.; Shokri, N. Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt. Transp. Porous Media 2015, 110, 251–280. [Google Scholar] [CrossRef]
- Sghaier, N.; Prat, M. Effect of efflorescence formation on drying kinetics of porous media. Transp. Porous Media 2009, 80, 441–454. [Google Scholar] [CrossRef]
- Shokri, N.; Lehman, P.; Or, D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore scale processes near vaporization surface. Phys. Rev. E 2010, 81 Pt 2, 046308. [Google Scholar] [CrossRef]
- Lehmann, P.; Or, D. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E 2009, 80, 046318. [Google Scholar] [CrossRef]
- Nachshon, U.; Shahraeeni, E.; Or, D.; Dragila, M.; Weisbrod, N. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Veran-Tissoires, S.; Marcoux, M.; Prat, M. Salt crystallization at the surface of a heterogeneous porous medium. Letters 2012, 98, 34005. [Google Scholar]
- Barbieri, R.; Stivaletta, N.; Marinangeli, L.; Ori, G.G. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet. Space Sci. 2006, 54, 726–736. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R. The water and salt budget of an irrigated plot in an oasis in southern Tunisia. Irrig. Water Resour. Manag. 2001, 272, 431–478. [Google Scholar]
- Attia-Essaies, S.; Zayani, L.; Chehimi, D.B.; Adad, R.C.; Ariguib, N.K.; Trabelsi-Ayadi, M. Simulation of Crystallization sequence during the evaporation of Chott El Jerid brine (South Tunisia). Thermochim. Acta 2010, 503–504, 8–11. [Google Scholar] [CrossRef]
- Shofield, R.; Thomas, D.S.G.; Kirkby, M.J. Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degrad. Dev. 2001, 12, 163–181. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R.; Job, J.O. Development and application of a conceptual hydrologic model to predict soil salinity within modern Tunisian oases. J. Hydrol. 2010, 380, 45–61. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R. Evolution de la salinité dans une oasis moderne de la Tunisie. Etude et Gestion des Sols 2010, 17, 197–212. [Google Scholar]
- Askri, B.; Bouhlila, R.; Job, J.O. A conceptual hydrologic model for studies of salinisationa in Tunisian oases. Int. J. Water Resour. Arid. Environ. 2011, 6, 428–439. [Google Scholar]
- Askri, B.; Ahmed, A.T.; Abichou, T.; Bouhlila, R. Effects of shallow water table, salinity and frenquency of irrigation water on the date palm water use. J. Hydrol. 2014, 513, 81–90. [Google Scholar] [CrossRef]
- Bouhlila, R. Ecoulement, Transport et Réactions géOchimiques Couplés dans Les Milieux Poreux. Cas des sels et Des Saumures. Ph.D. Thesis, Université Tunis el Manar (ENIT), Tunis, Tunisia, 1999. [Google Scholar]
- Mejri, E.; Bouhlila, R.; Helmig, R. Heterogeneity Effects on Evaporation-Induced Halite and Gypsum Co-precipitation in Porous Media. Transp. Porous Media 2017, 118, 39–64. [Google Scholar] [CrossRef]
- Askri, B. La Modélisation des Processus de Salinisation des sols Irrigués en Zones Arides: Cas de l’Oasis de Segdoud. Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisia, 2002. [Google Scholar]
- Parkhurst, D.; Appelo, C. Description of Input and Examples for Phreeqc Version 3-a Computer Program for Speciation, Batch-Reaction, One Dimentional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Denver, CO, USA, 2013.
- Derluyn, H.; Saidov, T.; Espinosa-Maezar, R.; Pel, L.; Scherer, G. Sodium sulfate heptahydrate i: The growth of single crystals. J. Cryst. Growth 2011, 329, 44–51. [Google Scholar] [CrossRef]
- Saidov, T.; Pel, L.; van der Heijden, G. Crystallization of sodium sulphate in porous media by drying at a constant temperature. Int. J. Heat Mass Transf. 2015, 83, 621–628. [Google Scholar] [CrossRef]
- Steiger, M.; Asmussen, S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4—H2O and the generation of stress. Geochim. Cosmochim. Acta 2008, 72, 4291–4306. [Google Scholar] [CrossRef]
- Ben Chaaban, S.; Chermiti, I.; Kreiter, S. Oligonychus afrasiaticus and phytoseiid predators seasonal occurence on date palm Phoenix dactylifera (Deglet Noor cultivar) in Tunisian oases. Bull. Insectol. 2011, 64, 15–21. [Google Scholar]
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper N°56; FAO: Rome, Italy, 1998. [Google Scholar]
- Wooding, R.A.; Scott, W.T.; White, I. Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water Resour. Res. 1997, 33, 1199–1217. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C. Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation. J. Hydrol. 2015, 524, 427–438. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C. The influence of evaporation and rainfall on supratidal groundwater dynamics and salinity structure in a sandy beach. Water Resour. Res. 2017, 53, 6218–6238. [Google Scholar] [CrossRef]
- Jambhekar, V.A.; Mejri, E.; Schröder, N.; Helmig, R.; Shokri, N. Kinetic approach to model reactive transport and mixed salt precipitation in a coupled free-flow-porous-media system. Transp. Porous Media 2016, 114, 341–369. [Google Scholar] [CrossRef]
620 | 86 | 2254 | 31 | 2822 | 3231 |
Minerals | Chemical Formula |
---|---|
Calcium Sulphate () | |
Anhydrite | |
Sodium Chloride () | |
Glauberite | |
Mirabilite | |
Sodium Sulphate (Thenardite) |
Component | Source/Sink Term |
---|---|
Water | |
Gypsum | |
Thenardite | |
Halite |
Well | |||||||
---|---|---|---|---|---|---|---|
CT2 | 450 | 238 | 598 | 21 | 1473 | 1943 | 193 |
CT3 | 360 | 144 | 391 | 16 | 826 | 1207 | 159 |
Properties | Value [Unit] | |
---|---|---|
Porosity | 0.364 [-] | |
Permeability | 2 × 10 [m] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejri, E.; Helmig, R.; Bouhlila, R. Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences 2020, 10, 395. https://doi.org/10.3390/geosciences10100395
Mejri E, Helmig R, Bouhlila R. Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences. 2020; 10(10):395. https://doi.org/10.3390/geosciences10100395
Chicago/Turabian StyleMejri, Emna, Rainer Helmig, and Rachida Bouhlila. 2020. "Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application" Geosciences 10, no. 10: 395. https://doi.org/10.3390/geosciences10100395
APA StyleMejri, E., Helmig, R., & Bouhlila, R. (2020). Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences, 10(10), 395. https://doi.org/10.3390/geosciences10100395