Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application
Abstract
:1. Introduction
2. Model Formulation
2.1. Model Assumptions and Conceptualization
2.2. Geochemical Modeling
2.3. Mathematical Modeling
3. Description of the Study Area
3.1. Location
3.2. Climatic Conditions
- net radiation at the crop surface ,
- G soil heat flux density ,
- T mean daily air temperature at 2 m height [C],
- wind speed at 2 m height ,
- saturation vapour pressure [KPa],
- actual vapour pressure [KPa],
- saturation vapour pressure deficit [KPa],
- slope vapour pressure curve ,
- psychometric constant .
3.3. Chemical Composition
3.4. Management of the Oasis of Segdoud
4. Modeling of Salt Precipitation Sequences under Evaporation of a Soil Profile Typical of the Oasis of Segdoud
4.1. Problem Setup
4.2. Simulation Results and Discussion
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonn, N.S.; Desarnaud, J.; Bertr, F.; Chateau, X.; Bonn, D. Damage in porous media due to salt crystallization. Phys. Rev. E 2010, 81, 066110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, R.G. Application of AVHRR to monitoring a climatically sensitive playa. Case study: Chott el Djerid, Southern Tunisia. Earth Surf. Process. Landforms 1999, 24, 283–302. [Google Scholar] [CrossRef]
- Bryant, R.G.; Sellwood, B.W.; Millington, A.C.; Drake, N.A. Marine-like postash evaporite formation on a continental playa: Case study from Chott el Djerid, southern Tunisia. Sedimentory Geol. 1994, 90, 269–291. [Google Scholar] [CrossRef]
- Nassar, I.N.; Horton, R. Salinity and compaction effects on soil water evaporation and water and solute distribution. Soil Sci. Soc. Am. J. 1999, 63, 752. [Google Scholar] [CrossRef]
- Peyson, Y.; Bazin, B.; Magnier, C.; Kohler, E.; Youssef, S. Permeability alteration due to salt precipitation driven by drying in the context of CO2 injection. Energy Procedia 2011, 4, 4387–4394. [Google Scholar] [CrossRef] [Green Version]
- Eloukabi, H.; Sghaier, N.; Nasrallah, S.B.; Prat, M. Experimental study of the effect of sodium chloride on drying of porous media: The crusty-patchy efflorescence transition. Int. J. Heat Transf. 2013, 56, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Hidri, F. Evaporation from a Porous Medium Containing a Dissolved Salt. Influence of Heterogeneities at Darcy’s Scale on the Distribution of Ions at the Evaporative Surface. Ph.D. Thesis, University of Toulouse, Toulouse, France, 2013. [Google Scholar]
- Veran-Tissoires, S.; Prat, M. Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation. J. Fluid Mech. Camb. Univ. Press 2014, 749, 701–749. [Google Scholar] [CrossRef] [Green Version]
- Bernabé, Y.; Mok, U.; Evans, B. Permeability-porosity Relationships in Rocks Subjected to Various Evolution Processes. Pure Appl. Geophys. 2003, 160, 937–960. [Google Scholar] [CrossRef]
- Fujimaki, H.; Shimano, T.; Inoue, M.; Nakane, K. Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 2006, 5, 1246–1256. [Google Scholar] [CrossRef] [Green Version]
- Le, D.; Hoang, H.; Mahadevan, J. Impact of Capillary-Driven Liquid Films on Salt Crystallization. Transp. Porous Media 2009, 80, 229–252. [Google Scholar] [CrossRef]
- Nachshon, U.; Weisbrod, N.; Dragila, M.I.; Grader, A. Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Shimojima, F.; Yoshioka, R.; Tamagawa, I. Salinization owing to evaporation from bare soil surfaces and its influences on the evaporation. J. Hydrol. 1996, 176, 109–136. [Google Scholar] [CrossRef]
- Tsypkin, G.; Woods, A.W. Precipitate formation in a porous rock through evaporation of saline water. J. Fluid Mech. 2005, 537, 35–53. [Google Scholar] [CrossRef]
- Battistelli, A.; Calore, C.; Pruess, K. Analysis of salt effects on the depletion of fractured reservoir blocks. In Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1995. [Google Scholar]
- Batzle, M.L.; Wang, Z. Seismic properties of pore fluids. Geophysics 1992, 57, 1396–1408. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Papers; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Colon, F.; Oelkers, E.H.; Schott, J. Experimental investigation of the effect of dissolution on sandstone permeability, porosity and reactive surface area. Geomech. Cosmochim. Acta 2004, 68, 805–817. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 2013, 69, 2657–2669. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.H.; Chen, J.S.; Liu, C.W.; Yang, S.Y. Effect of permeability-porosity functions on simulated morphological evolution of a chemical dissolution front. Hydrol. Process. 2012. [Google Scholar] [CrossRef]
- Laabidi, E.; Bouhlila, R. Impact of mixing induced calcite precipitation on the flow and transport. Carbonates Evaporites 2017, 32, 473–485. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffl, J. Permeability prediction based on fractal pore-space geometry. Geophysics 1997, 64, 1447–1460. [Google Scholar] [CrossRef]
- Xu, T.; Ontoy, Y.; Molling, P.; Spycher, N.; Parini, M.; Pruess, K. Reactive transport modeling of injection well scaling and acidizing at Tiwi, Philippines. Geothermics 2004, 33, 447–491. [Google Scholar] [CrossRef]
- Bechtold, M.; Haber-Pohlmeier, S.; Vanderborght, J.; Pohlmeier, A.; Ferre, T.P.A.; Vereecken, H. Near-Surface solute redistribution during evaporation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, J.C.; Feddes, R.A. Numerical simulations of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 2000, 233, 72–85. [Google Scholar] [CrossRef]
- Jambhekar, V.A.; Helmig, R.; Schröder, N.; Shokri, N. Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt. Transp. Porous Media 2015, 110, 251–280. [Google Scholar] [CrossRef]
- Sghaier, N.; Prat, M. Effect of efflorescence formation on drying kinetics of porous media. Transp. Porous Media 2009, 80, 441–454. [Google Scholar] [CrossRef]
- Shokri, N.; Lehman, P.; Or, D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore scale processes near vaporization surface. Phys. Rev. E 2010, 81 Pt 2, 046308. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, P.; Or, D. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E 2009, 80, 046318. [Google Scholar] [CrossRef]
- Nachshon, U.; Shahraeeni, E.; Or, D.; Dragila, M.; Weisbrod, N. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Veran-Tissoires, S.; Marcoux, M.; Prat, M. Salt crystallization at the surface of a heterogeneous porous medium. Letters 2012, 98, 34005. [Google Scholar]
- Barbieri, R.; Stivaletta, N.; Marinangeli, L.; Ori, G.G. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet. Space Sci. 2006, 54, 726–736. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R. The water and salt budget of an irrigated plot in an oasis in southern Tunisia. Irrig. Water Resour. Manag. 2001, 272, 431–478. [Google Scholar]
- Attia-Essaies, S.; Zayani, L.; Chehimi, D.B.; Adad, R.C.; Ariguib, N.K.; Trabelsi-Ayadi, M. Simulation of Crystallization sequence during the evaporation of Chott El Jerid brine (South Tunisia). Thermochim. Acta 2010, 503–504, 8–11. [Google Scholar] [CrossRef]
- Shofield, R.; Thomas, D.S.G.; Kirkby, M.J. Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degrad. Dev. 2001, 12, 163–181. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R.; Job, J.O. Development and application of a conceptual hydrologic model to predict soil salinity within modern Tunisian oases. J. Hydrol. 2010, 380, 45–61. [Google Scholar] [CrossRef]
- Askri, B.; Bouhlila, R. Evolution de la salinité dans une oasis moderne de la Tunisie. Etude et Gestion des Sols 2010, 17, 197–212. [Google Scholar]
- Askri, B.; Bouhlila, R.; Job, J.O. A conceptual hydrologic model for studies of salinisationa in Tunisian oases. Int. J. Water Resour. Arid. Environ. 2011, 6, 428–439. [Google Scholar]
- Askri, B.; Ahmed, A.T.; Abichou, T.; Bouhlila, R. Effects of shallow water table, salinity and frenquency of irrigation water on the date palm water use. J. Hydrol. 2014, 513, 81–90. [Google Scholar] [CrossRef]
- Bouhlila, R. Ecoulement, Transport et Réactions géOchimiques Couplés dans Les Milieux Poreux. Cas des sels et Des Saumures. Ph.D. Thesis, Université Tunis el Manar (ENIT), Tunis, Tunisia, 1999. [Google Scholar]
- Mejri, E.; Bouhlila, R.; Helmig, R. Heterogeneity Effects on Evaporation-Induced Halite and Gypsum Co-precipitation in Porous Media. Transp. Porous Media 2017, 118, 39–64. [Google Scholar] [CrossRef]
- Askri, B. La Modélisation des Processus de Salinisation des sols Irrigués en Zones Arides: Cas de l’Oasis de Segdoud. Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisia, 2002. [Google Scholar]
- Parkhurst, D.; Appelo, C. Description of Input and Examples for Phreeqc Version 3-a Computer Program for Speciation, Batch-Reaction, One Dimentional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Denver, CO, USA, 2013.
- Derluyn, H.; Saidov, T.; Espinosa-Maezar, R.; Pel, L.; Scherer, G. Sodium sulfate heptahydrate i: The growth of single crystals. J. Cryst. Growth 2011, 329, 44–51. [Google Scholar] [CrossRef]
- Saidov, T.; Pel, L.; van der Heijden, G. Crystallization of sodium sulphate in porous media by drying at a constant temperature. Int. J. Heat Mass Transf. 2015, 83, 621–628. [Google Scholar] [CrossRef]
- Steiger, M.; Asmussen, S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4—H2O and the generation of stress. Geochim. Cosmochim. Acta 2008, 72, 4291–4306. [Google Scholar] [CrossRef]
- Ben Chaaban, S.; Chermiti, I.; Kreiter, S. Oligonychus afrasiaticus and phytoseiid predators seasonal occurence on date palm Phoenix dactylifera (Deglet Noor cultivar) in Tunisian oases. Bull. Insectol. 2011, 64, 15–21. [Google Scholar]
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper N°56; FAO: Rome, Italy, 1998. [Google Scholar]
- Wooding, R.A.; Scott, W.T.; White, I. Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water Resour. Res. 1997, 33, 1199–1217. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C. Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation. J. Hydrol. 2015, 524, 427–438. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C. The influence of evaporation and rainfall on supratidal groundwater dynamics and salinity structure in a sandy beach. Water Resour. Res. 2017, 53, 6218–6238. [Google Scholar] [CrossRef]
- Jambhekar, V.A.; Mejri, E.; Schröder, N.; Helmig, R.; Shokri, N. Kinetic approach to model reactive transport and mixed salt precipitation in a coupled free-flow-porous-media system. Transp. Porous Media 2016, 114, 341–369. [Google Scholar] [CrossRef] [Green Version]
620 | 86 | 2254 | 31 | 2822 | 3231 |
Minerals | Chemical Formula |
---|---|
Calcium Sulphate () | |
Anhydrite | |
Sodium Chloride () | |
Glauberite | |
Mirabilite | |
Sodium Sulphate (Thenardite) |
Component | Source/Sink Term |
---|---|
Water | |
Gypsum | |
Thenardite | |
Halite |
Well | |||||||
---|---|---|---|---|---|---|---|
CT2 | 450 | 238 | 598 | 21 | 1473 | 1943 | 193 |
CT3 | 360 | 144 | 391 | 16 | 826 | 1207 | 159 |
Properties | Value [Unit] | |
---|---|---|
Porosity | 0.364 [-] | |
Permeability | 2 × 10 [m] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejri, E.; Helmig, R.; Bouhlila, R. Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences 2020, 10, 395. https://doi.org/10.3390/geosciences10100395
Mejri E, Helmig R, Bouhlila R. Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences. 2020; 10(10):395. https://doi.org/10.3390/geosciences10100395
Chicago/Turabian StyleMejri, Emna, Rainer Helmig, and Rachida Bouhlila. 2020. "Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application" Geosciences 10, no. 10: 395. https://doi.org/10.3390/geosciences10100395
APA StyleMejri, E., Helmig, R., & Bouhlila, R. (2020). Modeling of Evaporation-Driven Multiple Salt Precipitation in Porous Media with a Real Field Application. Geosciences, 10(10), 395. https://doi.org/10.3390/geosciences10100395