Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation, Identification, and Selection of Bacterial Strains for Fermentation
2.2. Hemolysis and Antibiotic Resistance of Enterococcus faecium
2.3. Fermentation of Medicinal Plants
2.4. Preparation of Plant Extracts
2.5. Estimation of Total Phenolic Content
2.6. Estimation of Total Flavonoid Content
2.7. Determination of DPPH Radical Scavenging Activity
2.8. Determination of ABTS Radical Scavenging Activity
2.9. Assessment of Intracellular Superoxide Levels
2.10. Preparation of Dog Foods
2.11. Preparation of Dog Food Extracts and Analyses
2.12. Experimental Animals and Food Preference Test
2.13. Fecal Bacteria Isolation and Counts
2.14. Statistical Analysis
3. Results
3.1. Isolation and Identification of the Strains from Medicinal Plants
3.2. Hemolysis and Antibiotic Resistance
3.3. Fermentation Characteristics
3.4. Antioxidant Activities before and after Fermentation
3.5. Antioxidant Activities of Dog Foods
3.6. Food Preference Test of Fermented Turmeric, Glasswort, Ganghwa Mugwort, and Their Mixture
3.7. Fecal Bacteria in Beagles Fed Turmeric, Glasswort, Ganghwa Mugwort, and Their Mixture
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owens, N.; Grauerholz, L. Interspecies Parenting: How Pet Parents Construct Their Roles. Humanit. Soc. 2019, 43, 96–119. [Google Scholar] [CrossRef]
- McGee, N.; Radosevich, J.; Rawson, N.E. Functional ingredients in the pet food industry: Regulatory considerations. In Nutraceutical and Functional Food Regulations in the United States and Around the World; Academic Press: Cambridge, MA, USA, 2014; pp. 497–502. [Google Scholar]
- Di Cerbo, A.; Morales-Medina, J.C.; Palmieri, B.; Pezzuto, F.; Cocco, R.; Flores, G.; Iannitti, T. Functional foods in pet nutrition: Focus on dogs and cats. Res. Vet. Sci. 2017, 112, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Hayek, M.G. Process and product for enhancing immune response in companion animals using a combination of antioxidants. U.S. Patent 6,310,090, 30 October 2001. [Google Scholar]
- Sechi, S.; Chiavolelli, F.; Spissu, N.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Cocco, R. An antioxidant dietary supplement improves brain-derived neurotrophic factor levels in serum of aged dogs: Preliminary results. J. Vet. Med. 2015, 2015, 412501. [Google Scholar] [CrossRef] [PubMed]
- Milgram, N.W.; Head, E.; Muggenburg, B.; Holowachuk, D.; Murphey, H.; Estrada, J.; Ikeda-Douglas, C.; Zicker, S.; Cotman, C. Landmark discrimination learning in the dog: Effects of age, an antioxidant fortified food, and cognitive strategy. Neurosci. Biobehav. Rev. 2002, 26, 679–695. [Google Scholar] [CrossRef]
- Bunghez, F.; Socaciu, C.; Catunescu, G.M. Antioxidants used in pet feed. Bull. UASVM Agric. 2012, 69, 488–489. [Google Scholar]
- Glodde, F.; Gunal, M.; Kinsel, M.E.; AbuGhazaleh, A. effects of natural antioxidants on the stability of omega-3 fatty acids in dog food. J. Vet. Res. 2018, 62, 103–108. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, K.-Y.; Gul, K.; Rahman, M.S.; Kim, A.-N.; Chun, J.; Kim, H.-J.; Choi, S.-G. Phenolics and antioxidant activity of aqueous turmeric extracts as affected by heating temperature and time. LWT 2019, 105, 149–155. [Google Scholar] [CrossRef]
- Kim, J.H.; Yang, H.J.; Kim, Y.-J.; Park, S.; Lee, O.-H.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. J. Ethn. Foods 2016, 3, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Karthivashan, G.; Park, S.-Y.; Kweon, M.-H.; Kim, J.; Haque, M.E.; Cho, D.-Y.; Kim, I.-S.; Cho, E.-A.; Ganesan, P.; Choi, D.-K. Ameliorative potential of desalted Salicornia europaea L. extract in multifaceted Alzheimer’s-like scopolamine-induced amnesic mice model. Sci. Rep. 2018, 8, 7174. [Google Scholar] [CrossRef]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016, 6, 104. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Park, L.-Y.; Lee, S.-H. Effect of Salicornia herbacea L. powder on the quality characteristics of bread. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1196–1201. [Google Scholar] [CrossRef]
- Lim, Y.-B.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Jang, S.-J.; Lee, C.-H.; He, F.-Y.; Choi, Y.-S. Effects of glasswort (Salicornia herbacea L.) hydrates on quality characteristics of reduced-salt, reduced-fat Frankfurters. Korean J. Food Sci. Anim. Resour. 2015, 35, 783. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, S. Antioxidative effect of Salicornia herbacea L. grown in closed sea beach. J. Korean Soc. Food Sci. Nutr. 2003, 32, 207–210. [Google Scholar]
- Zhang, J.; Sasaki, T.; Li, W.; Nagata, K.; Higai, K.; Feng, F.; Wang, J.; Cheng, M.; Koike, K. Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps. Bioorg. Med. Chem. Lett. 2018, 28, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Goto, M.; Mitsui, T.; Hashimoto-Hachiya, A.; Tsuji, G.; Furue, M. Antioxidant Artemisia princeps extract enhances the expression of filaggrin and loricrin via the AHR/OVOL1 pathway. Int. J. Mol. Sci. 2017, 18, 1948. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.S.; Cavaco, T.; Brodelius, M. Phenolic composition and antioxidant capacity of six Artemisia species. Ind. Crop. Prod. 2011, 33, 382–388. [Google Scholar] [CrossRef]
- Bang, M.-H.; Cho, J.-G.; Song, M.-C.; Lee, D.-Y.; Han, M.-W.; Chung, H.-G.; Jeong, T.-S.; Lee, K.-T.; Choi, M.-S.; Baek, N.-I. Development of biologically active compounds from edible plant sources XXII. Triterpenoids from the aerial parts of Sajabalssuk (Artemisia princeps PAMPANINI). Appl. Biol. Chem. 2008, 51, 223–227. [Google Scholar]
- Selhub, E.M.; Logan, A.C.; Bested, A.C. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 2014, 33, 2. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Cho, S.; Moon, H.-I.; Hong, G.-E.; Lee, C.-H.; Kim, J.-M.; Kim, S.-K. Biodegradation of capsaicin by Bacillus licheniformis SK1230. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 335–339. [Google Scholar] [CrossRef]
- Foulquié Moreno, M.; Callewaert, R.; Devreese, B.; Van Beeumen, J.; De Vuyst, L. Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 2003, 94, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Drew, W.L.; Barry, A.; O’Toole, R.; Sherris, J.C. Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl. Environ. Microbiol. 1972, 24, 240–247. [Google Scholar]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Lee, O.H.; Lee, B.Y.; Lee, J.; Lee, H.B.; Son, J.Y.; Park, C.S.; Shetty, K.; Kim, Y.C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, G.; Ismail, Z.; Norhayati, I.; Sadikun, A. The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem. 2005, 93, 311–317. [Google Scholar] [CrossRef]
- Jeong, C.H.; Ryu, H.; Zhang, T.; Lee, C.H.; Seo, H.G.; Han, S.G. Green tea powder supplementation enhances fermentation and antioxidant activity of set-type yogurt. Food Sci. Biotechnol. 2018, 27, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Han, S.G.; Newsome, B.; Hennig, B. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Toxicology 2013, 306, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Griffin, R.; Kvamme, J.; Phillips, T. Palatability testing methods: Parameters and analyses that influence test conditions. Petfood Technol. 2003, 1, 187–193. [Google Scholar]
- Tôrres, C.L.; Hickenbottom, S.J.; Rogers, Q.R. Palatability affects the percentage of metabolizable energy as protein selected by adult beagles. J. Nutr. 2003, 133, 3516–3522. [Google Scholar] [CrossRef]
- Duh, P.-D.; Yen, G.-C. Antioxidative activity of three herbal water extracts. Food Chem. 1997, 60, 639–645. [Google Scholar] [CrossRef]
- Djukić-Vuković, A.P.; Mojović, L.V.; Semenčenko, V.V.; Radosavljević, M.M.; Pejin, J.D.; Kocić-Tanackov, S.D. Effective valorisation of distillery stillage by integrated production of lactic acid and high quality feed. Food Res. Int. 2015, 73, 75–80. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Endo, A.; Beasley, S.; Salminen, S. Microbiota and probiotics in canine and feline welfare. Anaerobe 2015, 34, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kayodé, A.P.; Mertz, C.; Guyot, J.-P.; Brat, P.; Mouquet-Rivier, C. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality. J. Agric. Food Chem. 2013, 61, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Park, H.-E.; Lee, W.-K. Selection and immunomodulatory evaluation of lactic acid bacteria suitable for use as canine probiotics. Korean J. Vet. Res. 2015, 55, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of fermentation of pomegranate juice by Lactobacillus plantarum and Lactobacillus acidophilus on the antioxidant activity and metabolism of sugars, organic acids and phenolic compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Ra, H.N.; Kim, H.Y. Antioxidant and antimicrobial activities of Curcuma aromatica Salisb. with and without fermentation. Korean J. Food Cook. Sci. 2016, 32, 299–306. [Google Scholar] [CrossRef]
- Pianpumepong, P.; Noomhorm, A. Isolation of probiotic bacteria from turmeric (Curcuma longa Linn.) and its application in enriched beverages. Int. J. Food Sci. Technol. 2010, 45, 2456–2462. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.; Cheng, W.; Li, Y.; Ma, J.; Zhong, F. Quantitative optimization and assessments of supplemented tea polyphenols in dry dog food considering palatability, levels of serum oxidative stress biomarkers and fecal pathogenic bacteria. RSC Adv. 2016, 6, 16802–16807. [Google Scholar] [CrossRef]
- Joo, S.Y.; Choi, H.Y. Antioxidant activity and quality characteristics of pork patties added with saltwort (Salicornia herbacea L.) powder. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1189–1196. [Google Scholar] [CrossRef]
- Trivedi, N.; Hutton, J.; Boone, L. Useable data: How to translate the results derived from palatability testing. Petfood Ind. 2000, 42, 42–44. [Google Scholar]
- Farooqui, A.A. Importance and roles of fiber in the diet. In High Calorie Diet and the Human Brain; Springer: Cham, Switzerland, 2015; pp. 193–218. [Google Scholar]
- Kendall, P.T.; Holme, D.W. Studies on the digestibility of soya bean products, cereals, cereal and plant by-products in diets of dogs. J. Sci. Food Agric. 1982, 33, 813–822. [Google Scholar] [CrossRef]
- Isidori, M.; Rueca, F.; Trabalza-Marinucci, M. Palatability of extruded dog diets supplemented with Ascophyllum nodosum L. (Fucaceae, Phaeophyceae). J. Appl. Phycol. 2019, 1–7. [Google Scholar] [CrossRef]
- Suchodolski, J. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Torrey, J.C. The Regulation of the intestinal flora of dogs through diet. J. Med. Res. 1919, 39, 415–447. [Google Scholar] [PubMed]
- Mentula, S.; Harmoinen, J.; Heikkilä, M.; Westermarck, E.; Rautio, M.; Huovinen, P.; Könönen, E. Comparison between cultured small-intestinal and fecal microbiotas in beagle dogs. Appl. Environ. Microbiol. 2005, 71, 4169–4175. [Google Scholar] [CrossRef] [PubMed]
- Grønvold, A.-M.R.; L’Abée-Lund, T.M.; Sørum, H.; Skancke, E.; Yannarell, A.C.; Mackie, R.I. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol. Ecol. 2009, 71, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Handl, S.; German, A.J.; Holden, S.L.; Dowd, S.E.; Steiner, J.M.; Heilmann, R.M.; Grant, R.W.; Swanson, K.S.; Suchodolski, J.S. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 2013, 84, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Biourge, V.; Vallet, C.; Levesque, A.; Sergheraert, R.; Chevalier, S.; Roberton, J.L. The use of probiotics in the diet of dogs. J. Nutr. 1998, 128, 2730S–2732S. [Google Scholar] [CrossRef]
- Namkung, H.; Li, J.; Gong, M.; Yu, H.; Cottrill, M.; De Lange, C. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. J. Anim. Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Jin, D.; Chen, C.; Li, L.; Lu, S.; Li, Z.; Zhou, Z.; Jing, H.; Xu, Y.; Du, P.; Wang, H.; et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol. 2013, 13, 141. [Google Scholar] [CrossRef]
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Maraki, S.; Sarchianaki, E.; Barbagadakis, S. Myroides odoratimimus soft tissue infection in an immunocompetent child following a pig bite: Case report and literature review. Braz. J. Infect. Dis. 2012, 16, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Smit, E.; Oling, F.; Demel, R.; Martinez, B.; Pouwels, P.H. The S-layer protein of Lactobacillus acidophilus ATCC 4356: Identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J. Mol. Biol. 2001, 305, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Biagi, G.; Cipollini, I.; Pompei, A.; Zaghini, G.; Matteuzzi, D. Effect of a Lactobacillus animalis strain on composition and metabolism of the intestinal microflora in adult dogs. Vet. Microbiol. 2007, 124, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Alvim, L.B.; Sandes, S.H.; Silva, B.C.; Steinberg, R.S.; Campos, M.H.; Acurcio, L.B.; Arantes, R.M.; Nicoli, J.R.; Neumann, E.; Nunes, A.C. Weissella paramesenteroides WpK4 reduces gene expression of intestinal cytokines, and hepatic and splenic injuries in a murine model of typhoid fever. Benef. Microbes 2016, 7, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Frolkova, P.; Svec, P.; Sedlacek, I.; Maslanova, I.; Cernohlavkova, J.; Ghosh, A.; Zurek, L.; Radimersky, T.; Literak, I. Enterococcus alcedinis sp. nov., isolated from common kingfisher (Alcedo atthis). Int. J. Syst. Evol. Microbiol. 2013, 63, 3069–3074. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Jankovic, I.; Walker, D.C.; Pridmore, R.D.; Zink, R. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl. Env. Microbiol. 2002, 68, 6172–6181. [Google Scholar] [CrossRef]
- Vahjen, W.; Manner, K. The effect of a probiotic Enterococcus faecium product in diets of healthy dogs on bacteriological counts of Salmonella spp., Campylobacter spp. and Clostridium spp. in faeces. Arch. Anim. Nutr. 2003, 57, 229–233. [Google Scholar] [CrossRef]
- Bybee, S.N.; Scorza, A.V.; Lappin, M.R. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef]
Item | Control | Treatment |
---|---|---|
Ingredient composition, as-fed basis (g/kg) | ||
Corn, grain | 217.9 | 215.7 |
Chicken by-product meal | 145.3 | 143.9 |
Corn gluten meal | 79.9 | 79.1 |
Rice flour | 72.6 | 71.9 |
Soybean meal | 247.0 | 244.6 |
Beet pulp | 7.3 | 7.2 |
Vitamin premix a | 10.9 | 10.8 |
Chicken fat | 36.3 | 35.9 |
Premix b | 124.7 | 123.5 |
Added by coating | ||
Fermented medicinal plants c | - | 10.0 |
Salmon fat | 50.8 | 50.3 |
Palatant enhancer d | 7.3 | 7.2 |
Nutrient composition, as-fed basis (%) | ||
Moisture | 20.0 | |
Crude protein | 24.0 | |
Crude fiber | 10.0 | |
Crude fat | 11.0 | |
Crude ash | 15.0 | |
Calcium | 0.2 | |
Phosphate | 0.2 | |
Energy (kcal/100 g) | 265.81 |
Material | Stock # | Description | Media | Coverage (%) | Identity (%) |
---|---|---|---|---|---|
Turmeric | SK4349 | Klebsiella pneumoniae | NA | 100 | 100 |
SK4350 | Enterobacter cloacae | NA | 100 | 100 | |
SK4351 | Phytobacter diazotrophicus | NA | 100 | 100 | |
SK4352 | Klebsiella pneumoniae | R2A | 100 | 100 | |
SK4353 | Cronobacter sakazakii | R2A | 100 | 100 | |
SK4354 | Enterobacter aerogenes | R2A | 100 | 99 | |
SK4355 | Pediococcus pentosaceus | MRS | 100 | 100 | |
SK4356 | Enterococcus gallinarum | MRS | 100 | 100 | |
SK4357 | Enterococcus faecium | MRS | 100 | 100 | |
Glasswort | SK4367 | Weissella cibaria | MRS | 99 | 99 |
SK4368 | Enterococcus hirae | MRS | 100 | 99 | |
SK4369 | Enterococcus faecium | MRS | 100 | 100 | |
SK4370 | Enterococcus faecium | NA | 100 | 100 | |
SK4371 | Bacillus nealsonii | R2A | 100 | 99 | |
SK4372 | Enterococcus faecium | R2A | 100 | 99 | |
Ganghwa mugwort | SK4373 | Enterococcus faecium | MRS | 100 | 100 |
SK4374 | Weissella cibaria | MRS | 100 | 99 | |
SK4375 | Weissella cibaria | MRS | 99 | 99 | |
SK4376 | Enterococcus faecium | R2A | 100 | 100 |
Antibiotics | μg/disc | Susceptibility | ||
---|---|---|---|---|
SK4357 | SK4369 | SK4373 | ||
Cefepime | 30 | R a | S b | R |
Gentamicin | 2 | R | S | S |
Vancomycin | 30 | S | S | S |
Ampicillin | 10 | S | S | S |
Tetracycline | 30 | S | R | S |
Oxacillin | 1 | R | S | R |
Ciprofloxacin | 5 | S | S | S |
Chloramphenicol | 30 | S | S | S |
Clindamycin | 2 | R | S | S |
Item | Intake Ratio a | |
---|---|---|
Control | Treatment | |
Turmeric | 0.54 ± 0.19 | 0.46 ± 0.19 |
Glasswort | 0.40 ± 0.16 | 0.60 ± 0.16 * |
Ganghwa mugwort | 0.39 ± 0.15 | 0.61 ± 0.15 * |
Mixture | 0.48 ± 0.16 | 0.52 ± 0.16 |
Diet with | LB | MRS | ||
---|---|---|---|---|
log10 (CFU/mL) | Species | log10 (CFU/mL) | Species | |
Control | 8.9 ± 0.42 | Acinetobacter baumannii Myroides odoratimimus Myroides odoratus Streptococcus lutetiensis | 8.5 ± 0.63 | Lactobacillus acidophilus Lactobacillus animalis Streptococcus lutetiensis Weissella paramesenteroides |
Turmeric | 9.1 ± 0.50 | Enterococcus alcedinis Lactobacillus animalis Myroides odoratimimus | 9.0 ± 0.50 | Lactobacillus acidophilus Lactobacillus animalis Lactobacillus gasseri |
Glasswort | 8.8 ± 0.64 | Enterococcus alcedinis Lactobacillus animalis Lysinibacillus pakistanensis | 8.7 ± 0.58 | Lactobacillus animalis Lactobacillus gasseri |
Ganghwa mugwort | 8.5 ± 0.59 | Enterococcus alcedinis Lysinibacillus pakistanensis | 7.4 ± 1.70 | Lactobacillus animalis Lactobacillus gasseri Weissella paramesenteroides |
Mixture | 9.1 ± 0.75 | Escherichia fergusonii Lactobacillus animalis Streptococcus lutetiensis | 9.1 ± 0.75 | Lactobacillus animalis Lactobacillus gasseri Streptococcus lutetiensis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.H.; Kothari, D.; Niu, K.-M.; Han, S.G.; Yoon, J.E.; Lee, H.-G.; Kim, S.-K. Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs. Animals 2019, 9, 690. https://doi.org/10.3390/ani9090690
Park DH, Kothari D, Niu K-M, Han SG, Yoon JE, Lee H-G, Kim S-K. Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs. Animals. 2019; 9(9):690. https://doi.org/10.3390/ani9090690
Chicago/Turabian StylePark, Da Hye, Damini Kothari, Kai-Min Niu, Sung Gu Han, Jee Eun Yoon, Hong-Gu Lee, and Soo-Ki Kim. 2019. "Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs" Animals 9, no. 9: 690. https://doi.org/10.3390/ani9090690
APA StylePark, D. H., Kothari, D., Niu, K.-M., Han, S. G., Yoon, J. E., Lee, H.-G., & Kim, S.-K. (2019). Effect of Fermented Medicinal Plants as Dietary Additives on Food Preference and Fecal Microbial Quality in Dogs. Animals, 9(9), 690. https://doi.org/10.3390/ani9090690