Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sampling
2.3. ELISA Test
2.4. Gene Expression Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APPs | Acute phase proteins |
APR | Acute phase response |
AST | Aspartate aminotransferase |
β-Gus | β-glucuronidase |
BMI | Body mass index |
CPK | Creatine phosphokinase |
CRP | C-reactive protein |
HGB | Haemoglobin concentration |
INFγ | Interferon γ |
IL-1β | Interleukin 1β |
IL-2 | Interleukin 2 |
IL-4 | Interleukin 4 |
IL-6 | Interleukin 6 |
IL-10 | Interleukin 10 |
IL-17 | Interleukin 17 |
IL-1ra | Interleukin 1 receptor antagonist |
K2-EDTA | K2-ethylenediaminetetraacetic acid |
LPS | Lipopolysaccharide |
miRNA | microRNA |
PCV | Packed cell volume |
PLT | Platelet count |
WBC | White blood cell count |
RBC | Red blood cell count |
SAA | Serum amyloid A |
sTNF-r1 | Soluble tumour necrosis factor receptor 1 |
sTNF-r2 | Soluble tumour necrosis factor receptor 2 |
TNF-α | Tumour necrosis factor α |
TP | Total protein concentration |
References and Note
- Patterson-Kane, J.C.; Rich, T. Achilles tendon injuries in elite athletes: Lessons in pathophysiology from their equine counterparts. ILAR J. 2014, 55, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Page, A.E.; Steward, J.C.; Fielding, C.L.; Horohov, D.W. The Effect of a 160-Kilometer Competitive Endurance Ride on Inflammatory Marker mRNA Expression in Horses. J. Equine Vet. Sci. 2019, 79, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Evans, D. Training and Fitness in Athletic Horses, 1st ed.; Rural Industries Research and Development Corporation: Canberra, Australia, 2000. [Google Scholar]
- Knechtle, B. Ultramarathon runners: Nature or nurture? Int. J. Sports Physiol Perform. 2012, 7, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Nikolaidis, P.T. Physiology and Pathophysiology in Ultra-Marathon Running. Front. Physiol. 2018, 9, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, B.D.; Turner, K.K.; Ventura, B.A.; Woodward, A.D.; O’Connor, C.I. Racing speeds of quarter horses, thoroughbreds and Arabians. Equine Vet. J. Suppl. 2006, 36, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Castejón, F.; Rubio, D.; Tovar, P.; Vinuesa, M.; Riber, C. A comparative study of aerobic capacity and fitness in three different horse breeds (Andalusian, Arabian and Anglo-Arabian). Zentralbl. Veterinarmed. A 1994, 41, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 11, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Desiderio, S. Innate and acquired immunity intersect in a global view of the acute-phase response. Proc. Natl. Acad Sci. USA 2003, 100, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cray, C.; Zaias, J.; Altman, N.H. Acute Phase Response in Animals: A Review. Comp. Med. 2009, 59, 517–526. [Google Scholar]
- Fallon, K.E. The acute phase response and exercise: The ultramarathon as prototype exercise. Clin. J. Sport Med. 2001, 11, 38–43. [Google Scholar] [CrossRef]
- Cywinska, A.; Witkowski, L.; Szarska, E.; Schollenberger, A.; Winnicka, A. Serum amyloid A (SAA) concentration after training sessions in Arabian race and endurance horses. BMC Vet. Res. 2013, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Liesen, H.; Dufaux, B.; Hollmann, W. Modifications of serum glycoproteins the days following a prolonged physical exercise and the influence of physical training. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 37, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Mattusch, F.; Dufaux, B.; Heine, O.; Mertens, I.; Rost, R. Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int. J. Sports Med. 2000, 21, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Hauth, M.; Walter, M.; Hudemann, J.; Wank, V.; Niess, A.M.; Northoff, H. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav. Immun. 2014, 39, 130–141. [Google Scholar] [CrossRef]
- Mukherjee, K.; Edgett, B.A.; Burrows, H.W.; Castro, C.; Griffin, J.L.; Schwertani, A.G.; Gurd, B.J.; Funk, C.D. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50–60 year old masters athletes. PLoS ONE 2014, 9, e92031. [Google Scholar] [CrossRef]
- Buttner, P.; Mosig, S.; Lechtermann, A.; Funke, H.; Mooren, F.C. Exercise affects the gene expression profiles of human white blood cells. J. Appl. Physiol. 2007, 102, 26–36. [Google Scholar] [CrossRef]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 60–63. [Google Scholar]
- Shephard, R.J.; Shek, P.N. Potential impact of physical activity and sport on the immune system--a brief review. Br. J. Sports Med. 1994, 28, 247–255. [Google Scholar] [CrossRef]
- Horohov, D.; Sinatra, S.; Raj, M.D.; Jankowit, S.; Betancourt, A.; Bloomer, R.J. The Effect of Exercise and Nutritional Supplementation on Proinflammatory Cytokine Expression in Young Racehorses During Training. J. Equine Vet. Sci. 2012, 32, 805–815. [Google Scholar] [CrossRef]
- art 1.2 (5) Ust. z dnia 15 stycznia 2015 r. o ochronie zwierząt wykorzystywanych do celów naukowych lub edukacyjnych, Dz.U.2018.0.1207 (Resolution on the animals protection used for scientific and educational purposes).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Breathnach, C.C.; Sturgill-Wright, T.; Stiltner, J.L.; Adams, A.A.; Lunn, D.P.; Horohov, D.W. Foals are interferon gamma-deficient at birth. Vet. Immunol. Immunopathol. 2006, 112, 199–209. [Google Scholar] [CrossRef]
- Betancourt, A.; Lyons, E.T.; Horohov, D.W. Characterisation of the inflammatory cytokine response to anthelmintic treatment in ponies. Equine Vet. J. 2015, 47, 240–244. [Google Scholar] [CrossRef]
- Lang, T.A.; Secic, M. How to Report Statistics in Medicine, 2nd ed.; American College of Physicians: Philadelphia, PA, USA, 2006; p. 11. [Google Scholar]
- Brysbaert, M.; Stevens, M. Power Analysis and Effect Size in Mixed Effects Models: A Tutorial. J. Cogn. 2019, 1, 1–20. [Google Scholar] [CrossRef]
- Hinchcliff, H.; Kaneps, A.; Geor, R. Equine Sports Medicine and Surgery, 2nd ed.; Saunders Elsevier: London, UK, 2013; pp. 923–928. [Google Scholar]
- Rose, R.; Hodgson, D.R. Haematological and plasma biochemical parameters in endurance horses during training. Equine Vet. J. 1982, 14, 144–148. [Google Scholar] [CrossRef]
- Adamu, L.; Adzahan, N.M.; Rasedee, A.; Ahmad, B. Effects of Race Distance, Hematological and Biochemical Parameters of Endurance Horses. Am. J. Anim. Vet. Sci. 2010, 4, 244–248. [Google Scholar] [CrossRef]
- Satué, K.; Hernández, A.; Muñoz, A. Physiological Factors in the Interpretation of Equine Hematological Profile. In Hematology-Science and Practice; IntechOpen: London, UK, 2012; Available online: http://www.intechopen.com/books/hematology-science-and-practice/haematological-profile-of-the-horse-phisiological-factors-influencing-equine-haematology (accessed on 2 March 2012).[Green Version]
- Bahr, R. Why screening tests to predict injury do not work-and probably never will…: A critical review. Br. J. Sports Med. 2016, 50, 776–780. [Google Scholar] [CrossRef]
- Beiter, T.; Hoene, M.; Prenzler, F.; Mooren, F.C.; Steinacker, J.M.; Weigert, C.; Nieß, A.M.; Munz, B. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc. Immunol. Rev. 2015, 21, 42–57. [Google Scholar]
- Toumi, H.; Best, T. The inflammatory response: Friend or enemy for muscle injury? Br. J. Sports Med. 2003, 37, 284–286. [Google Scholar] [CrossRef]
- Gomez-Merino, D.; Drogou, C.; Guezennec, C.; Burnat, P.; Bourrilhon, C.; Tomaszewski, A.; Milhau, S.; Chennaoui, M. Comparison of systemic cytokine responses after a long distance triathlon and a 100-km run: relationship to metabolic and inflammatory processes. Cytokine Netw. 2006, 17, 117–124. [Google Scholar]
- Suzuki, K.; Peake, J.; Nosaka, K.; Okutsu, M.; Abbiss, C.R.; Surriano, R.; Bishop, D.; Quod, M.J.; Lee, H.; Martin, D.T.; et al. Changes in markers of muscle damage, inflammation and HSP70 after an Ironman Triathlon race. Eur. J. Appl. Physiol. 2006, 98, 525–534. [Google Scholar] [CrossRef]
- Cywinska, A.; Turło, A.; Witkowski LSzarska, E.; Winnicka, A. Changes in blood cytokine concentrations in horses after long-distance endurance rides. Med. Wet. 2014, 70, 568–571. [Google Scholar]
- Petersen, H.H.; Nielsen, J.P.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004, 35, 163–187. [Google Scholar] [CrossRef] [Green Version]
- Kent, L.W.; Rahemtulla, F.; Hockett, R.D.; Gilleland, R.C.; Michalek, S.M. Effect of lipopolysaccharide and inflammatory cytokines on interleukin-6 production by healthy human gingival fibroblasts. Infect Immun. 1998, 66, 608–614. [Google Scholar]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Keller, P.; Plomgaard, P.; Febbraio, M.; Saltin, B. Searching for the exercise factor—Is IL-6 a candidate. J. Muscle Res. Cell Motil. 2003, 24, 113–119. [Google Scholar] [CrossRef]
- Pedersen, B.K. Muscular interleukin-6 and its role as an energy sensor. Med. Sci. Sports Exerc. 2012, 44, 392–396. [Google Scholar] [CrossRef]
- Neubauer, O.; Konig, D.; Wagner, K. Recovery after an Ironman triathlon: Sustained inflammatory responses and muscular stress. Eur. J. Appl. Physiol. 2008, 104, 417–426. [Google Scholar] [CrossRef]
- Robson-Ansley, P.J.; Blannin, A.; Gleeson, M. Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training. Eur. J. Appl. Physiol. 2007, 99, 353–360. [Google Scholar] [CrossRef]
- Tilg, H.; Trehu, E.; Atkins, M.B.; Dinarello, C.A.; Mier, J.W. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: Induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 1994, 83, 113–118. [Google Scholar]
- Schindler, R.; Mancilla, J.; Endres, S.; Ghorbani, R.; Clark, S.C.; Dinarello, C.A. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) inhuman blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990, 75, 40–47. [Google Scholar]
- Starkie, R.; Ostrowski, S.R.; Jauffred, S.; Febbraio, M.; Pedersen, B.K. Exercise and IL-6 infusioninhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003, 17, 884–886. [Google Scholar] [CrossRef]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef]
- Heijink, I.H.; Vellenga, E.; Borger, P.; Postma, D.S.; De Monchy, J.G.D.; Kauffman, H.F. Interleukin-6 promotes the production of interleukin-4 and interleukin-5 by interleukin-2-dependent and -independent mechanisms in freshly isolated human T cells. Immunology 2002, 107, 316–324. [Google Scholar] [CrossRef]
- Hart, P.H.; Vitti, G.F.; Burgess, D.R.; Whitty, G.A.; Piccoli, D.S.; Hamilton, J.A. Potential anti- inflammatory effects of interleukin-4. Suppression of human monocyte TNFα, IL-1 and PGE2 levels. Proc. Natl. Acad. Sci. USA 1989, 86, 3803–3907. [Google Scholar] [CrossRef]
- Fenton, M.J.; Buras, J.A.; Donnelly, R.P. IL-4 reciprocally regulates IL-1 and IL-1 receptor antagonist expression in human monocytes. J. Immunol. 1992, 15, 1283–1288. [Google Scholar]
- Lafreniere, J.F.; Mills, P.; Bouchentouf, M.; Tremblay, J.P. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp. Cell Res. 2006, 312, 1127–1141. [Google Scholar] [CrossRef]
- Koh, Y.; Park, K.S. Responses of inflammatory cytokines following moderate intensity walking exercise in overweight or obese individuals. J. Exerc. Rehabil. 2017, 13, 472–476. [Google Scholar] [CrossRef]
- Salamata, K.M.; Azarbayjanib, A.M.; Yusofc, A.; Dehghan, F. The response of pre-inflammatory cytokines factors to different exercises (endurance, resistance, concurrent) in overweight men. Alex. J. Med. 2016, 52, 367–370. [Google Scholar] [CrossRef]
- Suzuki, K.; Naganuma, S.; Totsuka, M.; Suzuki, K.J.; Mochizuki, M.; Shiraishi, M.; Nakaji, S.; Sugawara, K. Effects of exhaustive endurance exercise and its one-week daily repetition on neutrophil count and functional status in untrained men. Int. J. Sports Med. 1996, 17, 205–212. [Google Scholar] [CrossRef]
- Dufaux, U.; Orde, H.; Geyer, W.; Hollmann, W. C-Reactive Protein Serum Concentrations in Well-Trained Athletes. Int. J. Sports Med. 1984, 5, 102–106. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.D.; Żmigrodzka, M.; Winnicka, A.; Miśkiewicz, A.; Strzelec, K.; Cywińska, A. Serum amyloid A in equine health and disease. Equine Vet. J. 2019, 51, 293–298. [Google Scholar] [CrossRef]
- Nieman, D.C.; Davis, J.M.; Henson, D.A.; Walberg-Rankin, J.; Shute, M.; Dumke, C.L.; Utter, A.C.; Vinci, D.M.; Carson, J.A.; Brown, A.; et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J. Appl. Physiol. 2003, 94, 1917–1925. [Google Scholar] [CrossRef]
- Ostrowski, K.; Hermann, C.; Bangash, A.; Schjerling, P.; Nielsen, J.N.; Pedersen, B.K. A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J. Physiol. 1998, 513, 889–894. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 10, a016295. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, P.; Lei, S.; Deng, F.; Xiao, G.G.; Liu, Y.; Chen, X.; Li, L.; Wu, S.; Chen, Y.; et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim. Biophys. Sin. 2008, 40, 426–436. [Google Scholar] [CrossRef] [Green Version]
Month of the Training Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1st (n = 9) | 2nd (n = 9) | 3rd (n = 7) | 4th (n = 4) | 5th (n = 3) | ||||||
Parameter | Before | After | Before | After | Before | After | Before | After | Before | After |
WBC [109/L] | 6.7 ± 1.6 | 8.8 ± 2.3 | 6.9 ± 0.9 | 8.1 ± 3.1 | 6.5 ± 0.9 | 9.9 ± 1.8 | 7.4 ± 1.5 | 8.2 ± 1.7 | 7.1 ± 0.3 | 9.9 ± 3.1 |
RBC [1012/L] | 8.4 ± 1.1 | 9.1 ± 1.1 | 8.7 ± 1.1 | 9.1 ± 1.0 | 8.8 ± 1.2 | 9.4 ± 0.8 | 8.2 ± 1.0 | 8.5 ± 1.1 | 8.2 ± 1.3 | 9.3 ± 2.0 |
HGB a [mmol/L] | 8.0 ± 1.1 | 8.7 ± 1.1 | 8.0 ± 1.2 | 8.3 ± 0.7 | 7.3 ± 0.9 | 8.1 ± 0.7 | 7.5 ± 1.0 | 7.9 ± 1.3 | 7.4 ± 1.0 | 8.3 ± 1.7 |
PCV [l/l] | 37.1 ± 5.5 | 40.4 ± 5.6 | 38.6 ± 5.5 | 40.4 ± 4.7 | 39.6 ± 5.5 | 42.4 ± 3.2 | 37.3 ± 4.7 | 38.8 ± 5.4 | 37.0 ± 6.3 | 42.1 ± 9.8 |
PLT [109/L] | 251 ± 151 | 367 ± 271 | 480 ± 235 | 580 ± 315 | 200 ± 104 | 316 ± 167 | 341 ± 187 | 505 ± 305 | 389 ± 443 | 432 ± 296 |
TP [g/L] | 62 ± 5 | 66 ± 5 | 62 ± 4 | 66 ± 5 | 66 ± 3 | 69 ± 4 | 66 ± 5 | 70 ± 1 | 65 ± 3 | 70 ± 5 |
AST [U/L] | 274 ± 23 | 300 ± 30 | 273 ± 32 | 287 ± 26 | 274 ± 28 | 301 ± 39 | 279 ± 58 | 295 ± 34 | 300 ± 49 | 351 ± 40 |
CPK [U/L] | 318 ± 97 | 415 ± 189 | 239 ± 106 | 331 ± 125 | 366 ± 142 | 500 ± 180 | 331 ± 111 | 386 ± 119 | 320 ± 31 | 594 ± 419 |
Month of the Training Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1st (n = 9) | 2nd (n = 9) | 3rd (n = 7) | 4th (n = 4) | 5th (n = 3) | ||||||
Parameter | Before | After | Before | After | Before | After | Before | After | Before | After |
IL-1β [ng/L] | 40.7 ± 10.5 | 40.7 ± 11 | 41.3 ± 13.8 | 39.9 ± 11.8 | 29.8 ± 11.2 | 32.2 ± 12.2 | 21.3 ± 15.1 | 26.8 ± 13.3 | 18.7 ± 12.3 | 17.5 ± 13 |
IL-2 [pg/L] | 26.1 ± 7.6 | 25.1 ± 7 | 25.7 ± 11.7 | 22.5 ± 6.0 | 29.5 ± 8.7 | 28 ± 8.2 | 24.2 ± 6.8 | 22.8 ± 9.1 | 20.3 ± 5.2 | 23.0 ± 6.0 |
IL-4 [pg/L] | 36.1 ± 13.1 | 37.1 ± 9.3 | 34.3 ± 11.7 | 33.8 ± 7.6 | 32.7 ± 8.8 | 32.6 ± 8.0 | 31.3 ± 7.4 | 27.1 ± 6.6 | 30.7 ± 5.4 | 26.0 ± 5.8 |
IL-6 [pg/L] | 139.6 ± 54.4 | 130.5 ± 50.6 | 132.5 ± 52.3 | 130.0 ± 41.6 | 133.3 ± 62.1 | 118.8 ± 47.6 | 109.1 ± 57.0 | 102.9 ± 53.6 | 68.4 ± 26.9 | 71.6 ± 25.6 |
IL-10 [pg/L] | 236.6 ± 71.7 | 226.3 ± 55.3 | 240.6 ± 45.9 | 227.2 ± 49.9 | 241.5 ± 54.6 | 235.3 ± 78.1 | 229 ± 68.9 | 211.3 ± 41.7 | 182.8 ± 5.0 | 154.0 ± 48.4 |
IL-17 [pg/L] | 57.8 ± 10.3 | 54.3 ± 10.8 | 56.2 ± 11.2 | 52.6 ± 10.9 | 50.7 ± 13.9 | 56.1 ± 16.6 | 47.6 ± 10.5 | 42.1 ± 10.3 | 45.9 ± 7.2 | 36.7 ± 9.6 |
TNFα [pg/L] | 135.9 ± 34.7 | 122.8 ± 33.5 | 134.2 ± 36.6 | 127.2 ± 28.9 | 106.8 ± 26.1 | 106.1 ± 27.8 | 102 ± 28.3 | 89.7 ± 36.3 | 108.8 ± 27.9 | 105.3 ± 45.9 |
INFγ [pg/L] | 41.6 ± 10.4 | 39.4 ± 8.6 | 42.2 ± 6.5 | 37.6 ± 9.0 | 38.4 ± 13.8 | 38.6 ± 11.0 | 33.2 ± 7.4 | 32.4 ± 6.2 | 33.0 ± 12.0 | 31.3 ± 8.4 |
Variable | IL-1 β | IL-6 | IL-17 | TNFα | mRNA-TNFα | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate of the Model a | Parameter Statistics | p-Value | Estimate of the Model a | Parameter Statistics | p-Value | Estimate of the Model a | Parameter Statistics | p-Value | Estimate of the Model a | Parameter Statistics | p-Value | Estimate of the Model a | Parameter Statistics | p-Value | |
Intercept | 40.38 ± 3.76 | - | - | 138.51 ± 15.97 | - | - | 57.24 ± 3.74 | - | - | 133.20 ± 10.10 | - | - | 0.09 ± 0.01 | - | - |
Variables fitted as fixed effects | |||||||||||||||
Time of blood collection | |||||||||||||||
Before | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | - |
After | 0.70 ± 1.62 | 0.43 | 0.668 | −6.91 ± 4.00 | −1.73 | 0.090 | −2.40 ± 1.83 | −1.31 | 0.196 | −7.67 ± 4.25 | −1.80 | 0.077 | −0.01 ± 0.01 | −2.01 | 0.050 |
Training | |||||||||||||||
1st b | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | - |
2nd | −0.15 ± 2.15 | −0.07 | 0.943 | −3.80 ± 5.33 | −0.71 | 0.479 | −1.65 ± 2.44 | −0.68 | 0.503 | −1.33 ± 5.67 | 0.23 | 0.815 | 0.01 ± 0.01 | 1.29 | 0.203 |
3rd | −10.65 ± 2.37 | −4.50 | <0.001 * | −6.26 ± 5.87 | −1.07 | 0.291 | −2.05 ± 2.68 | −0.77 | 0.446 | −27.00 ± 6.23 | −4.33 | <0.001 * | −0.01 ± 0.01 | −0.67 | 0.509 |
4th | −14.47 ± 2.92 | −4.95 | <0.001 * | −11.93 ± 7.26 | −1.64 | 0.107 | −7.32 ± 3.30 | −2.22 | 0.031 * | −35.06 ± 7.70 | −4.56 | <0.001 * | −0.02 ± 0.01 | −1.72 | 0.091 |
5th | −15.80 ± 3.27 | −4.83 | <0.001 * | −23.73 ± 8.12 | −2.92 | 0.005 * | −8.77 ± 3.69 | −2.37 | 0.021 * | −8.95 ± 8.61 | −1.04 | 0.304 | −0.04 ± 0.01 | −2.51 | 0.015 * |
Variables fitted as random effects | |||||||||||||||
Horse | 101.02 ± 53.63 | 1.88 | 0.060 | 2131 ± 1083 | 1.97 | 0.049 | 91.60 ± 50.12 | 1.83 | 0.068 | 732.08 ± 388.15 | 1.89 | 0.059 | 0.0005 ± 0.0003 | 1.54 | 0.124 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szarska, E.; Szczepaniak, J.; Nowak, Z.; Winnicka, A.; Cywińska, A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals 2019, 9, 616. https://doi.org/10.3390/ani9090616
Witkowska-Piłaszewicz O, Bąska P, Czopowicz M, Żmigrodzka M, Szarska E, Szczepaniak J, Nowak Z, Winnicka A, Cywińska A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals. 2019; 9(9):616. https://doi.org/10.3390/ani9090616
Chicago/Turabian StyleWitkowska-Piłaszewicz, Olga, Piotr Bąska, Michał Czopowicz, Magdalena Żmigrodzka, Ewa Szarska, Jarosław Szczepaniak, Zuzanna Nowak, Anna Winnicka, and Anna Cywińska. 2019. "Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training" Animals 9, no. 9: 616. https://doi.org/10.3390/ani9090616
APA StyleWitkowska-Piłaszewicz, O., Bąska, P., Czopowicz, M., Żmigrodzka, M., Szarska, E., Szczepaniak, J., Nowak, Z., Winnicka, A., & Cywińska, A. (2019). Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals, 9(9), 616. https://doi.org/10.3390/ani9090616