Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Antibodies
2.2. Intestinal Epithelial Cells Isolation and Culture
2.3. Characterization of IEC Primary Culture
2.4. Time- and Dose-Dependent Mn Uptake
2.5. Uptake of Mn from Different Mn Sources
2.6. Mn and Protein Concentrations Determination
2.7. Quantitative Real-Time RT-PCR
2.8. Statistical Analysis
3. Results
3.1. Isolation of IEC and Characterization of Primary IEC Cultures
3.2. Time- and Dose-Dependent Mn Uptake
3.3. Uptake of Mn in Different Mn Sources
3.4. Transporters Expression
4. Discussion
Author Contributions
Acknowledgment
Conflicts of Interest
References
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef]
- Henry, P.R. Manganese bioavailability. In Bioavailability of Nutrients for Animals: Amino Acids, Minerals, and Vitamins; Ammerman, C.B., Baker, D.H., Lewis, A.J., Eds.; Academic Press: San Diego, CA, USA, 1995; pp. 239–256. [Google Scholar] [CrossRef]
- Halpin, K.M.; Baker, D.H. Manganese utilization in the chick: Effects of corn, soybean, fish meal, wheat bran, and rice bran on tissue uptake of manganese. Poult. Sci. 1986, 65, 995–1003. [Google Scholar] [CrossRef]
- Bai, S.P.; Lu, L.; Luo, X.G.; Liu, B. Kinetics of manganese absorption in ligated small intestinal segments of broilers. Poult. Sci. 2008, 87, 2596–2604. [Google Scholar] [CrossRef]
- Bai, S.P.; Lu, L.; Wang, R.L.; Xi, L.; Zhang, L.Y.; Luo, X.G. Manganese source affects manganese transport and gene expression of divalent metal transporter 1 in the small intestine of broilers. Br. J. Nutr. 2012, 108, 267–276. [Google Scholar] [CrossRef]
- Li, X.; Xie, J.; Lu, L.; Zhang, L.; Zou, Y.; Wang, Q.; Luo, X.G. Kinetics of manganese transport and gene expressions of manganese transport carriers in Caco-2 cell monolayers. Biometals 2013, 26, 941–953. [Google Scholar] [CrossRef]
- Baker, D.H.; Halpin, K.M. Efficacy of a manganese-protein chelate compared with that of manganese sulfate for chicks. Poult. Sci. 1987, 66, 1561–1563. [Google Scholar] [CrossRef]
- Scheideler, S.E. Interaction of dietary calcium, manganese, and manganese source (Mn oxide or Mn methionine complex) on chick performance and manganese utilization. Biol. Trace Elem. Res. 1991, 29, 217–228. [Google Scholar] [CrossRef]
- Ochiai, H.; Moriyama, J.; Kanemaki, N.; Sato, R.; Onda, K. Analysis of cationic amino acid transport activity in canine lens epithelial cells. Exp. Anim. 2013, 62, 311–317. [Google Scholar] [CrossRef][Green Version]
- De Santa Barbara, P.; Van Den Brink, G.R.; Roberts, D.J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci. 2003, 60, 1322–1332. [Google Scholar] [CrossRef]
- Maldonado-Contreras, A.L.; McCormick, B.A. Intestinal epithelial cells and their role in innate mucosal immunity. Cell Tissue Res. 2011, 343, 5–12. [Google Scholar] [CrossRef]
- Dimier, I.H.; Bout, D.T. Interferon-gamma-activated primary enterocytes inhibit Toxoplasma gondii replication: A role for intracellular iron. Immunology 1998, 94, 488–495. [Google Scholar] [CrossRef]
- Ní Shúilleabháin, S.; Mothersill, C.; Sheehan, D.; O’Brien, N.M.; O’Halloran, J.; Van Pelt, F.N.; Kilemade, M.; Davoren, M. Cellular responses in primary epidermal cultures from rainbow trout exposed to zinc chloride. Ecotoxicol. Environ. Saf. 2006, 65, 332–341. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Fu, L. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int. J. Nanomed. 2013, 8, 4007–4013. [Google Scholar] [CrossRef]
- Kim, J.; Li, Y.; Buckett, P.D.; Bohlke, M.; Thompson, K.J.; Takahashi, M.; Maher, T.J.; Wessling-Resnick, M. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency. PLoS ONE 2012, 7, e33533. [Google Scholar] [CrossRef]
- Yin, Z.; Jiang, H.; Lee, E.S.; Ni, M.; Erikson, K.M.; Milatovic, D.; Bowman, A.B.; Aschner, M. Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. J. Neurochem. 2010, 112, 1190–1198. [Google Scholar] [CrossRef]
- Madejczyk, M.S.; Ballatori, N. The iron transporter ferroportin can also function as a manganese exporter. Biochim. Biophys. Acta BBA Biomembr. 2012, 1818, 651–657. [Google Scholar] [CrossRef]
- Ashmead, H.D. Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. In The Roles of Amino Acid Chelates in Animal Nutrition; Ashmead, H.D., Ed.; Noyes Publications: Park Ridge, NJ, USA, 1993; pp. 47–74. [Google Scholar]
- Li, S.; Luo, X.G.; Liu, B.; Crenshaw, T.D.; Kuang, X.; Shao, G.; Yu, S. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. J. Anim. Sci. 2004, 82, 2352–2363. [Google Scholar] [CrossRef]
- Lowe, J.A.; Wiseman, J.; Cole, D.J. Zinc source influences zinc retention in hair and hair growth in the dog. J. Nutr. 1994, 124, 2575S–2576S. [Google Scholar] [CrossRef]
- Glover, C.N.; Wood, C.M. Histidine absorption across apical surfaces of freshwater rainbow trout intestine: Mechanistic characterization and the influence of copper. J. Membr. Biol. 2008, 221, 87–95. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Thwaites, D.T.; Markovich, D.; Murer, H.; Simmons, N.L. Na+-independent lysine transport in human intestinal Caco-2 cells. J. Membr. Biol. 1996, 151, 215–224. [Google Scholar] [CrossRef]
- Torras-Llort, M.; Ferrer, R.; Soriano-Garcia, J.F.; Moreto, M. L-lysine transport in chicken jejunal brush border membrane vesicles. J. Membr. Biol. 1996, 152, 183–193. [Google Scholar] [CrossRef]
- Torras-Llort, M.; Soriano-Garcia, J.F.; Ferrer, R.; Moreto, M. Effect of a lysine-enriched diet on L-lysine transport by the brush-border membrane of the chicken jejunum. Am. J. Physiol. 1998, 274, R69–R75. [Google Scholar] [CrossRef]
- Deves, R.; Boyd, C.A. Transporters for cationic amino acids in animal cells: Discovery, structure, and function. Physiol. Rev. 1998, 78, 487–545. [Google Scholar] [CrossRef]
- Peluffo, R.D. L-Arginine currents in rat cardiac ventricular myocytes. J. Physiol. 2007, 580, 925–936. [Google Scholar] [CrossRef]
- Nishino, H.; Christopher, C.W.; Schiller, R.M.; Gammon, M.T.; Ullrey, D.; Isselbacher, K.J. Sodium-dependent amino acid transport by cultured hamster cells: Membrane vesicles retain transport changes due to glucose starvation and cycloheximide. Proc. Natl. Acad. Sci. USA 1987, 75, 5048–5051. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC382979/ (accessed on 25 March 2019). [CrossRef]
- Evans, G.S.; Flint, N.; Somers, A.S.; Eyden, B.; Potten, C.S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 1992, 101, 219–231. [Google Scholar]
- Satsu, H.; Hyun, J.S.; Shin, H.S.; Shimizu, M. Cycloheximide treatment induces the uptake of neutral and dibasic amino acids via the activation of system b0,+ in human intestinal Caco-2 cells. J. Nutr. Sci. Vitaminol. 2009, 55, 44–51. [Google Scholar] [CrossRef]
- Bar Shira, E.; Friedman, A. Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE 2018, 13, e0200393. [Google Scholar] [CrossRef]
- Qin, B.; Dawson, H.D.; Schoene, N.W.; Polansky, M.M.; Anderson, R.A. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition 2012, 28, 1172–1179. [Google Scholar] [CrossRef]
- Zhang, H.; Gilbert, E.R.; Zhang, K.; Ding, X.; Luo, Y.; Wang, J.; Zeng, Q.; Bai, S. Uptake of manganese from manganese-lysine complex in the primary rat intestinal epithelial cells. J. Anim. Physiol. Anim. Nutr. 2017, 101, 147–158. [Google Scholar] [CrossRef]
- Bai, S.; Huang, L.; Luo, Y.; Wang, L.; Ding, X.; Wang, J.; Zeng, Q.; Zhang, K. Dietary manganese supplementation influences the expression of transporters involved in iron metabolism in chickens. Biol. Trace Elem. Res. 2014, 160, 352–360. [Google Scholar] [CrossRef]
- Uni, Z.; Geyra, A.; Ben-Hur, H.; Sklan, D. Small intestinal development in the young chick: Crypt formation and enterocyte proliferation and migration. Br. Poult. Sci. 2000, 41, 544–551. [Google Scholar] [CrossRef]
- Kaiser, A.; Willer, T.; Steinberg, P.; Rautenschlein, S. Establishment of an in vitro intestinal cell culture model of avian origin. Avian Dis. 2017, 61, 229–236. [Google Scholar] [CrossRef]
- Nelson, W.J. Development of maintenance of epithelial polarity: A role for the submembranous cytoskeleton. In Functional Epithelial Cells in Culture; Matlin, K.S., Valentich, J.D., Eds.; Alan, R. Liss Inc.: New York, NY, USA, 1989; pp. 3–42. [Google Scholar]
- Deves, R.; Angelo, S.; Chavez, P. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J. Physiol. 1993, 468, 753–766. [Google Scholar] [CrossRef]
- Yokomichi, T.; Morimoto, K.; Oshima, N.; Yamada, Y.; Fu, L.; Taketani, S.; Ando, M.; Kataoka, T. Ursolic acid inhibits Na+/K+-ATPase activity and presents TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. Biomolecules 2011, 1, 32–47. [Google Scholar] [CrossRef]
- Kedinger, M.; Haffen, K.; Simon-Assmann, P. Intestinal tissue and cell cultures. Differentiation 1987, 36, 71–85. [Google Scholar] [CrossRef]
- Erikson, K.M.; Aschner, M. Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology 2006, 27, 125–130. [Google Scholar] [CrossRef]
- Li, S.F.; Luo, X.G.; Lu, L.; Crenshaw, T.D.; Bu, Y.Q.; Liu, B.; Kuang, X.; Shao, G.Z.; Yu, S.X. Bioavailability of organic manganese sources in broilers fed high dietary calcium. Anim. Feed Sci. Technol. 2005, 123–124, 703–715. [Google Scholar] [CrossRef]
- Ji, F.; Luo, X.G.; Lu, L.; Liu, B.; Yu, S.X. Effects of manganese source and calcium on manganese uptake by in vitro everted gut sacs of broilers’ intestinal segments. Poult. Sci. 2006, 85, 1217–1225. [Google Scholar] [CrossRef]
- Turi, J.L.; Yang, F.; Garrick, M.D.; Piantadosi, C.A.; Ghio, A.J. The iron cycle and oxidative stress in the lung. Free Radic. Biol. Med. 2004, 36, 850–857. [Google Scholar] [CrossRef]
- Chua, A.C.; Morgan, E.H. Manganese metabolism is impaired in the Belgrade laboratory rat. J. Comp. Physiol. B 1997, 167, 361–369. [Google Scholar] [CrossRef]
- Fleming, R.E.; Migas, M.C.; Zhou, X.; Jiang, J.; Britton, R.S.; Brunt, E.M.; Tomatsu, S.; Waheed, A.; Bacon, B.R.; Sly, W.S. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: Increased duodenal expression of the iron transporter DMT1. Proc. Natl. Acad. Sci. USA 1999, 96, 3143–3148. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15909/ (accessed on 25 March 2019). [CrossRef]
- Gunshin, H.; Allerson, C.R.; Polycarpou-Schwarz, M.; Rofts, A.; Rogers, J.T.; Kishi, F.; Hentze, M.W.; Rouault, T.A.; Andrews, N.C.; Hediger, M.A. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001, 509, 309–316. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11741608 (accessed on 25 March 2019). [CrossRef]
- Hubert, N.; Hentze, M.W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc. Natl. Acad. Sci. USA 2002, 99, 12345–12350. [Google Scholar] [CrossRef]
- Davis, C.D.; Wolf, T.L.; Greger, J.L. Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats. J. Nutr. 1992, 122, 1300–1308. [Google Scholar] [CrossRef]
- Heilig, E.A.; Thompson, K.; Molina, R.M.; Ivanov, A.R.; Brain, J.D.; Wessling-Resnick, M. Manganese and iron transport across pulmonary epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, 1247–1259. [Google Scholar] [CrossRef]
- Troadec, M.B.; Ward, D.M.; Lo, E.; Kaplan, J.; Domenico, I. Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood 2010, 116, 4657–4664. [Google Scholar] [CrossRef]
- Ashmead, H.D. Amino Acid Chelation in Human and Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2012; pp. 45–67. [Google Scholar]
- Ashmead, H. Tissue transportation of organic trace minerals. J. Appl. Nutr. 1970, 22, 42–51. [Google Scholar]
- Fang, S.M.; Burton, S.A.; Petersen, R.V. Bioavailability of zinc: Effect of amino acid chelation. In Chelated Mineral Nutrition in Plants, Animals and Man; Ashmead, H.D., Ed.; Thomas: Springfield, IL, USA, 1987; pp. 137–151. [Google Scholar]
- Cannon, V.T.; Kalups, R.K.; Barfuss, D.W. Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule. J. Pharmacol. Exp. Ther. 2001, 298, 780–789. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11454942 (accessed on 25 March 2019).
- Pan, M.; Malandro, M.; Stevens, B.R. Regulation of system y+ arginine transport capacity in differentiating human intestinal Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 1995, 268, G578–G585. [Google Scholar] [CrossRef]
- Hatzoglou, M.; Fernandez, J.; Yaman, I.; Closs, E. Regulation of cationic amino acid transport: The story of the CAT-1 transporter. Annu. Rev. Nutr. 2004, 24, 377–399. [Google Scholar] [CrossRef]
- Gao, S.; Yin, T.; Xu, B.; Ma, Y.; Hu, M. Amino acid facilitates absorption of copper in the Caco-2 cell culture model. Life Sci. 2014, 109, 50–56. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′-3′) | GeneBank ID |
---|---|---|---|
DMT1 | F | CATGTACTTCGTGGTGGCCT | EF635923 |
R | GATCAGACACAGCCACGTCA | ||
FPN1 | F | GATGCATTCTGAACAACCAAGGA | GI 61098365 |
R | GGAGACTGGGTGGACAAGAACTC | ||
CAT1 | F | CAAGAGGAAAACTCCAGTAATTGCA | XM_417116 |
R | AAGTCGAAGAGGAAGGCCATAA | ||
CAT2 | F | TGCTCGCGTTCCCAAGA | XM_420685 |
R | GGCCCACAGTTCACCAACAG | ||
b0,+AT | F | CAGTAGTGAATTCTCTGAGTGTGAAGCT | XM_414130 |
R | GCAATGATTGCCACAACTACCA | ||
rBAT | F | CCCGCCGTTCAACAAGAG | XM_426125 |
R | AATTAAATCCATCGACTCCTTTGC | ||
β-actin | F | FGAGAAATTGTGCGTGACATCA | L08165 |
R | CCTGAACCTCTCATTGCCA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Zhang, K.; Ding, X.; Wang, J.; Zeng, Q.; Peng, H.; Bai, J.; Xuan, Y.; Su, Z.; Wu, B. Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals 2019, 9, 559. https://doi.org/10.3390/ani9080559
Bai S, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z, Wu B. Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals. 2019; 9(8):559. https://doi.org/10.3390/ani9080559
Chicago/Turabian StyleBai, Shiping, Keying Zhang, Xuemei Ding, Jianping Wang, Qiufeng Zeng, Huanwei Peng, Jie Bai, Yue Xuan, Zuowei Su, and Bin Wu. 2019. "Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells" Animals 9, no. 8: 559. https://doi.org/10.3390/ani9080559
APA StyleBai, S., Zhang, K., Ding, X., Wang, J., Zeng, Q., Peng, H., Bai, J., Xuan, Y., Su, Z., & Wu, B. (2019). Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals, 9(8), 559. https://doi.org/10.3390/ani9080559