Dietary β-Sitosterol Improves Growth Performance, Meat Quality, Antioxidant Status, and Mitochondrial Biogenesis of Breast Muscle in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sample Collection
2.3. Meat Quality Determination
2.4. Analysis of Free Radical Scavenging Activity
2.5. Measurement of Malondialdehyde Content and Antioxidant Enzymes Activities
2.6. mRNA Extraction and Real-time Quantitative PCR
2.7. Mitochondrial DNA (mtDNA) Copy Number Measurement
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Meat Quality of Breast Muscle
3.3. Free Radical Scavenging Activity of Breast Muscle
3.4. Antioxidant Status of Breast Muscle
3.5. Mitochondrial DNA Content in the Breast Muscle
3.6. Gene Expressions in the Breast Muscle
4. Discussion
4.1. Growth Performance
4.2. Meat Quality in the Breast Muscle
4.3. Antioxidant Capacity in the Breast Muscle
4.4. Mitochondrial Biogenesis in the Breast Muscle
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. World’s Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Mudalal, S.; Lorenzi, M.; Soglia, F.; Cavani, C.; Petracci, M. Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal 2014, 9, 728–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijare, V.V.; Yang, F.L.; Kuttappan, V.A.; Alvarado, C.Z.; Coon, C.N.; Owens, C.M. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poult. Sci. 2016, 95, 2167–2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrijver, R.; Stijntjes, M.; Rodríguez-Baño, J.; Tacconelli, E.; Babu Rajendran, N.; Voss, A. Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clin. Microbiol. Infect. 2018, 24, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Lammie, S.L.; Hughes, J.M. Antimicrobial resistance, food safety, and one health: The need for convergence. Annu. Rev. Food Sci. Technol. 2016, 7, 287–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hum, Z.; Lu, C.; Bai, K.; Zhang, L.; Wang, T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 2015, 63, 3880–3886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, L.; Zhao, X.; Chen, X.; Wang, L.; Geng, Z. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. J. Sci. Food Agric. 2017, 98, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.L.; Song, Z.H.; Niu, Y.; Cheng, K.; Zhang, J.F.; Ahmad, H.; Zhang, L.L.; Wang, T. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers. Poult. Sci. 2017, 96, 844–850. [Google Scholar] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Li, J.; Cong, J.; Gao, F.; Zhou, G. Effects of dietary marigold extract supplementation on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. Asian-Australas. J. Anim. Sci. 2017, 30, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, S.; Zhang, Y.; Zhuo, Z.; Feng, J. Phytosterols on growth performance, antioxidant enzymes and intestinal morphology in weaned piglets. J. Sci. Food Agric. 2017, 97, 4629–4634. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhuo, Z.; Fang, S.; Zhang, Y.; Feng, J. Phytosterols improve immunity and exert anti-inflammatory activity in weaned piglets. J. Sci. Food Agric. 2017, 97, 4103–4109. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hussain, A.; Yang, X.; Wang, J.J.; Wang, T. Effects of phytosterols on growth performance and fat metabolism in broilers. Pak. J. Zool. 2015, 47, 111–118. [Google Scholar]
- Naji, T.A.; Amadou, I.; Abbas, S.; Zhao, R.Y.; Shi, Y.H.; Le, G.W. Phytosterol supplementation improves antioxidant enzymes status and broiler meat quality. Pak. J. Food Sci. 2013, 23, 163–171. [Google Scholar]
- Elkin, R.G.; Lorenz, E.S. Feeding laying hens a bioavailable soy sterol mixture fails to enrich their eggs with phytosterols or elicit egg yolk compositional changes. Poult. Sci. 2009, 88, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, H.L.; Thiessen, S.; House, J.D.; Jones, P.J.H. Effect of plant sterol-enriched diets on plasma and egg yolk cholesterol concentrations and cholesterol metabolism in laying hens. Poult. Sci. 2010, 89, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.L.; Kim, H.N.; Jung, H.H.; Kim, J.E.; Choi, D.K.; Hur, J.M.; Lee, J.Y.; Song, H.; Song, K.S.; Huh, T.L. Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. kinase. Biochem. Biophys. Res. Commun. 2008, 377, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Lee, I.A.; Gu, W.; Hyam, S.R.; Kim, D.H. β-sitosterol attenuates high-fat diet-induced intestinal inflammation in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 in the NF-κB pathway. Mol. Nutr. Food Res. 2014, 58, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Fiorito, A.; Panourgia, M.P.; Sangiorgi, Z.; Gaddi, A. Effects of a new soy/β-sitosterol dupplement on plasma lipids in moderately hypercholesterolemic subjects. J. Am. Diet. Assoc. 2002, 102, 1807–1811. [Google Scholar] [CrossRef]
- Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. β-sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 2007, 14, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Baskar, A.A.; Ignacimuthu, S.; Paulraj, G.M.; Al Numair, K.S. Chemopreventive potential of β-sitosterol in experimental colon cancer model-an in vitro and in vivo study. BMC Complement. Altern. Med. 2010, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Rajavel, T.; Packiyaraj, P.; Suryanarayanan, V.; Singh, S.K.; Ruckmani, K.; Pandima, D.K. β-sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci. Rep. 2018, 8, 2071. [Google Scholar] [CrossRef] [PubMed]
- Lampronti, I.; Dechecchi, M.C.; Rimessi, A.; Bezzerri, V.; Nicolis, E.; Guerrini, A.; Tacchini, M.; Tamanini, A.; Munari, S.; D’Aversa, E.; et al. β-sitosterol reduces the expression of chemotactic cytokine genes in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 2017, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Vivancos, M.; Moreno, J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med. 2005, 39, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.J. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic. Biol. Med. 2003, 35, 1073–1081. [Google Scholar] [CrossRef]
- Li, C.R.; Zhou, Z.; Lin, R.X.; Zhu, D.; Sun, Y.N.; Tian, L.L.; Li, L.; Gao, Y.; Wang, S.Q. β-sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability. J. Cell. Biochem. 2007, 102, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskar, A.A.; Al Numair, K.S.; Gabriel, P.M.; Alsaif, M.A.; Muamar, M.A.; Ignacimuthu, S. beta-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. J. Med. Food 2012, 15, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, I.; Ender, K.; Wicke, M.; Maak, S.; Lengerken, G.V.; Meyer, W. Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci. 1999, 53, 9–15. [Google Scholar] [CrossRef]
- Scheffler, T.L.; Matarneh, S.K.; England, E.M.; Gerrard, D.E. Mitochondria influence postmortem metabolism and pH in an in vitro model. Meat Sci. 2015, 110, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Faustman, C.; Hoagland, T.A.; Mancini, R.A.; Seyfert, M.; Hunt, M.C. Postmortem oxygen consumption by mitochondria and its effects on myoglobin form and stability. J. Agric. Food Chem. 2005, 53, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R. Role of Mitochondria in Postmortem Color Stability. Ph.D. Thesis, University of Connecticut, Mansfield, CT, USA, 2012. [Google Scholar]
- Wong, H.S.; Leong, P.K.; Chen, J.; Leung, H.Y.; Chan, W.M.; Ko, K.M. β-Sitosterol increases mitochondrial electron transport by fluidizing mitochondrial membranes and enhances mitochondrial responsiveness to increasing energy demand by the induction of uncoupling in C2C12 myotubes. J. Funct. Foods 2016, 23, 253–260. [Google Scholar] [CrossRef]
- Wong, H.S.; Chen, J.; Leong, P.K.; Leung, H.Y.; Chan, W.M.; Ko, K.M. A cistanches herba fraction/beta-sitosterol causes a redox-sensitive induction of mitochondrial uncoupling and activation of adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor gamma coactivator-1 in C2C12 myotubes: A possible mechanism underlying the weight reduction effect. Evid. Based Complement. Alternat. Med. 2015, 2015, 142059. [Google Scholar]
- Shi, C.; Wu, F.; Xu, J. Incorporation of β-sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity. J. Bioenerg. Biomembr. 2013, 45, 301–305. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- China feed database, Feed composition and nutritive values in China. 2012. Available online: http:// www.chinafeeddata.org.cn (accessed on 26 February 2019).
- Cheng, Y.; Chen, Y.; Li, X.; Yang, W.; Wen, C.; Kang, Y.; Wang, A.; Zhou, Y. Effects of synbiotic supplementation on growth performance, carcass characteristics, meat quality and muscular antioxidant capacity and mineral contents in broilers. J. Sci. Food Agric. 2017, 97, 3699–3705. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Du, M.; Xu, Q.; Chen, Y.; Wen, C.; Zhou, Y. Dietary mannan oligosaccharide improves growth performance, muscle oxidative status, and meat quality in broilers under cyclic heat stress. J. Therm. Biol. 2018, 75, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hou, X.; Ahmad, H.; Zhang, H.; Zhang, L.; Wang, T. Assessment of free radicals scavenging activity of seven natural pigments and protective effects in AAPH-challenged chicken erythrocytes. Food Chem. 2014, 145, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Cheng, Y.; Li, Y.; Wen, C.; Zhou, Y. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br. J. Nutr. 2018, 119, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Bai, K.W.; Su, W.P.; Wang, A.A.; Zhang, L.L.; Huang, K.H.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, E.; Ocak, N.; Turan, A.; Erener, G.; Altop, A.; Cankaya, S. Performance, carcass, gastrointestinal tract and meat quality traits, and selected blood parameters of broilers fed diets supplemented with humic substances. J. Sci. Food Agric. 2011, 92, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, D.; Eren, M.; Agel, H.; Kovanlikaya, A.; Balci, F. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, Y.; Zhao, J.; Wang, Q. Phenolic, flavonoid, and lutein ester content and antioxidant activity of 11 cultivars of Chinese marigold. J. Agric. Food Chem. 2007, 55, 8478–8484. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Anjum, F.M.; Asghar, A.; Khan, M.I.; Yasin, M.; Shahid, M.; El-Ghorab, A.H. Lipid stability and antioxidant profile of microsomal fraction of broiler meat enriched with α-lipoic acid and α-tocopherol acetate. J. Agric. Food Chem. 2011, 59, 7346–7352. [Google Scholar] [CrossRef] [PubMed]
Items | 1–21 days | 22–42 days |
---|---|---|
Ingredients | ||
Corn | 570 | 615.2 |
Soybean meal | 315.1 | 250 |
Corn gluten meal | 34 | 46 |
Soybean oil | 31 | 41 |
Limestone | 12 | 14 |
Dicalcium phosphate | 20 | 17 |
L-Lysine | 3.4 | 3 |
DL-Methionine | 1.5 | 0.8 |
Sodium chloride | 3 | 3 |
Premix † | 10 | 10 |
Calculated nutrient levels ‡ | ||
Apparent metabolizable energy (MJ/kg) | 12.55 | 13.05 |
Crude protein | 233 | 200 |
Calcium | 10 | 9 |
Available phosphorus | 4.5 | 3.5 |
Lysine | 11 | 10 |
Methionine | 5 | 3.8 |
Methionine + cystine | 9 | 7.2 |
Gene † | Gene Bank ID | Primer Sequence, Sense/Antisense | Length (bp) |
---|---|---|---|
SIRT1 | NM_001004767 | GATCAGCAAAAGGCTGGATGGT ACGAGCCGCTTTCGCTACTAC | 143 |
PGC-1α | AB170013.1 | GACGTATCGCCTTCTTGCTC CTCGATCGGGAATATGGAGA | 157 |
TFAM | NM_204100.1 | GTGAAAGCCTGGCGAAACTG CACAGCTCAGGTTACACCGT | 228 |
NRF1 | NM_001030646.1 | AAGAACACGGCGTGACTCAA TCGCTTCCGTTTCTTACCCG | 274 |
mtD-loop | XM_015291451.1 | AGGACTACGGCTTGAAAAGC | 198 |
CATCTTGGCATCTTCAGTGCC | |||
β-actin | NM_205518.1 | TTGGTTTGTCAAGCAAGCGG CCCCCACATACTGGCACTTT | 100 |
Items † | β-Sitosterol Level (mg/kg) | SEM * | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 40 | 60 | 80 | 100 | Linear | Quadratic | ||
ADG (g/day) | 52.0 | 52.9 | 53.9 | 53.9 | 53.3 | 0.5 | 0.344 | 0.395 |
ADFI (g/day) | 89.4 | 89.9 | 90.0 | 90.2 | 90.5 | 0.9 | 0.710 | 0.959 |
F/G (g/g) | 1.72 a | 1.70 ab | 1.67 b | 1.67 b | 1.70 ab | 0.01 | 0.034 | 0.006 |
Items | β-Sitosterol Level (mg/kg) | SEM * | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 40 | 60 | 80 | 100 | Linear | Quadratic | ||
Lightness45min | 40.9 | 40.2 | 39.9 | 40.1 | 39.7 | 0.2 | 0.113 | 0.556 |
Redness45min | 7.29 | 7.22 | 7.31 | 7.68 | 7.49 | 0.15 | 0.440 | 0.964 |
Yellowness45min | 18.6 | 18.2 | 18.5 | 18.3 | 18.1 | 1.39 | 0.669 | 0.970 |
Lightness24h | 44.9 a | 43.3 ab | 40.9 b | 41.4 b | 41.8 b | 0.4 | 0.001 | 0.014 |
Redness24h | 7.46 | 7.60 | 7.85 | 7.72 | 7.91 | 0.19 | 0.471 | 0.870 |
Yellowness24h | 18.4 | 19.2 | 19.4 | 19.0 | 18.8 | 0.3 | 0.721 | 0.263 |
pH45min | 6.46 | 6.52 | 6.49 | 6.54 | 6.53 | 0.02 | 0.284 | 0.630 |
pH24h | 5.74 b | 5.79 ab | 5.81 ab | 5.89 a | 5.88 ab | 0.02 | 0.003 | 0.614 |
Drip loss24h (g/kg) | 32.8 a | 31.5 ab | 30.4 ab | 27.9 b | 29.9 ab | 0.5 | 0.003 | 0.173 |
Drip loss48h (g/kg) | 47.6 | 48.8 | 47.7 | 43.4 | 46.4 | 0.9 | 0.201 | 0.956 |
Cooking loss (g/kg) | 196 a | 176 ab | 151 b | 153 b | 164 b | 4 | 0.001 | 0.003 |
Shear force (kg) | 3.10 | 2.62 | 2.94 | 2.32 | 2.60 | 0.17 | 0.317 | 0.667 |
Items † | β-Sitosterol Level (mg/kg) | SEM * | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 40 | 60 | 80 | 100 | Linear | Quadratic | ||
DPPH (%) | 13.2 b | 14.6 ab | 16.3 a | 17.1 a | 16.3 a | 0.4 | <0.001 | 0.028 |
ABTS (%) | 56.2 | 54.7 | 56.1 | 57.8 | 56.9 | 0.4 | 0.141 | 0.645 |
O2− (U/mg protein) | 0.92 | 0.94 | 0.90 | 0.99 | 1.00 | 0.02 | 0.225 | 0.764 |
OH− (U/g protein) | 16.3 | 17.3 | 16.1 | 17.7 | 17.8 | 0.4 | 0.163 | 0.558 |
Items † | β-Sitosterol Level (mg/kg) | SEM * | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 40 | 60 | 80 | 100 | Linear | Quadratic | ||
MDA (nmol/mg protein) | 0.61 a | 0.51 ab | 0.35 bc | 0.22 c | 0.23 c | 0.04 | <0.001 | 0.200 |
GSH (mg/g protein) | 2.06 | 1.94 | 1.85 | 2.61 | 2.63 | 0.15 | 0.106 | 0.382 |
GSH-Px (U/mg protein) | 2.62 | 2.85 | 2.97 | 3.44 | 3.39 | 0.23 | 0.230 | 0.917 |
SOD (U/mg protein) | 47.7 b | 50.3 ab | 54.0 ab | 59.7 a | 54.0 ab | 1.4 | 0.023 | 0.185 |
CAT (U/mg protein) | 0.21 | 0.20 | 0.20 | 0.26 | 0.25 | 0.01 | 0.165 | 0.583 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Chen, Y.; Li, J.; Qu, H.; Zhao, Y.; Wen, C.; Zhou, Y. Dietary β-Sitosterol Improves Growth Performance, Meat Quality, Antioxidant Status, and Mitochondrial Biogenesis of Breast Muscle in Broilers. Animals 2019, 9, 71. https://doi.org/10.3390/ani9030071
Cheng Y, Chen Y, Li J, Qu H, Zhao Y, Wen C, Zhou Y. Dietary β-Sitosterol Improves Growth Performance, Meat Quality, Antioxidant Status, and Mitochondrial Biogenesis of Breast Muscle in Broilers. Animals. 2019; 9(3):71. https://doi.org/10.3390/ani9030071
Chicago/Turabian StyleCheng, Yefei, Yueping Chen, Jun Li, Hengman Qu, Yurui Zhao, Chao Wen, and Yanmin Zhou. 2019. "Dietary β-Sitosterol Improves Growth Performance, Meat Quality, Antioxidant Status, and Mitochondrial Biogenesis of Breast Muscle in Broilers" Animals 9, no. 3: 71. https://doi.org/10.3390/ani9030071
APA StyleCheng, Y., Chen, Y., Li, J., Qu, H., Zhao, Y., Wen, C., & Zhou, Y. (2019). Dietary β-Sitosterol Improves Growth Performance, Meat Quality, Antioxidant Status, and Mitochondrial Biogenesis of Breast Muscle in Broilers. Animals, 9(3), 71. https://doi.org/10.3390/ani9030071