The Effect of Different Dietary Levels of Defatted Rice Bran on Growth Performance, Slaughter Performance, Serum Biochemical Parameters, and Relative Weights of the Viscera in Geese
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Sample Collection and Analytical Determination
2.3. Statistical Analyses
3. Results
3.1. Analyzed Composition of the DFRB and Major Nutrient Utilization of DFRB in Geese
3.2. Growth Performance
3.3. Slaughter Performance
3.4. Serum Biochemical Parameters
3.5. Relative Weights of the Viscera
4. Discussion
4.1. Content of Crude Nutrient, Gross Energy of DFRB and ME, Major Nutrient Utilization of DFRB for Geese
4.2. Growth Performance
4.3. Slaughter Performance
4.4. Serum Biochemical Parameters
4.5. Relative Weights of the Viscera
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stein, H.H.; Lagos, L.V.; Casas, G.A.; Abelilla, J.J.; Liu, Y.H.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 2015, 56, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Chakraborty, C.; Barman, A.K. Effect of microwave and enzymatic treatment on the recovery of protein from Indian defatted rice branmeal. J. Oleo Sci. 2012, 61, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.B.; Huang, C.F.; Lyu, Z.Q.; Chen, F.Y.; Li, P.L.; Lai, C.H. Available energy and amino acid digestibility of defatted rice bran fed to growing pigs. J. Anim. Sci. 2018, 96, 3138–3150. [Google Scholar] [PubMed]
- Casas, G.A.; Overholt, M.F.; Dilger, A.C.; Boler, D.D.; Stein, H.H. Effects of full fat rice bran and defatted rice bran on growth performance and carcass characteristics of growing-finishing pigs1. J. Anim. Sci. 2018, 96, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, S.A.; Watkins, S.E.; Adams, M.H.; Waldroup, P.W. Defatted rice bran to restrict growth rate in broiler chickens. J. Appl. Poult. Res. 1995, 4, 170–181. [Google Scholar] [CrossRef]
- Warren, B.E.; Farrell, D.J. The nutritive value of full-fat and defatted Australian rice bran. II. Growth studies with chickens, rats and pigs. Anim. Feed Sci. Technol. 1990, 27, 229–246. [Google Scholar] [CrossRef]
- Shi, S.R.; Wang, Z.Y.; Yang, H.M.; Zhang, Y.Y. Nitrogen requirement for maintenance in Yangzhou goslings. Br. Poult. Sci. 2007, 48, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Shi, S.R.; Zhou, Q.Y.; Yang, H.M.; Zou, J.M.; Zhang, K.N.; Han, H.M. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 2010, 51, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kong, X.L.; Wang, Z.Y.; Yang, H.M.; Zhang, K.N.; Zou, J.M. Influence of whole corn feeding on the performance, digestive tract development, and nutrient retention of geese. Poult. Sci. 2011, 90, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Yang, H.M.; Lu, J.; Li, W.Z.; Zou, J.M. Influence of whole hulled rice and rice husk feeding on the performance, carcass yield and digestive tract development of geese. Anim. Feed Sci. Technol. 2014, 194, 99–105. [Google Scholar] [CrossRef]
- Agricultural Ministry of China. Terminology of Poultry Production Performance and Methods of Measurement with Calculations; Agricultural Ministry of China (NY/T 823-2004): Beijing, China, 2004.
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC Int.: Washington, DC, USA, 1995. [Google Scholar]
- Feed Database in China. Table of Feed Composition and Nutritive Value in China, 25th ed.; China Intercontinental Press: Bejing, China, 2014. [Google Scholar]
- Zhang, S.J.; Zhu, C.H.; Guo, J.; Tang, Q.P.; Li, H.F.; Zou, J.M. Metabolizable energy and fiber digestibility of uncommon feedstuffs for geese. Poult. Sci. 2013, 92, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.F.; Wang, Z.Y. Study on Metabolizable energy values and general nutrient availability of six ingredients for geese. China Poult. 2006, 24, 112–115. [Google Scholar]
- Sun, W.; Kang, P.; Xie, M.; Hou, S.S.; Wu, T.; Mei, H.M.; Liu, Y.L.; Hou, Y.Q.; Wu, L.Y. Effects of full-fat rice bran inclusion in diets on growth performance and meat quality of Sichuan goose. Br. Poult. Sci. 2016, 57, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Lin, Y.C.; Chen, W.; Wang, S.; Xia, W.G.; Fouad, A.M.; Zheng, C.T. Effects of rice bran on performance, egg quality, oxidative status, yolk fatty acid composition, and fatty acid metabolism-related gene expression in laying ducks. Poult. Sci. 2015, 94, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Smeets, N.; Nuyens, F.; Campenhout, L.V.; Delezie, E.; Niewold, T.A. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Poult. Sci. 2018, 97, 2064–2070. [Google Scholar] [CrossRef] [PubMed]
- Kermanshahi, H.; Shakouri, M.D.; Daneshmand, A. Effects of non-starch polysaccharides in semi-purified diets on performance, serum metabolites, gastrointestinal morphology, and microbial population of male broiler chickens. Livest. Sci. 2018, 214, 93–97. [Google Scholar] [CrossRef]
- Adrizal, P.; Palo, E.; Sell, J.L. Utilization of defatted rice bran by broiler chickens1. Poult. Sci. 1996, 75, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Wang, Z.Y.; Wang, H.R.; Xu, L.; Xie, Y.J.; Jin, S.L.; Sheng, D.F. Effects of dietary fiber on growth performance, slaughter performance, serum biochemical parameters, and nutrient utilization in geese. Poult. Sci. 2017, 96, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
Items 1 | Content |
---|---|
GE (MJ/kg) | 15.37 |
DM (%) | 89.66 |
CP (%) | 16.56 |
EE (%) | 1.47 |
CF (%) | 7.57 |
Ca (%) | 0.99 |
TP (%) | 1.86 |
Ash (%) | 10.62 |
Items 1 | Utilization |
---|---|
AME (MJ/kg) | 8.17 |
TME (MJ/kg) | 8.95 |
DM (%) | 37.50 |
CP (%) | 54.80 |
EE (%) | 47.94 |
CF (%) | 31.00 |
Ca (%) | 28.93 |
TP (%) | 23.00 |
Ingredient | Dietary Defatted Rice Bran, % 2 | ||||
---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | |
Ingredient (%) | |||||
Corn | 60.43 | 55.23 | 50.04 | 45.00 | 40.02 |
Soybean meal | 23.05 | 20.29 | 17.53 | 14.96 | 12.37 |
Defatted rice bran | 0.00 | 10.00 | 20.00 | 30.00 | 40.00 |
Limestone | 0.93 | 1.44 | 1.95 | 1.99 | 2.95 |
Calcium hydrogen phosphate | 2.45 | 1.83 | 1.21 | 1.18 | 0.00 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Rice husk | 7.01 | 6.01 | 5.01 | 4.07 | 3.10 |
Wheat bran | 4.64 | 3.69 | 2.73 | 1.25 | 0.00 |
DL-Methionine | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Lysine | 0.02 | 0.04 | 0.06 | 0.08 | 0.09 |
Premix 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient composition 3 | |||||
ME (MJ/kg) | 10.77 | 10.63 | 10.48 | 10.35 | 10.23 |
CP (%) | 16.27 | 16.05 | 15.83 | 15.62 | 15.44 |
ME/CP (MJ/kg) | 66.22 | 66.22 | 66.22 | 66.22 | 66.22 |
Crude fiber (%) | 5.74 | 5.74 | 5.74 | 5.74 | 5.74 |
Lysine (%) | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Methionine (%) | 0.41 | 0.41 | 0.41 | 0.41 | 0.42 |
Total phosphorus (%) | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
Calcium (%) | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 |
Item | Dietary Defatted Rice Bran, % 2 | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | DFRB Level | Linear | ||
BW | ||||||||
Day 28 | 1268.87 | 1273.43 | 1274.42 | 1269.23 | 1275.25 | 2.587 | 0.451 | 0.384 |
Day 70 | 3653.98 a | 3627.73 ac | 3529.53 abc | 3500.42 bc | 3449.30 b | 48.664 | 0.038 | 0.002 |
ADG | 56.79 a | 56.05 ac | 53.69 abc | 53.12 bc | 51.76 b | 1.157 | 0.035 | 0.002 |
ADFI | 242.48 | 241.83 | 243.28 | 245.65 | 248.84 | 3.693 | 0.723 | 0.201 |
F/G | 4.27 a | 4.32 a | 4.54 b | 4.63 bc | 4.82 c | 0.065 | <0.001 | <0.001 |
Item | Dietary Defatted Rice Bran, % 2 | SEM 5 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | DFRB Level | Linear | ||
Slaughter yield 3 | 87.00 | 88.95 | 88.15 | 88.01 | 88.73 | 0.733 | 0.602 | 0.389 |
Semi-eviscerated carcass yield 3 | 79.33 | 81.25 | 80.79 | 80.51 | 79.37 | 0.733 | 0.348 | 0.799 |
Eviscerated carcass yield 3 | 71.71 | 73.51 | 73.15 | 72.41 | 71.66 | 0.908 | 0.569 | 0.694 |
Breast yield 4 | 12.01 a | 10.72 ab | 10.48 ab | 9.86 b | 9.86 b | 0.603 | 0.146 | 0.018 |
Thigh yield 4 | 13.91 a | 15.52 ab | 15.04 ab | 15.32 ab | 16.32 b | 0.572 | 0.135 | 0.029 |
Abdominal fat yield 4 | 2.59 | 2.58 | 2.64 | 2.72 | 2.60 | 0.437 | 1.00 | 0.905 |
Item 3 | Dietary Defatted Rice Bran, % 2 | SEM 4 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | DFRB level | Linear | ||
TP (g/L) | 51.91 | 50.69 | 52.46 | 50.79 | 49.83 | 2.467 | 0.970 | 0.651 |
ALB (g/L) | 21.35 | 23.51 | 23.36 | 21.95 | 22.69 | 0.875 | 0.343 | 0.687 |
GLOB (g/L) | 30.57 | 27.18 | 29.10 | 28.84 | 27.14 | 2.804 | 0.920 | 0.600 |
GLU (mmol/L) | 7.01 | 7.83 | 7.57 | 7.32 | 7.41 | 0.636 | 0.924 | 0.889 |
CHO (mmol/L) | 4.94 | 4.45 | 4.89 | 4.69 | 4.41 | 0.227 | 0.413 | 0.282 |
TG (mmol/L) | 0.91 | 0.95 | 0.77 | 0.86 | 0.89 | 0.143 | 0.942 | 0.779 |
Ca (mmol/L) | 2.20 | 2.10 | 2.04 | 2.13 | 2.09 | 0.078 | 0.705 | 0.466 |
P (mmol/L) | 1.85 | 1.89 | 1.93 | 1.95 | 1.91 | 0.133 | 0.989 | 0.697 |
Item 2 | Dietary Defatted Rice Bran, % 3 | SEM 4 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | DFRB Level | Linear | ||
Heart | 0.59 | 0.57 | 0.61 | 0.61 | 0.58 | 0.021 | 0.683 | 0.868 |
Liver | 1.94 | 2.10 | 2.05 | 2.22 | 2.10 | 0.111 | 0.600 | 0.266 |
Spleen | 0.14 | 0.09 | 0.12 | 0.10 | 0.12 | 0.016 | 0.367 | 0.813 |
Bursa | 0.05 | 0.05 | 0.03 | 0.05 | 0.05 | 0.007 | 0.520 | 0.809 |
Gizzard | 2.72 | 2.69 | 2.57 | 2.69 | 2.64 | 0.136 | 0.944 | 0.694 |
Proventriculus | 0.22 a | 0.20 a | 0.26 b | 0.27 b | 0.27 b | 0.018 | 0.041 | 0.006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, H.; Wang, Z. The Effect of Different Dietary Levels of Defatted Rice Bran on Growth Performance, Slaughter Performance, Serum Biochemical Parameters, and Relative Weights of the Viscera in Geese. Animals 2019, 9, 1040. https://doi.org/10.3390/ani9121040
Chen X, Yang H, Wang Z. The Effect of Different Dietary Levels of Defatted Rice Bran on Growth Performance, Slaughter Performance, Serum Biochemical Parameters, and Relative Weights of the Viscera in Geese. Animals. 2019; 9(12):1040. https://doi.org/10.3390/ani9121040
Chicago/Turabian StyleChen, Xiaoshuai, Haiming Yang, and Zhiyue Wang. 2019. "The Effect of Different Dietary Levels of Defatted Rice Bran on Growth Performance, Slaughter Performance, Serum Biochemical Parameters, and Relative Weights of the Viscera in Geese" Animals 9, no. 12: 1040. https://doi.org/10.3390/ani9121040
APA StyleChen, X., Yang, H., & Wang, Z. (2019). The Effect of Different Dietary Levels of Defatted Rice Bran on Growth Performance, Slaughter Performance, Serum Biochemical Parameters, and Relative Weights of the Viscera in Geese. Animals, 9(12), 1040. https://doi.org/10.3390/ani9121040