Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe–Lamb Interaction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Growth Performance and Diarrhea Rate
3.2. Slaughter Performance and Development of Visceral Organs
3.3. Rumen Fermentation Parameters
3.4. Serum Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jagusch, K.T.; Clark, V.R.; Jay, N.P. Lamb production from animals weaned at 3 to 5 weeks of age on to lucerne. New Zeal J. Agr. Res. 1970, 13, 808–814. [Google Scholar] [CrossRef]
- Cheng, C.S.; Wei, H.K.; Wang, P.; Yu, H.C.; Zhang, X.M.; Jiang, S.W.; Peng, J. Early intervention with faecal microbiota transplantation: An effective means to improve growth performance and the intestinal development of suckling piglets. Animal 2019, 13, 533–541. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J. Sci. Food Agric. 2018, 98, 4471–4478. [Google Scholar] [CrossRef] [PubMed]
- Orgeur, P.; Bernard, S.; Naciri, M.; Nowak, R.; Schaal, B.; Levy, F. Psychobiological consequences of two different weaning methods in sheep. Reprod. Nutr. Dev. 1999, 39, 231–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinch, G.N.; Lynch, J.J.; Elwin, R.L.; Green, G.C. Long term associations between Merino ewes and their offspring. Appl. Anim. Behav. Sci. 1990, 27, 93–103. [Google Scholar] [CrossRef]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Demir, H. Investigations on growing Kivircik lambs weaned at different times. Vet. Fak. Derg. Istambul 1995, 21, 142–150. [Google Scholar]
- Baldwin, R.L.; McLeod, K.R.; Klotz, J.L.; Heitmann, R.N. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar] [CrossRef]
- McKusick, B.C.; Thomas, D.L.; Berger, Y.M. Effect of weaning system on commercial milk production and lamb growth of East Friesian dairy sheep. J. Dairy Sci. 2001, 84, 1660–1668. [Google Scholar] [CrossRef]
- Chai, J.; Diao, Q.Y.; Wang, H.C.; Tu, Y.; Tao, X.J.; Zhang, N.F. Effects of weaning age on growth, nutrient digestibility and metabolism, and serum parameters in Hu lambs. Anim. Nutr. 2015, 1, 344–348. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Niu, X.L.; Zhang, Z.F.; Li, F.; Li, F.D. The effects of milk replacer allowance and weaning age on the performance, nutrients digestibility, and ruminal microbiota communities of lambs. Anim. Feed. Sci. Technol. 2019, 257, 1–9. [Google Scholar] [CrossRef]
- Bimczok, D.; Röhl, F.W.; Ganter, M. Evaluation of lamb performance and costs in motherless rearing of German Grey Heath sheep under field conditions using automatic feeding systems. Small Rumin Res. 2005, 60, 255–265. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goat, Cervids, and New World Camelids; National Academy Press: Washington, WA, USA, 2007. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Marshall, C.M.; Walker, A.F. Comparison of a short method for Kjeldahl digestion using a trace of selenium as catalyst, with other methods. J. Sci. Food Agric. 1978, 29, 940–942. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.G.; Van Soest, J.P. Forage Fiber Analysis. Agricultural Handbook; UPSDA: Washington, DC, USA, 1970. [Google Scholar]
- Kargar, S.; Mousavi, F.; Karimi-Dehkordi, S. Effects of chromium supplementation on weight gain, feeding behaviour, health and metabolic criteria of environmentally heat-loaded Holstein dairy calves from birth to weaning. Arch. Anim. Nutr. 2018, 72, 443–457. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, M.; Tu, Y.; Zhang, N.F.; Deng, K.D.; Ma, T.; Diao, Q.Y. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. J. Anim. Physiol. Anim. Nutr. (Berl) 2016, 100, 33–38. [Google Scholar] [CrossRef]
- Broderick, G.; Kang, J. Automated stimultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Spencer, J.D.; Boyd, R.D.; Cabrera, R.; Allee, G.L. Early weaning to reduce tissue mobilization in lactating sows and milk supplementation to enhance pig weaning weight during extreme heat stress. J. Anim. Sci. 2003, 81, 2041–2052. [Google Scholar] [CrossRef]
- Jesse, B.W. Energy Metabolism in the Developing Rumen Epithelium; Elsevier: London, UK, 2005; Volume 3. [Google Scholar]
- Liu, T.; Li, F.; Wang, W.M.; Yue, X.P.; Li, F.; Li, C.; Pan, X.Y.; Mo, F.T.; Wang, F.B.; La, Y.F.; et al. Effects of lamb early starter feeding on the expression of genes involved in volatile fatty acid transport and pH regulation in rumen tissue. Anim. Feed Sci. Technol. 2016, 217, 27–35. [Google Scholar] [CrossRef]
- Ma, T.; Wang, B.; Zhang, N.F.; Tu, Y.; Si, B.W.; Cui, K.; Qi, M.L.; Diao, Q.Y. Effect of protein restriction followed by realimentation on growth, nutrient digestibility, ruminal parameters, and transporter gene expression in lambs. Anim. Feed Sci. Technol. 2017, 231, 19–28. [Google Scholar] [CrossRef]
- Chai, J.M.; Ma, T.; Wang, H.C.; Qi, M.L.; Tu, Y.; Diao, Q.Y.; Zhang, N.F. Effect of early weaning age on growth performance, nutrient digestibility, and serum parameters of lambs. Anim. Prod. Sci. 2017, 57, 110–115. [Google Scholar] [CrossRef]
- Amezcua, R.; Friendship, R.M.; Dewey, C.E.; Gyles, C.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E-coli serogroups involved, and their antimicrobial resistance patterns. Can. J. Vet. Res. 2002, 66, 73–78. [Google Scholar] [PubMed]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2007, 6, 17–39. [Google Scholar] [CrossRef]
- Cui, K.; Wang, B.; Zhang, N.F.; Tu, Y.; Ma, T.; Diao, Q.Y. iTRAQ-based quantitative proteomic analysis of alterations in the intestine of Hu sheep under weaning stress. PLoS ONE 2018, 13, e0200680. [Google Scholar] [CrossRef] [PubMed]
- Main, R.G.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Increasing weaning age improves pig performance in a multisite production system. J. Anim. Sci. 2004, 82, 1499–1507. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Pazoki, A.; Ghorbani, G.R.; Kargar, S.; Sadeghi-Sefidmazgi, A.; Drackley, J.K.; Ghaffari, M.H. Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical form of starter feed and forage provision. Anim. Feed Sci. Technol. 2017, 234, 173–185. [Google Scholar] [CrossRef]
- Liu, J.; Bian, G.; Sun, D.; Zhu, W.; Mao, S. Starter feeding altered ruminal epithelial bacterial communities and some key immune-related genes’ expression before weaning in lambs. J. Anim. Sci. 2017, 95, 910–921. [Google Scholar] [CrossRef]
- Liu, J.; Bian, G.; Sun, D.; Zhu, W.; Mao, S. Starter Feeding Supplementation Alters Colonic Mucosal Bacterial Communities and Modulates Mucosal Immune Homeostasis in Newborn Lambs. Front. Microbiol. 2017, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; He, B.; Wang, S.S.; Liu, J.X.; Wang, J.K. Early supplementation of starter pellets with alfalfa improves the performance of pre- and postweaning Hu lambs. J. Anim. Sci. 2015, 93, 4984–4994. [Google Scholar] [CrossRef]
- McGee, M.; Earley, B. Review: Passive immunity in beef-suckler calves. Animal 2019, 13, 810–825. [Google Scholar] [CrossRef] [PubMed]
- Furman-Fratczak, K.; Rzasa, A.; Stefaniak, T. The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth. J. Dairy Sci. 2011, 94, 5536–5543. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Castellano, L.E.; Moreno-Indias, I.; Morales-delaNuez, A.; Sánchez-Macías, D.; Torres, A.; Capote, J.; Argüello, A.; Castro, N. The effect of milk source on body weight and immune status of lambs. Livest. Sci. 2015, 175, 70–76. [Google Scholar] [CrossRef]
- Cao, S.T.; Wang, C.C.; Wu, H.; Zhang, Q.H.; Jiao, L.F.; Hu, C.H. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Buchet, A.; Belloc, C.; Leblanc-Maridor, M.; Merlot, E. Effects of age and weaning conditions on blood indicators of oxidative status in pigs. PLoS ONE 2017, 12, e0178487. [Google Scholar] [CrossRef]
- O’Loughlin, A.; McGee, M.; Doyle, S.; Earley, B. Biomarker responses to weaning stress in beef calves. Res. Vet. Sci. 2014, 97, 458–463. [Google Scholar] [CrossRef]
- Hickey, M.C.; Drennan, M.; Earley, B. The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Niu, X.L.; Zhang, Z.A.; Li, F.; Li, F.D. An intensive milk replacer feeding program benefits immune response and intestinal microbiota of lambs during weaning. BMC Vet. Res. 2018, 14, 366. [Google Scholar] [CrossRef]
- Turpin, D.L.; Langendijk, P.; Chen, T.Y.; Pluske, J.R. Intermittent Suckling in Combination with an Older Weaning Age Improves Growth, Feed Intake and Aspects of Gastrointestinal Tract Carbohydrate Absorption in Pigs after Weaning. Animals 2016, 6, 66. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Cao, G.; Feng, J.; Yue, M.; Xu, Y.; Dai, B.; Han, Q.; Guo, X. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets. J. Anim. Sci. 2019, 97, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
Item | Starter 1 (7–35 Days) | Starter 2 (36–63 Days) |
---|---|---|
Ingredients, air dry basis, % | ||
Alfalfa hay | 7.0 | |
Oat grass | 5.0 | |
Corn | 50.0 | 45.5 |
Soybean meal | 23.5 | 20.0 |
Corn germ meal | 12.0 | 10.0 |
Wheat bran | 10.0 | 8.0 |
Vitamin and mineral mixture 1 | 1.0 | 1.0 |
Limestone | 2.0 | 2.0 |
CaHPO4 | 0.5 | 0.5 |
Salt | 0.5 | 0.5 |
NaHCO3 | 0.5 | 0.5 |
Chemical composition 2, % of DM | ||
DM, air dry basis | 90.2 | 89.1 |
CP | 21.5 | 21.5 |
NDF | 15.1 | 18.9 |
ADF | 6.4 | 8.2 |
Ash | 8.0 | 5.7 |
Ca | 0.9 | 0.8 |
P | 0.5 | 0.6 |
ME, MJ/kg | 10.9 | 10.5 |
Item | Treatment | Day of Age | SEM 2 | p-Value 2 | ||||
---|---|---|---|---|---|---|---|---|
26 | 35 | 63 | Treatment | Age | Treatment × Age | |||
Slaughter BW, kg | CON | 9.8 bc | 12.3 b | 22.2 a | 0.779 | 0.010 | <0.001 | 0.675 |
EW | 8.8 c | 10.2 bc | 20.0 a | |||||
Hot carcass, kg | CON | 4.7 b | 5.9 b | 10.2 a | 0.443 | 0.007 | <0.001 | 0.376 |
EW | 4.4 b | 4.5 b | 8.7 a | |||||
Dressing percentage, % | CON | 48.3 ab | 47.6 abc | 45.8 bdc | 0.491 | 0.065 | <0.001 | 0.021 |
EW | 49.8 a | 44.4 dc | 43.5 d | |||||
Whole stomach, g | CON | 135.5 c | 237.0 b | 566.6 a | 21.400 | 0.705 | <0.001 | 0.936 |
EW | 127.7 c | 238.7 b | 552.7 a | |||||
relative to whole stomach weight, % | ||||||||
Rumen | CON | 45.1 e | 55.5 dc | 67.9 ab | 1.784 | 0.007 | <0.001 | 0.300 |
EW | 51.3 de | 61.0 bc | 68.9 a | |||||
Reticulum | CON | 7.8 | 9.1 | 9.9 | 0.502 | 0.821 | 0.258 | 0.049 |
EW | 9.1 | 8.7 | 8.7 | |||||
Omasum | CON | 4.5 bdc | 3.7 d | 6.3 ab | 0.434 | 0.035 | <0.001 | 0.648 |
EW | 5.7 abc | 4.1 dc | 7.0 a | |||||
Abomasum | CON | 42.6 a | 31.7 b | 15.9 c | 1.852 | 0.003 | <0.001 | 0.102 |
EW | 33.9 b | 26.2 b | 15.4 c |
Item | Treatment | Day of Age | SEM 2 | p-Value 2 | ||||
---|---|---|---|---|---|---|---|---|
26 | 35 | 63 | Treatment | Age | Treatment × Age | |||
pH | CON | 5.7 b | 5.5 b | 6.3 a | 0.081 | 0.694 | 0.007 | 0.684 |
EW | 5.6 b | 5.6 b | 6.0 a | |||||
NH3-N, mg/100 mL | CON | 10.6 bc | 15.7 ab | 17.5 ab | 1.048 | 0.999 | <0.001 | 0.040 |
EW | 8.1 c | 12.9 bc | 22.8 a | |||||
Total VFA, mmol/L | CON | 66.4 b | 106.5 ab | 92.9 ab | 4.884 | 0.027 | 0.049 | 0.197 |
EW | 109.7 ab | 122.0 a | 97.6 ab | |||||
Molar proportion of VFA, mol/100 mol | ||||||||
Acetate | CON | 50.9 | 50.1 | 52.8 | 1.234 | 0.804 | 0.676 | 0.340 |
EW | 49.3 | 55.8 | 50.2 | |||||
Propionate | CON | 24.1 | 26.4 | 25.0 | 0.775 | 0.154 | 0.744 | 0.482 |
EW | 29.4 | 27.4 | 26.2 | |||||
Butyrate | CON | 20.1 | 16.5 | 16.7 | 1.331 | 0.171 | 0.379 | 0.526 |
EW | 14.8 | 10.0 | 17.1 | |||||
Valerate | CON | 1.9 b | 5.3 a | 3.1 ab | 0.378 | 0.098 | 0.015 | 0.185 |
EW | 4.9 ab | 5.6 a | 3.5 ab | |||||
Isobutyrate | CON | 1.0 ab | 0.8 ab | 0.9 ab | 0.075 | 0.991 | 0.033 | 0.068 |
EW | 0.8 ab | 0.6 b | 1.3 a | |||||
Isovalerate | CON | 1.9 a | 0.9 ab | 1.5 ab | 0.135 | 0.159 | 0.01 | 0.041 |
EW | 0.7 b | 0.7 b | 1.8 a | |||||
Acetate/Propionate ratio | CON | 2.1 | 2.1 | 2.3 | 0.099 | 0.253 | 0.71 | 0.616 |
EW | 1.7 | 2.1 | 1.9 |
Item 2 | Treatment | Day of Age | SEM 3 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
26 | 35 | 63 | Treatment | Age | Treatment × Age | |||
IgG, g/L | CON | 24.0 a | 22.5 a | 19.0 b | 0.422 | 0.761 | <0.001 | 0.454 |
EW | 22.8 a | 22.8 a | 19.4 b | |||||
IgA, g/L | CON | 0.5 c | 0.6 bc | 0.7 a | 0.014 | 0.809 | <0.001 | 0.658 |
EW | 0.6 c | 0.6 c | 0.7 ab | |||||
IgM, g/L | CON | 1.1 b | 1.1 b | 1.3 a | 0.026 | 0.889 | <0.001 | 0.846 |
EW | 1.1 b | 1. 1b | 1.3 a | |||||
SOD, U/mL | CON | 93.5 b | 111.5 a | 94.8 b | 1.548 | 0.839 | <0.001 | 0.556 |
EW | 96.7 b | 110.4 a | 93.8 b | |||||
GSH-Px, µmol/L | CON | 754.7 bc | 818.6 a | 732.4 c | 8.645 | 0.290 | <0.001 | 0.199 |
EW | 712.7 c | 811.1 ab | 743.4 c | |||||
CAT, U/mL | CON | 7.6 c | 8.9 a | 7.8 bc | 0.118 | 0.145 | <0.001 | 0.844 |
EW | 7.5 c | 8.6 ab | 7.6 c | |||||
T-AOC, U/mL | CON | 8.4 c | 9.8 a | 8.8 bc | 0.115 | 0.605 | <0.001 | 0.134 |
EW | 8.9 bc | 9.5 ab | 8.9 bc | |||||
MDA, nmol/mL | CON | 5.3 a | 4.3 b | 5.3 a | 0.112 | 0.464 | <0.001 | 0.948 |
EW | 5.5 a | 4.4 b | 5.4 a | |||||
Cortisol, µg/dL | CON | 1.5 b | 2.7 a | 1.6 b | 0.107 | 0.946 | <0.001 | 0.695 |
EW | 1.6 b | 2.6 a | 1.5 b | |||||
IL-1β, pg/mL | CON | 98.9 b | 111.4 a | 99.7 b | 1.534 | 0.659 | <0.001 | 0.471 |
EW | 97.1 b | 114.0 a | 96.1 b | |||||
IL-4, pg/mL | CON | 13.3 c | 14.3 ab | 13.2 c | 0.124 | 0.361 | <0.001 | 0.850 |
EW | 13.4 bc | 14.6 a | 13.3 c | |||||
IL-6, pg/mL | CON | 45.9 c | 54.2 ab | 45.8 c | 1.055 | 0.085 | <0.001 | 0.356 |
EW | 47.5 bc | 59.2 a | 46.2 c | |||||
IFN-γ, pg/mL | CON | 143.2 b | 159.0 a | 141.9 b | 1.443 | 0.843 | <0.001 | 0.772 |
EW | 144.2 b | 157.1 a | 141.9 b | |||||
TNF-α, pg/mL | CON | 54.4 b | 67.5 a | 55.7 b | 1.133 | 0.927 | <0.001 | 0.549 |
EW | 56.4 b | 66.3 a | 54.5 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ma, T.; Zhao, G.; Zhang, N.; Tu, Y.; Li, F.; Cui, K.; Bi, Y.; Ding, H.; Diao, Q. Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe–Lamb Interaction. Animals 2019, 9, 825. https://doi.org/10.3390/ani9100825
Wang S, Ma T, Zhao G, Zhang N, Tu Y, Li F, Cui K, Bi Y, Ding H, Diao Q. Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe–Lamb Interaction. Animals. 2019; 9(10):825. https://doi.org/10.3390/ani9100825
Chicago/Turabian StyleWang, Shiqin, Tao Ma, Guohong Zhao, Naifeng Zhang, Yan Tu, Fadi Li, Kai Cui, Yanliang Bi, Hongbiao Ding, and Qiyu Diao. 2019. "Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe–Lamb Interaction" Animals 9, no. 10: 825. https://doi.org/10.3390/ani9100825
APA StyleWang, S., Ma, T., Zhao, G., Zhang, N., Tu, Y., Li, F., Cui, K., Bi, Y., Ding, H., & Diao, Q. (2019). Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe–Lamb Interaction. Animals, 9(10), 825. https://doi.org/10.3390/ani9100825