In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Struvite Production from Swine Wastewater and Pre-Treatment
2.2. In Vivo Toxicity Assessment in Rats
2.3. In Vitro Solubility Test
2.4. Statistical Analysis
3. Results and Discussion
3.1. P Recovery and Manufacturing
3.2. Toxicity Test in Rats
3.3. In Vitro Solubility Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Phosphate Rock Statistics and Information. Available online: http:// https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information (accessed on 25 July 2019).
- Steen, I. Phosphorus availability in the 21st Century: Management of a non-renewable resource. Phosphorus Potassium 1998, 217, 25–31. [Google Scholar]
- Reza, A.; Shim, S.; Kim, S.; Ahmed, N.; Won, S.; Ra, C. Nutrient Leaching Loss of Pre-Treated Struvite and Its Application in Sudan Grass Cultivation as an Eco-Friendly and Sustainable Fertilizer Source. Sustainability 2019, 11, 4204. [Google Scholar] [CrossRef]
- 20 Critical Raw Materials—Major Challenge for EU Industry. Available online: https://ec.europa.eu/growth/content/20-critical-raw-materials-major-challenge-eu-industry-0_mt (accessed on 20 July 2019).
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Van Kauwenbergh, S.J.; Stewart, M.; Mikkelsen, R. World reserves of phosphate rock—A dynamic and unfolding story. Better Crop. 2013, 97, 18–20. [Google Scholar]
- Elser, J.; Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Jang, C.; Kim, K.; Owen, J.S.; Kim, B. Phosphorus Budget for a Forested-Agricultural Watershed in Korea. Water 2019, 11, 4. [Google Scholar] [CrossRef]
- Khan, F.A.; Ansari, A.A. Eutrophication: An ecological vision. Bot. Rev. 2005, 71, 449–482. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). Centralized Livestock Wastewater Treatment Plan 2019; Rural Development Administration: Jeonju, Korea, 2019. [Google Scholar]
- Ministry of Environment (MoE). Establishment and Operation of Centralized Livestock Wastewater Treatment Plant; Ministry of Environment: Sejong, Korea, 2018.
- Ahmed, N.; Shim, S.; Won, S.; Ra, C. Struvite recovered from various types of wastewaters: Characteristics, soil leaching behaviour, and plant growth. Land Degrad. Dev. 2018, 29. [Google Scholar] [CrossRef]
- Horta, C. Bioavailability of phosphorus from composts and struvite in acid soils. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Martinelle, K.; Haggstrom, L. Mechanisms of ammonia and ammonium ion toxicity in animal cells: Transport across cell membranes. J. Biotechnol. 1993, 30, 339–350. [Google Scholar] [CrossRef]
- Yoon, T.H.; Lee, D.H.; Won, S.G.; Ra, C.S.; Kim, J.D. Effects of dietary supplementation of magnesium hydrogen phosphate (MgHPO4) as an alternative phosphorus source on growth and feed utilization of juvenile far eastern catfish (Silurus asotus). Asian Austral. J. Anim. 2014, 27, 1141–1149. [Google Scholar] [CrossRef]
- Yoon, T.H.; Lee, D.H.; Won, S.G.; Ra, C.S.; Kim, J.D. Optimal incorporation level of dietary alternative phosphate (MgHPO4) and requirement for phosphorus in juvenile far eastern catfish (Silurus asotus). Asian Austral. J. Anim. 2015, 28, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Liu, Y.; Kwag, J.H.; Ra, C. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J. Hazard. Mater. 2011, 186, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2005; ISBN 978-08-7553-047-5. [Google Scholar]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lee, M.Y.; Seo, C.S.; Yoo, S.R.; Jeon, W.Y.; Shin, H.K. Acute and subacute toxicity of an ethanolic extract of Melandrii Herba in Crl: CD sprague dawley rats and cytotoxicity of the extract in vitro. BMC Complement. Altern. Med. 2016, 16, 370. [Google Scholar]
- Tualeka, A.R.; Faradisha, J.; Maharja, R. Determination of No-Observed-Adverse-Effect Level Ammonia in White Mice Through CD4 Expression. Dose-Response 2018, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Karahan, N.; Işler, M.; Koyu, A.; Karahan, A.G.; BaşyığıtKiliç, G.; Cırış, I.M.; Sütçü, R.; Onaran, I.; Cam, H.; Keskın, M. Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats. Turk. J. Gastroenterol. 2012, 23, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Pierre, P.J.; Sequeira, M.K.; Corcoran, C.A.; Blevins, M.W.; Gee, M.; Laudenslager, M.L.; Bennett, A.J. Hematological and serum biochemical indices in healthy bonnet macaques (Macaca radiata). J. Med. Primatol. 2011, 40, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Ahmed, U.; Walayat, S.; Ren, J.; Martin, D.K.; Moole, H.; Koppe, S.; Yong, S.; Dhillon, S. Liver function tests in identifying patients with liver disease. Clin. Exp. Gastroenterol. 2018, 11, 301–307. [Google Scholar] [CrossRef]
- Liu, Y.H.; Kumar, S.; Kwag, J.H.; Ra, C.S. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J. Chem. Technol. Biotechnol. 2013, 88, 181–189. [Google Scholar] [CrossRef]
- Control of Livestock and Fish Feed Act. Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion=lawNm&query=feed&x=0&y=0#liBgcolor0 (accessed on 3 October 2019).
- Protein Nutrition Requirements of Farmed Livestock and Dietary Supply. Available online: http://www.fao.org/3/y5019e/y5019e06.htm (accessed on 2 October 2019).
- Bhuiyan, M.I.H.; Mavinic, D.S.; Koch, F.A. Thermal decomposition of struvite and its phase transition. Chemosphere 2008, 70, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.S.; Riley, M.R.; Palsson, B.O. Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol. Bioeng. 1992, 39, 418–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docherty, P.A.; Snider, M.D. Effects of hypertonic and sodium-free medium on transport of a membrane glycoprotein along the secretory pathway in cultured mammalian cells. J. Cell Physiol. 1991, 146, 34–42. [Google Scholar] [CrossRef]
- Butenhoff, J.L.; Kennedy, J.L., Jr.; Chang, S.C.; Olsen, G.W. Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanoate in Sprague–Dawley rats. Toxicol. 2012, 298, 1–13. [Google Scholar] [CrossRef]
- Koizumi, M.H.; Fujii, S.; Ono, A.; Hirose, A.; Imai, T.; Ogawa, K.; Ema, M.; Nishikawa, A. Evaluation of the reproductive and developmental toxicity of aluminium ammonium sulfate in a two-generation study in rats. Food Chem. Toxicol. 2011, 49, 1948–1959. [Google Scholar]
- Razzaque, M.S. Phosphate toxicity: New insights into an old problem. Clin. Sci. 2011, 120, 91–97. [Google Scholar] [CrossRef]
- Ohnishi, M.; Nakatani, T.; Lanske, B.; Razzaque, M.S. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin D levels. Circ.-Cardiovasc. Genet. 2009, 2, 583–590. [Google Scholar] [CrossRef]
- Kuro-o, M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr. Opin. Nephrol. Hypertens. 2006, 15, 437–441. [Google Scholar] [CrossRef]
- Kuro-o, M. A potential link between phosphate and aging: Lessons from Klotho-deficient mice. Mech. Ageing. Dev. 2010, 131, 270–275. [Google Scholar] [CrossRef]
- Jin, H.; Xu, C.X.; Lim, H.T.; Park, S.J.; Shin, J.Y.; Chung, Y.S.; Park, S.C.; Chang, S.H.; Youn, H.J.; Lee, K.H.; et al. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am. J. Respir. Crit. Care Med. 2009, 179, 59–68. [Google Scholar] [CrossRef]
- Amato, D.; Maravilla, A.; Montoya, C.; Gaja, O.; Revilla, C.; Guerra, R.; Paniagua, R. Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev. Invest. Clin. 1998, 50, 185–189. [Google Scholar] [PubMed]
- Toba, Y.; Kajita, Y.; Masuyama, R.; Takada, Y.; Suzuki, K.; Aoe, S. Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J. Nutr. 2000, 130, 216–220. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, C.; Wei, Z.H.; Sun, H.Z.; Xu, G.Z.; Liu, J.X.; Liu, H.Y. The effects of dietary phosphorus on the growth performance and phosphorus excretion of dairy heifers. Asian Australas. J. Anim. Sci. 2016, 29, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, D.; Yang, T.Y.; Bryden, W.L. Phosphorus Bioavailability: A Key Aspect for Conserving this Critical Animal Feed Resource with Reference to Broiler Nutrition. Agriculture 2016, 6, 25. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; McElroy, A.P. Influence of diet, phytase, and incubation time on calcium and phosphorus solubility in the gastric and small intestinal phase of an in vitro digestion assay. J. Anim. Sci. 2012, 90, 3120–3125. [Google Scholar] [CrossRef] [PubMed]
- Lineva, A.; Kirchner, R.; Kienzle, E.; Kamphues, J.; Dobenecker, B. A pilot study on in vitro solubility of phosphorus from mineral sources, feed ingredients and compound feed for pigs, poultry, dogs and cats. J. Anim. Physio. Anim. Nutr. 2019, 103, 317–323. [Google Scholar] [CrossRef]
- Breves, G.; Schröder, B. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 1991, 4, 125–140. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Recent advances in the renal–skeletal–gut axis that controls phosphate homeostasis. Lab. Invest. 2009, 89, 7–14. [Google Scholar] [CrossRef]
- Phosphorus Binders: Relative Potency of Available Agents: Phosphorus Absorption. Available online: https://www.medscape.org/viewarticle/506489_2 (accessed on 4 October 2019).
- Wagner, A.L. Phytase Impacts Various Non-Starch Polysaccharidase Activities on Distillers Dried Grains with Solubles. Doctoral dissertation, Virginia Tech, Blacksburg, VA, USA, 2008. [Google Scholar]
Group | Treatment | Nutrient Content (mg kg−1) | |||
---|---|---|---|---|---|
P | N | Ca | Mg | ||
I | DMSO (Control) a | - | - | - | - |
II | IS1 b | 0.26 | 0.00003 | 0.10 | 0.12 |
III | IS10 c | 2.60 | 0.0003 | 1.03 | 1.15 |
IV | MS1 d | 0.22 | 0.04 | 0.09 | 0.10 |
V | MS10 e | 2.21 | 0.37 | 0.88 | 0.98 |
Parameters | Test Materials | Highest Standard Limits | ||
---|---|---|---|---|
AS c | MS b | IS a | ||
P (g kg−1 DM) | 216 | 221 | 260 | |
Ca (g kg−1 DM) | 85 | 88 | 103 | |
N (g kg−1 DM) | 50 | 3713 | 0.03 | |
Mg (g kg−1 DM) | 95 | 98 | 115 | |
K (mg kg−1 DM) | 3567.6 | NA e | 4407 | - |
Zn (mg kg−1 DM) | ND d | ND d | - | |
Ni (mg kg−1 DM) | ND d | ND d | - | |
Cu (mg kg−1 DM) | 15.7 | 19.4 | - | |
Cd (mg kg−1 DM) | ND d | ND d | 1.0 | |
Pb (mg kg−1 DM) | 0.0001 | 0.0001 | 10.0 | |
As (mg kg−1 DM) | 0.0012 | 0.0015 | 2.0 | |
Cr (mg kg−1 DM) | ND d | ND d | 100.0 | |
Hg (mg kg−1 DM) | ND d | ND d | 0.4 | |
Se (mg kg−1 DM) | ND d | ND d | 2.0 |
P Sources | P Solubility (%) | ||||
---|---|---|---|---|---|
pH 2 | pH 4 | pH 5 | pH 6 | pH 7 | |
MCP * | 98.5 ± 0.7 a | 79.7 ± 0.1 a | 57.8 ± 3.7 a | 61.6 ± 0.5 a | 58.5 ± 0.5 a |
MS | 83.4 ± 0.6 a | 77.2 ± 1.3 a | 78.6 ± 2.2 b | 76.2 ± 1.0 b | 74.8 ± 0.4 b |
IS | 69.1 ± 2.6 b | 70.4 ± 0.3 b | 67.6 ± 1.0 c | 64.3 ± 0.6 c | 56.4 ± 0.2 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, S.; Won, S.; Reza, A.; Kim, S.; Ahn, S.; Jung, B.; Yoon, B.; Ra, C. In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed. Animals 2019, 9, 785. https://doi.org/10.3390/ani9100785
Shim S, Won S, Reza A, Kim S, Ahn S, Jung B, Yoon B, Ra C. In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed. Animals. 2019; 9(10):785. https://doi.org/10.3390/ani9100785
Chicago/Turabian StyleShim, Soomin, Seunggun Won, Arif Reza, Seungsoo Kim, Sungil Ahn, Baedong Jung, Byungil Yoon, and Changsix Ra. 2019. "In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed" Animals 9, no. 10: 785. https://doi.org/10.3390/ani9100785
APA StyleShim, S., Won, S., Reza, A., Kim, S., Ahn, S., Jung, B., Yoon, B., & Ra, C. (2019). In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed. Animals, 9(10), 785. https://doi.org/10.3390/ani9100785