Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davies, D.; Meade, K.G.; Herath, S.; Eckersall, P.D.; Gonzalez, D.; White, J.O.; Conlan, D. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod. Biol. Endocrin. 2008, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Mainau, E.; Cuevas, A.; Ruiz-de-la-Torre, J.L.; Abbeloos, E.; Manteca, X. Effect of meloxicam administration after calving on milk production, acute phase proteins, and behavior in dairy cows. J. Vet. Behav. 2014, 9, 357–363. [Google Scholar] [CrossRef]
- Sender, G.; Korwin-Kossakowska, A.; Pawlik, A.; Hameed, K.G.A.; Oprządek, J. Genetic Basis of Mastitis Resistance in Dairy Cattle—A Review. Ann. Anim. Sci. 2013, 13, 663–673. [Google Scholar] [CrossRef]
- Togashi, K.; Lin, C.Y. Theoretical efficiency of multiple-trait quantitative trait loci-assisted selection. J. Anim. Breed. Genet. 2010, 127, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Song, H.; Zhu, X.; Xing, S.; Zhang, M.; Zhang, H.; Wang, X.; Yang, Z.; Ding, X.; Karrow, N.A.; et al. Toll-like receptor 4 gene polymorphisms influence milk production traits in Chinese Holstein cows. J. Dairy. Res. 2018, 85, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.H.N.; Zaros, L.G.; Lima, T.C.; Borba, L.H.F.; Novaes, L.P.; Mota, L.F.M.; Silva, M.S. Polymorphism in the Beta Casein Gene and analysis of milk characteristics in Gir and Guzerá dairy cattle. Genet. Mol. Res. 2017, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bojarojć-Nosowicz, B.; Oleński, K.; Sitarz, K.; Brym, P.; Zabolewicz, T.; Kamiński, S. Expression and polymorphism of ADAM32 gene and its association with somatic cell count in Holstein-Friesian cows. Anim. Sci. Pap. Rep. 2017, 35, 5–15. [Google Scholar]
- Bhattarai, D.; Chen, X.; Rehman, Z.; Hao, X.; Ullah, F.; Dad, R.; Talpur, H.S.; Kadariya, I.; Cui, L.; Fan, M.; et al. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle. J. Dairy. Res. 2017, 84, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.T.; Casas, E.; Smith, T.P.; Keele, J.W.; Harhay, G.; Bennet, G.L.; Koohmaraie, M.; Wheeler, T.L.; Shackelford, S.D.; Snelling, W.M. Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: Development of Low-density single nucleotide polymorphism map. J. Anim. Sci. 2005, 83, 2280–2288. [Google Scholar] [CrossRef][Green Version]
- Wakchaure, R.; Ganguly, S.; Praveen, P.K.; Kumar, A.; Sharma, S.; Mahajn, T. Marker Assisted Selection (MAS) in Animal Breeding: A Review. J. Drug. Metab. Toxicol. 2015, 6, 127. [Google Scholar] [CrossRef]
- Goddard, M. Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Sci. 2006, 123, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T. Genomic Selection: The future of marker assisted selection and animal breeding. In Proceedings of the Electronic Forum on Biotechnology in Food and Agriculture: Conference 10, Workshop “Marker Assisted Selection: A Fast Track to Increase Genetic Gain in Plant and Animal Breeding?”, Session II: MAS in Animals, Turin, Italy, 17–18 October 2003. [Google Scholar]
- Matukumalli, L.K.; Lawley, C.T.; Schnabel, R.D.; Taylor, J.F.; Allan, M.F.; Heaton, M.P.; O’Connell, J.; Moore, S.S.; Smith, T.P.; Sonstegard, T.S. Development and Characterization of a High Density SNP Genotyping Assay for Cattle. PloS ONE 2009, 4, e5350. [Google Scholar] [CrossRef] [PubMed]
- Dadi, H.; Kim, J.J.; Yoon, H.; Kim, K.S. Evaluation of Single Nucleotide Polymorphisms (SNPs) Genotyped by the Illumina Bovine SNP50K in Cattle Focusing on Hanwoo Breed. Asian-Australasian J. Anim. Sci. 2012, 25, 28–32. [Google Scholar] [CrossRef][Green Version]
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Bagnicka, E.; Strzałkowska, N.; Flisikowski, K.; Szreder, T.; Jóźwik, A.; Prusak, B.; Krzyżewski, J.; Zwierzchowski, L. The polymorphism in the β4-defensin gene and its association with production and somatic cell count in Holstein-Friesian cows. J. Anim. Sci. 2007, 124, 150–156. [Google Scholar]
- Bagnicka, E.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Horbańczuk, J.; Zwierzchowski, L. Expression and polymorphism of defensins in farm animals. Acta Biochim. Pol. 2010, 57, 487–497. [Google Scholar] [CrossRef]
- Jarczak, J.; Kościuczuk, E.M.; Lisowski, P.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Defensins: Natural component of human innate immunity. Hum. Immunol. 2013, 74, 1069–1079. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, B. Evolutionary origin of β-defensins. Dev. Comp. Immunol. 2013, 39, 79–84. [Google Scholar] [CrossRef]
- Gurao, A.; Kashyap, S.K.; Singh, R. β-defensins: An innate defense for bovine mastitis. Vet. World 2017, 10, 990. [Google Scholar] [CrossRef]
- Roosen, S.; Exner, K.; Paul, S.; Schroder, J.M.; Kalm, E.; Looft, C. Bovine betadefensins: Identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue. Mamm. Genome. 2004, 15, 834–842. [Google Scholar] [CrossRef] [PubMed]
- O’brien, S.J.; Womack, J.E.; Lyons, L.A.; Moore, K.J.; Jenkins, N.A.; Copeland, N.G. Anchored reference loci for comparative genome mapping in mammals. Nat. Genet. 1993, 3, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.S.; Da, Y.; Vanraden, P.M.; Rexroad, J.R.; Miller, R.H. Detection of putative loci affecting conformational type traits in an elite population of United States Holsteins using microsatellite markers. J. Anim. Sci. 1998, 81, 1120–1125. [Google Scholar] [CrossRef]
- Kościuszczuk, E.; Lisowski, P.; Jarczak, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res. 2014, 10, 246. [Google Scholar]
- Ryniewicz, Z.; Zwierzchowski, L.; Bagnicka, E.; Krzyżewski, J.; Strzałkowska, N. Preliminary investigations on the polymorphism of defensin genes in cattle—relation with milk somatic cell count. Anim. Sci. Pap. Rep. 2002, 20, 125–131. [Google Scholar]
- Ryniewicz, Z.; Zwierzchowski, L.; Bagnicka, E.; Flisikowski, K.; Maj, A.; Krzyżewski, J.; Strzałkowska, N. Association of the polymorphism at defensin gene loci with dairy production traits and milk somatic cell count in Black-and-White cows. Anim. Sci. Pap. Rep. 2003, 21, 209–222. [Google Scholar]
- Wojdak-Maksymiec, K.; Strabel, T.; Szyda, J.; Mikołajczyk, K. Clinical Mastitis and Combined Defensin Polymorphism in Dairy Cattle. J. Vet. Med. 2012, 11, 2230–2237. [Google Scholar]
- Bagnicka, E.; Strzałkowska, N.; Szreder, T.; Prusak, B.; Joźwik, A.; Kosciuczuk, E.; Krzyżewski, J.; Zwierzchowski, L. A/C polymorphism in the β-4 defensin gene and its association with phenotypic and breeding values of milk production traits in Polish- Fresian cows. Anim. Sci. Pap. Rep. 2008, 26, 239–250. [Google Scholar]
- Krzyżewski, J.; Bagnicka, E.; Strzałkowska, N.; Jóźwik, A.; Pyzel, B.; Zwierzchowski, L. Association between the polymorphism of bovine B4-defensin gene and milk traits in Holstein-Friesian cows as computed for standard (305 days) and the whole lactation. Anim. Sci. Pap. Rep. 2008, 26, 191–198. [Google Scholar]
- Strzetelski, J.; Śliwiński, B. Wartość pokarmowa francuskich i krajowych pasz dla przeżuwaczy red; Strzetelski, J., Ed.; Research Institute of Animal Production: Cracow, Poland, 2009; pp. 21–90. (In Polish) [Google Scholar]
- Madsen, P.; Jensen, J. A User’s Guide to DMU. A Package for Analysing Multivariate Mixed Models. 2000, Version 6. Release 4. Available online: http://dmu.agrsci.dk/DMU/Doc/Current/dmuv6_guide.5.2.pdf (accessed on 15 November 2018).
- Brotherstone, S.; White, I.M.S.; Meyer, K. Genetic modeling of dairy milk yield using orthogonal polynomials and parametric curves. Anim. Sci. 2000, 70, 407–415. [Google Scholar] [CrossRef]
- Sjaunja, L.O.; Baevre, L.; Junkkarinen, L.; Pedersen, J.; Setaelae, J. A nordic proposal for an energy corrected milk (ECM) formula. In Proceedings of the 27th Session of International. Committee of Recording and Productivity of Milk Animal, Paris, France, 2–6 July 1990; pp. 156–157. [Google Scholar]
- Gaunt, T.R.; Rodríguez, S.; Day, I.N. Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool ‘CubeX’. BMC Bioinformatics 2007, 8, 428. [Google Scholar] [CrossRef] [PubMed]
- Wiechula, B.E.; Tustanowski, J.P.; Martirosian, G. Peptydy antydrobnoustrojowe. Wiad. Lek. 2006, 59, 542–547. [Google Scholar] [PubMed]
- Meredith, B.K.; Berry, D.P.; Kearney, F.; Finlay, E.K.; Fahey, A.G.; Bradley, D.G.; Lynn, D.J. A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet. 2013, 6, 229. [Google Scholar] [CrossRef] [PubMed]
- Tetens, J.; Friedrich, J.J.; Hartmann, A.; Schwerin, M.; Kalm, E.; Thaller, G. Thespatial expression pattern of antimicrobial peptides across the healthy bovine Udder. J. Anim. Sci. 2010, 93, 775–783. [Google Scholar]
- Jurevic, R.J.; Bai, M.; Chadwick, R.B.; White, T.C.; Dale, B.A. Single-nucleotide polymorphisms (SNPs) in human β-Defensin 1: High-Throughput SNP Assays and Association with Candidia Carriage in Type I Diabetics and Nondiabetic Controls. J. Clin. Microbiol. 2003, 41, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.K.; Diamond, G. Modulation of Human β-Defensin-1 Production by Viruses. Viruses 2017, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chou, Y.Y.; Chang, T.L. Defensins in Viral Infections. J. Innate. Immun. 2009, 1, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, I.; Hasegawa, K.; Nakata, K.; Yasuda, K.; Tokunaga, K.; Keicho, N. Genetic Variants of Human β-defensin-l and Chronic Obstructive Pulmonary Disease. Biochem. Bioph. Res. Co. 2002, 291, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.; Raby, B.A.; Lake, S.; Tantisira, K.G.; Kwiatkowski, D.; Lazarus, R.; Silverman, E.; Richter, B.; Klimecki, W.T.; Vercelli, D.; et al. Association of β-defensin gene polymorphisms with asthma. J. Allergy Clin. Immun. 2005, 115, 252–258. [Google Scholar] [CrossRef]
- Braida, L.; Boniotto, M.; Pontillo, A.; Tovo, P.A.; Amoroso, A.; Crovella, S. A single- nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS 2004, 18, 1598–1600. [Google Scholar] [CrossRef]
- Milanese, M.; Segat, L.; Pontillo, A.; Arraes, L.C.; de Lima Filho, J.L.; Crovella, S. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brasilian children. AIDS 2006, 20, 1673–1675. [Google Scholar] [CrossRef] [PubMed]
- Urech, E.; Puhan, Z.; Schallibaum, M. Changes in Milk Protein Fraction as Affected by Subclinical Mastitis. J. Anim. Sci. 1999, 82, 2402–2411. [Google Scholar] [CrossRef]
- Ekine, C.C.; Rowe, S.J.; Bishop, S.C.; de Koning, D.J. Why breeding values estimated using familial data should not be used for genome-wide association studies. G3-Genes Genom. Genet. 2014, 4, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.J.; Chamberlain, A.J.; McPartlan, H.; Macleond, I.; Sethuraman, L.; Goddard, M.E. Accuracy of marker-assisted selection with single markers and marker haplotypes in cattle. Genet. Res. 2007, 89, 215–220. [Google Scholar] [CrossRef] [PubMed]
Genotype | N | Estimate (SE) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Milk kg | ECM | Fat kg | Protein kg | Fat % | Protein % | Lactose % | lnSCC | Dry Matter % | ||
CC/AA | 4761 | 29.49 A (1.15) | 31.01 A (1.17) | 1.25 A (0.08) | 0.35 A (0.04) | 4.39 A,a (0.14) | 3.55 A (0.06) | 4.54 A (0.05) | 7.25 a (0.23) | 13.23 A (0.17) |
CC/AC | 625 | 30.72 B (1.44) | 32.66 B (1.42) | 1.32 B (0.09) | 0.39 B (0.05) | 4.42 a (0.17) | 3.55 A (0.07) | 4.57 A (0.06) | 7.11 A (0.33) | 13.31 a (0.21) |
CC/CC | 163 | 29.20 A (2.00) | 31.91 A (1.92) | 1.31 B (0.10) | 0.34 A (0.06) | 4.56 B (0.23) | 3.56 A (0.09) | 4.46 B,a (0.08) | 7.18 a (0.51) | 13.34 (0.30) |
CT/AA | 145 | 30.09 A,B (1.82) | 30.00 A (1.77) | 1.21 A (0.09) | 0.36 A (0.05) | 4.44 (0.22) | 3.56 A (0.08) | 4.49 B (0.07) | 7.47 B,b (0.46) | 13.31 (0.27) |
CT/AC | 1875 | 29.38 A (1.22) | 30.72 A (1.23) | 1.24 A (0.08) | 0.36 A (0.04) | 4.36 A,a (0.16) | 3.56 A (0.06) | 4.52 B,b (0.05) | 7.28 (0.25) | 13.19 A,b (0.19) |
CT/CC | 61 | 24.44 C (2.64) | 25.04 C (2.54) | 1.04 C (0.12) | 0.27 C (0.07) | 4.61 b (0.32) | 3.74 B (0.12) | 4.46 B,a (0.10) | 7.37 (0.70) | 13.54 B (0.41) |
Genotype | N | Estimate (SE) | |||||
---|---|---|---|---|---|---|---|
Milk kg | ECM kg | Fat kg | Protein kg | Fat % | Protein % | ||
CC/AA | 382 | 10,994.14 a (395.72) | 12,235 a (503) | 423.58 (14.58) | 329.93 (17.07) | 3.90 A (0.11) | 3.25 a (0.05) |
CC/AC | 57 | 11,379.85 b (482.32) | 12,682 b (571) | 362.02 (17.33) | 340.44 (14.74) | 3.93 a (0.14) | 3.27 (0.06) |
CC/CC | 14 | 10,487.42 a (704.34) | 1231 (752) | 379.35 (24.66) | 317.39 (21.32) | 4.17 B,b (0.21) | 3.28 (0.09) |
CT/AA | 12 | 10,487.94 a (710.65) | 11,428 a (765) | 379.93 (25.24) | 317.78 (22.46) | 3.91 (0.21) | 3.31 b (0.09) |
CT/AC | 151 | 10,895.82 a (421.97) | 12,076 a (528) | 370.04 (15.35) | 339.70 (13.08) | 3.90 A (0.12) | 3.28 (0.05) |
CT/CC | 13 | 10,355.52 a (714.44) | 11,594 a (764) | 379.88 (25.19) | 324.94 (22.61) | 4.06 (0.21) | 3.31 b (0.09) |
Genotype | N | Estimate (SE) | ||||
---|---|---|---|---|---|---|
Milk kg | Fat kg | Protein kg | Fat % | Protein % | ||
CC/AA | 1278 | 73.47 A (114.00) | −11.29 A (4.78) | −7.79 A (3.71) | −0.08 A (0.03) | −0.04 A (0.01) |
CC/AC | 182 | 156.67 B (129.53) | −8.44 B,b (5.22) | −5.50 B (4.09) | −0.09 B (0.05) | −0.04 A (0.02) |
CC/CC | 40 | 162.23 B (165.20) | −7.09 B (6.32) | −7.69 C (5.02) | −0.05 C (0.07) | −0.07 B (0.03) |
CT/AA | 37 | 178.16 B (170.57) | −5.82 B,b (6.47) | −2.69 D (5.16) | −0.04 D (0.08) | −0.003 C (0.03) |
CT/AC | 491 | 41.94 A (119.23) | −13.79 C (4.92) | −9.17 E (3.83) | −0.10 E (0.04) | −0.04 A (0.02) |
CT/CC | 10 | −264.03 C (250.70) | −29.24 D (9.01) | −17.50 F (7.30) | −0.18 F (0.13) | −0.03 A (0.06) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodowska, P.; Zwierzchowski, L.; Marczak, S.; Jarmuż, W.; Bagnicka, E. Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle. Animals 2019, 9, 723. https://doi.org/10.3390/ani9100723
Brodowska P, Zwierzchowski L, Marczak S, Jarmuż W, Bagnicka E. Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle. Animals. 2019; 9(10):723. https://doi.org/10.3390/ani9100723
Chicago/Turabian StyleBrodowska, Paulina, Lech Zwierzchowski, Sylwester Marczak, Wiesław Jarmuż, and Emilia Bagnicka. 2019. "Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle" Animals 9, no. 10: 723. https://doi.org/10.3390/ani9100723
APA StyleBrodowska, P., Zwierzchowski, L., Marczak, S., Jarmuż, W., & Bagnicka, E. (2019). Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle. Animals, 9(10), 723. https://doi.org/10.3390/ani9100723