Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Goat as Ideal Climate Model Animal
3. Impact of Heat Stress on Rumen Function
3.1. Rumen Fermentation Pattern
3.2. Volatile Fatty Acid Production
3.3. Rumen Microbial Population
3.4. Enteric Methane Emission
3.5. Factors Influencing Enteric Methane Emission in Goats
3.6. Enteric Methane Mitigation Strategies in Goats
3.6.1. Nutritional Intervention to Reduce Enteric Methane Production in Goats
3.6.2. Management Strategies to Reduce CH4 Production from Goats
3.6.3. Advanced Biotechnological Tools for Methane Mitigation
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feleke, F.B.; Berhe, M.; Gebru, G.; Hoag, D. Determinants of adaptation choices to climate change by sheep and goat farmers in Northern Ethiopia: The case of Southern and Central Tigray, Ethiopia. SpringerPlus 2016, 5, 1692. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, M.Y.; Berhane, G. Livestock Production Systems Analysis. Am. Int. J. Contemp. Sci. Res. 2014, 1, 16–51. [Google Scholar]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, A.; Khaldi, R.; Jaouad, M.; Hicheri, A.; Touati, I.; Rkhissi, A.; Ifaoui, H.; Khaldi, G. Impacts of climate change on the small ruminants farming systems in north western Tunisia and adaptation tools. In New Approaches for Grassland Research in a Context of Climate and Socio-Economic Changes; Acar, Z., López-Francos, A., Porqueddu, C., Eds.; Options Méditerranéennessérie; CIHEAM: Zaragoza, Spain, 2012; pp. 427–431. [Google Scholar]
- Koluman, N.; Silanikove, N.; Koluman, A. Climate Change and Goat Agriculture Interactions in the Mediterranean Region. In Sustainable Goat Production in Adverse Environments; Simões, J., Gutiérrez, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 393–405. [Google Scholar]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, B.; Gynendra, S.; Verma, A.K.; Dutta, N.; Sejian, V. Impact of heat stress on rumen functions. Vet. World 2013, 6, 992–996. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Danieli, P.P.; Bani, P.; Nardone, A.; Ronchi, B. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int. J. Biometeorol. 2009, 53, 387–395. [Google Scholar] [CrossRef]
- Pollott, G.; Wilson, R.T. Sheep and Goats for Diverse Products and Profits; FAO Diversification Booklet No. 9; FAO Library: Rome, Italy, 2009; 42p. [Google Scholar]
- Oluwatayo, I.B.; Oluwatayo, T.B. Small Ruminants as a Source of Financial Security, a Case Study of Women in Rural Southwest Nigeria; Working Paper 1; Institute for Money, Technology and Financial Inclusion (IMTFI): Irvine, CA, USA, 2012; 21p. [Google Scholar]
- Aziz, M.A. Present status of the world goat populations and their productivity. World 2010, 861, 1. [Google Scholar]
- Lérias, J.R.; Hernández-Castellano, L.E.; Suárez-Trujillo, A.; Castro, N.; Pourlis, A.; Almeida, A.M. The mammary gland in small ruminants: Major morphological and functional events underlying milk production—A review. J. Dairy Res. 2014, 81, 304–318. [Google Scholar] [CrossRef]
- Kumar, S.; Roy, M.M. Small Ruminant’s Role in Sustaining Rural Livelihoods in Arid and Semiarid Regions and their Potential for Commercialization. In New Paradigms in Livestock Production from Traditional to Commercial Farming and Beyond; Agrotech Publishing Academy: Udaipur, India, 2013; pp. 57–80. [Google Scholar]
- Agossou, D.J.; Dougba, T.D.; Koluman, N. Recent Developments in Goat Farming and Perspectives for a Sustainable Production in Western Africa. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2047–2051. [Google Scholar] [CrossRef] [Green Version]
- Yami, A.; Merkel, R.C. Sheep and Goat Production Handbook for Ethiopia. Ethiopia Sheep and Goat Productivity Improvement Program. 2008. Available online: https://archive.org/details/SheepGoatHandbook (accessed on 15 October 2018).
- Kosgey, I.S.; Rowlands, G.J.; Van Arendonk, J.A.; Baker, R.L. Small ruminant production in smallholder and pastoral/extensive farming systems in Kenya. Small Rumin. Res. 2008, 77, 11–24. [Google Scholar] [CrossRef]
- Amankwah, K.; Klerkx, L.; Oosting, S.J.; Sakyi-Dawson, O.; Van der Zijpp, A.J.; Millar, D. Diagnosing constraints to market participation of small ruminant producers in northern Ghana: An innovation systems analysis. NJAS-Wageningen J. Life Sci. 2012, 60, 37–47. [Google Scholar] [CrossRef]
- Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Soren, N.M.; Sejian, V.; Terhuja, M.; Dominic, G. Enteric methane emission in sheep: Process description and factors influencing production. In Sheep Production Adapting to Climate Change; Sejian, V., Bhatta, R., Gaughan, J., Malik, P.K., Naqvi, S.M.K., Lal, R., Eds.; Springer: Singapore, 2017; pp. 209–233. [Google Scholar]
- Archana, P.R.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.B.; Beena, V.; Bhatta, R. Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Getaneh, G.; Mebrat, A.; Wubie, A.; Kendie, H. Review on Goat Milk Composition and its Nutritive Value. J. Nutr. Health Sci. 2016, 3, 1–10. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P. Ruminant Nutrition Symposium: Ruminant production and metabolic responses to heat stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Katoh, K.; Obara, Y. Effects of heat exposure on nutrient digestibility, rumen contraction and hormone secretion in goats. Anim. Sci. J. 2004, 75, 237–243. [Google Scholar] [CrossRef]
- Choubey, M.; Kumar, A. Nutritional interventions to combat heat stress in dairy animals. Vetscan 2012, 7, 19–27. [Google Scholar]
- Castro-Costa, A.; Salama, A.A.; Moll, X.; Aguiló, J.; Caja, G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in non-lactating dairy goats. J. Dairy Sci. 2015, 98, 4646–4658. [Google Scholar] [CrossRef]
- Ma, Y.-F.; Du, R.-P.; Gao, M. Effect of Heat Stress on Dairy Goat Performance and Rumen Epithelial Cell Morphology. Sci. Agric. Sin. 2013, 46, 4486–4495. [Google Scholar]
- Pragna, P.; Sejian, V.; Soren, N.M.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Bhatta, R. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. Biol. Rhythm Res. 2018, 49, 551–565. [Google Scholar] [CrossRef]
- Chaidanya, K.; Soren, N.M.; Sejian, V.; Bagath, M.; Manjunathareddy, G.B.; Kurien, K.E.; Varma, G.; Bhatta, R. Impact of heat stress, nutritional stress and combined (heat and nutritional) stresses on rumen associated fermentation characteristics, histopathology and HSP70 gene expression in goats. J. Anim. Behav. Biometeorol. 2017, 5, 36–48. [Google Scholar] [CrossRef]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 13, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Freestone, P.; Lyte, M. Stress and microbial endocrinology: Prospects for ruminant nutrition. Animal 2010, 4, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Sekiguchi, Y.; Tajima, K.; Takenaka, A.; Kurihara, M.; Kamagata, Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 2010, 16, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mbanzamihigo, L.; Fievez, V.; da Costa Gomez, C.; Piattoni, F.; Carlier, L.; Demeyer, D. Methane emissions from the rumen of sheep fed a mixed grass-clover pasture at two fertilisation rates in early and late season. Can. J. Anim. Sci. 2002, 82, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ulyatt, M.J.; Lassey, K.R.; Shelton, I.D.; Walker, C.F. Methane emission from sheep grazing four pastures in late summer in New Zealand. N. Z. J. Agric. Res. 2005, 48, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Ulyatt, M.J.; Lassey, K.R.; Shelton, I.D.; Walker, C.F. Methane emission from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand. N. Z. J. Agric. Res. 2002, 45, 227–234. [Google Scholar] [CrossRef]
- Aluwong, T.; Wuyep, P.A.; Allam, L. Livestock-environment interactions: Methane emissions from ruminants. Afr. J. Biotechnol. 2011, 10, 1265–1269. [Google Scholar]
- Brouček, J. Methane yield from cattle, sheep, and goats housing with emphasis on emission factors: A review. Slovak J. Anim. Sci. 2015, 48, 122–139. [Google Scholar]
- Bhatta, R.; Malik, P.K.; Sejian, V. Enteric methane emission and reduction strategies in sheep. In Sheep Production Adapting to Climate Change; Sejian, V., Bhatta, R., Gaughan, J., Malik, P.K., Naqvi, S.M.K., Lal, R., Eds.; Springer: Singapore, 2017; pp. 291–305. [Google Scholar]
- Castillo-González, A.R.; Burrola-Barraza, M.E.; Domínguez-Viveros, J.; Chávez-Martínez, A. Rumen microorganisms and fermentation. Arch. Med. Vet. 2014, 46, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.K.; Thulasi, A.; Soren, N.M.; Jose, L.; Prasad, K.S.; Prasad, C.S. Phylogenic diversity analysis of rumen acetogens in adult sheep fed on conventional roughage diet. Indian J. Anim. Sci. 2015, 85, 1104–1107. [Google Scholar]
- Patra, A.K. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest. Sci. 2014, 162, 97–103. [Google Scholar] [CrossRef]
- Rochfort, S.; Parker, A.; Dunshea, F.R. Plant bioactives for ruminant health and productivity—A review. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.D.; Fleming, H.R.; Moorby, J.M. Traditional vs Modern: Role of Breed Type in Determining Enteric Methane Emissions from Cattle Grazing as Part of Contrasting Grassland-Based Systems. PLoS ONE 2014, 9, e107861. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Devaraj, C.; Afsal, A.; Aleena, J.; Archana, P.R.; Bhatta, R. Metabolic adaptation of livestock in heat stress challenges. In National Initiative on Climate Resilient Agriculture Workshop Compendium on “Livestock and Climate Change”; Hemanth, G.K., Sejian, V., Giridhar, K., Naveen, K.G.S., Eds.; Veterinary College, Karnataka Veterinary Animal and Fishery Sciences University: Hassan, Karnataka, India; National Initiatives on Climate Resilient Agriculture, Indian Council of Agriculture Research and Hyderabad: India, 2018; pp. 33–36. [Google Scholar]
- Chaidanya, K.; Soren, N.M.; Sejian, V.; Bagath, M.; Kurien, E.K.; Varma, G.; Bhatta, R. Impact of heat stress, nutritional stress and combined (heat and Nutritional) stresses on rumen enzymes and fermentation metabolites in Osmanabadi bucks. In Proceedings of the Interenational Conference Compendium on Climate Change Adaptation and Biodiversity: Ecological Sustainability and Resource Management for Livelihood Security, Portblair, Andaman and Nicobar Island, 8–10 December 2016; Andaman Science Association at ICAR-Central Island Agricultural Research Institute: Portblair, Andaman and Nicobar Island. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P.; Rhoads, M.L.; Gabler, N.K.; Ross, J.W.; Keating, A.F.; Boddicker, R.L.; Lenka, S.; Sejian, V. Impact of climate change on livestock production. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer-Verlag GMbH Publisher: Germany, 2012; pp. 413–468. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Sejian, V.; Lal, R.; Lakritz, J.; Ezeji, T. Measurement and prediction of enteric methane emission. Int. J. Biometeorol. 2011, 55, 1–6. [Google Scholar] [CrossRef]
- Ibáñez, C.; López, M.C.; Criscioni, P.; Fernández, C. Effect of replacing dietary corn with beet pulp on energy partitioning, substrate oxidation and methane production in lactating dairy goats. Anim. Prod. Sci. 2015, 55, 56–63. [Google Scholar] [CrossRef]
- Lascano, C.E.; Carulla, J.E.; Vargas, J.J. Strategies for reducing methane emissions from ruminants. Rev. Bras. Geogr. Fís. 2011, 6, 1315–1335. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- McGinn, S.M.; Beauchemin, K.A.; Coates, T.; Colombatto, D. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Abubakr, A.R.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. J. Saudi Soc. Agric. Sci. 2013, 12, 147–154. [Google Scholar] [CrossRef]
- Zhou, X.; Meile, L.; Kreuzer, M.; Zeitz, J.O. The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea 2013, 2013, 106916. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; He, M.; McAlister, T.; Seviour, R.; Forster, R. Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets. Appl. Environ. Microbiol. 2010, 76, 6933–6938. [Google Scholar] [CrossRef] [PubMed]
- Kataria, R.P. Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol. Res. 2016, 6, 19–25. [Google Scholar] [CrossRef]
- Wallace, R.J.; Wood, T.A.; Rowe, A.; Price, J.; Yanez, D.R.; Williams, S.P.; Newbold, C.J. Encapsulated fumaric acid as a means of decreasing ruminal methane emissions. Int. Congr. Ser. 2006, 1293, 148–151. [Google Scholar] [CrossRef]
- Li, X.Z.; Yan, C.G.; Long, R.J.; Jin, G.L.; Khuu, J.S.; Ji, B.J.; Choi, S.H.; Lee, H.G.; Song, M.K. Conjugated linoleic acid in rumen fluid and milk fat, and methane emission of lactating goats fed a soybean oil-based diet supplemented with sodium bicarbonate and monensin. Asian-Aust. J. Anim. Sci. 2009, 22, 1521–1530. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct-fed microbials for ruminant animals. Asian-Australas. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Wang, L.Z.; Zhou, M.L.; Wang, J.W.; Wu, D.; Yan, T. The effect of dietary replacement of ordinary rice with red yeast rice on nutrient utilization, enteric methane emission and rumen archaeal diversity in goats. PLoS ONE 2016, 11, e0160198. [Google Scholar] [CrossRef]
- Martínez-Fernández, G.; Abecia, L.; Martín-García, A.I.; Ramos-Morales, E.; Hervás, G.; Molina-Alcaide, E.; Yáñez-Ruiz, D.R. In vitro–in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal 2013, 7, 1925–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Fernández, G.; Abecia, L.; Martín-García, A.I.; Ramos-Morales, E.; Denman, S.E.; Newbold, C.J.; Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsumori, M.; Shinkai, T.; Takenaka, A.; Enishi, O.; Higuchi, K.; Kobayashi, Y.; Nonaka, I.; Asanuma, N.; Denman, S.E.; McSweeney, C.S. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 2012, 108, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Candyrine, S.C.; Mahadzir, M.F.; Garba, S.; Jahromi, M.F.; Ebrahimi, M.; Goh, Y.M.; Samsudin, A.A.; Sazili, A.Q.; Chen, W.L.; Ganesh, S.; et al. Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period. PLoS ONE 2018, 13, e0199840. [Google Scholar] [CrossRef] [PubMed]
- Azlan, P.M.; Jahromi, M.F.; Ariff, M.O.; Ebrahimi, M.; Candyrine, S.C.; Liang, J.B. Aspergillus terreus treated rice straw suppresses methane production and enhances feed digestibility in goats. Trop. Anim. Health Prod. 2018, 50, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Soren, N.M.; Tripathi, M.K.; Bhatt, R.S.; Karim, S.A. Effect of yeast supplementation on the growth performance of Malpura lambs. Trop. Anim. Health Prod. 2013, 45, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, J.; Martin, C.; Morgavi, D.P. The use of direct-fed microbials for mitigation of ruminant methane emissions: A review. Animal 2014, 8, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Puchala, R.; Min, B.R.; Goetsch, A.L.; Sahlu, T. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Wina, E.; Muetzel, S.; Hoffmann, E.; Makkar, H.P.; Becker, K. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 2005, 121, 159–174. [Google Scholar] [CrossRef]
- Mao, H.L.; Wang, J.K.; Zhou, Y.Y.; Liu, J.X. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci. 2010, 129, 56–62. [Google Scholar] [CrossRef]
- Dong, G.Z.; Wang, X.J.; Liu, Z.B.; Wang, F. Effects of phytogenic products on in vitro rumen fermentation and methane emission in goats. J. Anim. Feed Sci. 2010, 19, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.E.; Martinez-Fernandez, G.; Shinkai, T.; Mitsumori, M.; McSweeney, C.S. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front. Microbiol. 2015, 6, 1087. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.M.; Sejian, V. Global climate change: Role of livestock. Asian J. Agric. Sci. 2011, 3, 19–25. [Google Scholar]
- Eckard, R.J.; Grainger, C.; De Klein, C.A. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Hegarty, R.S.; McEwan, J.C. Genetic opportunities to reduce enteric methane emissions from ruminant livestock. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–6 August 2010; pp. 1–6. [Google Scholar]
- Tarawali, S.; Herrero, M.; Descheemaeker, K.; Grings, E.; Blümmel, M. Pathways for sustainable development of mixed crop livestock systems: Taking a livestock and pro-poor approach. Livest. Sci. 2011, 139, 11–21. [Google Scholar] [CrossRef]
- Sejian, V.; Lakritz, J.; Ezeji, T.; Lal, R. Forage and Flax seed impact on enteric methane emission in dairy cows. Res. J. Vet. Sci. 2011, 4, 1–8. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 2002, 82, 201–206. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Baumont, R.; Martin, C. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim. Sci. 2003, 83, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G.C.; Hegarty, R.S. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 2011, 166, 291–301. [Google Scholar] [CrossRef]
- Lascano, C.E.; Cárdenas, E. Alternatives for methane emission mitigation in livestock systems. R. Bras. Zootec. 2010, 39, 175–182. [Google Scholar] [CrossRef]
- Ellis, J.L.; Dijkstra, J.; France, J.; Parsons, A.J.; Edwards, G.R.; Rasmussen, S.; Kebreab, E.; Bannink, A. Effect of high-sugar grasses on methane emissions simulated using a dynamic model. J. Dairy Sci. 2012, 95, 272–285. [Google Scholar] [CrossRef] [PubMed]
- De Ramus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forages. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef]
- Archimède, H.; Eugène, M.; Magdeleine, C.M.; Boval, M.; Martin, C.; Morgavi, D.P.; Lecomte, P.; Doreau, M. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 2011, 166, 59–64. [Google Scholar] [CrossRef]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options 1. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Hickey, S.M.; Young, E.A.; Dodds, K.G.; MacLean, S.; Molano, G.; Sandoval, E.; Kjestrup, H.; Harland, R.; Hunt, C.; et al. Heritability estimates of methane emissions from sheep. Animal 2013, 7, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Sudmeyer, R. Carbon Farming: Selective Breeding of Sheep for Reduced Methane Emissions, Climate Change, Agriculture and Food, Department of Primary Industries and Regional Development, Government of Western Australia. 2018. Available online: https://www.agric.wa.gov.au/climate-change/carbon-farming-selective-breeding-sheep-reduced-methane-emissions (accessed on 15 October 2018).
- Wright, A.D.; Kennedy, P.; O’Neill, C.J.; Toovey, A.F.; Popovski, S.; Rea, S.M.; Pimm, C.L.; Klein, L. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 2004, 22, 3976–3985. [Google Scholar] [CrossRef]
- Williams, Y.J.; Popovski, S.; Rea, S.M.; Skillman, L.C.; Toovey, A.F.; Northwood, K.S.; Wright, A.D. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 2009, 75, 1860–1866. [Google Scholar] [CrossRef]
- Cook, S.R.; Maiti, P.K.; Chaves, A.V.; Benchaar, C.; Beauchemin, K.A.; McAllister, T.A. Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: In vitro assessment of their effects. Aust. J. Exp. Agric. 2008, 48, 260–264. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Xue, B.; Peng, Q.; Wang, Z.; Yan, T.; Wang, L. Immunization against rumen methanogenesis by vaccination with a new recombinant protein. PLoS ONE 2015, 10, e0140086. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Lee, S.S.; Hsu, J.T.; Mantovani, H.C.; Russell, J.B. The effect of bovicin hc5, a bacteriocin from Streptococcus bovis hc5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 2002, 217, 51–55. [Google Scholar] [CrossRef]
- Santoso, B.; Mwenya, B.; Sar, C.; Gamo, Y.; Kobayashi, T.; Morikawa, R.; Kimura, K.; Mizukoshi, H.; Takahashi, J. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 2004, 91, 209–217. [Google Scholar] [CrossRef]
- Ackermann, H.W. 5500 Phages examined in the electron microscope. Arch. Virol. 2007, 152, 227–243. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Valdez, C.; Newbold, C.J.; Hillman, K.; Wallace, R.J. Evidence for methane oxidation in rumen fluid in vitro. Ann. Zootech. 1996, 45, 351. [Google Scholar] [CrossRef]
Criteria | Special Characteristics of Goats | References |
---|---|---|
Adaptability | Goats are better adapted to broad environmental conditions ranging from arid dry to cold arid to hot humid. Goats in the tropical warm climate are more or less dwarf and have less body weight, while goats in colder climates have bigger size and more fur growth. Due to their lesser body size, their metabolic requirements are considerably low, they have the ability to reduce their metabolism and their loose skin aids in easy dissipation of body heat. | [18] |
Thermo-tolerance | Goats are more thermo-tolerant than all other ruminant species. They possess the ability to survive in different agro-ecological zones. | [19] |
Drought tolerance | Goats possess the ability to thrive well in drought prone areas because of reduced water requirement in comparison to sheep and other domestic ruminants. Goats have better water conservation ability than other ruminant animals because of their browse diet. Further, the gut, especially the rumen, acts as a water reservoir during the periods of dehydration. | [19] |
Ability to thrive well on low pasture | Efficient utilizers of poor quality and a wide range of pastures. Goats have improved digestibility compared to all other rumen and animals and, moreover, because the small-sized feed consumption is also low, these factors together favour less CH4 production. | [19] |
Low enteric methane emission | Goats produce less enteric methane compared to sheep and other ruminants. | [20] |
More demand for goat meat | Goat meat possesses less fat content and has no religious taboo; hence, it is relished by all. The lower saturated fat content in the goat meat improves the blood cholesterol level and stabilizes the heart rhythm of consumer. Goat meat contains vitamin B, B12 and omega-3 fatty acids. Further goat meat is lower in calories and cholesterol than the meat from other animals. | [21] |
Milk with more nutrition | Goat milk is more nutritious than the milk from other species of livestock, easily digestible due to the presence of some beneficial fatty acids and contains fats and proteins in a finer state. Goat milk contains vitamin A, niacin, thiamin, ribofavin and pantotheanate. | [22] |
Digestibility and feed conversion efficiency | Increased efficiency to convert feed into milk and meat than all other domestic ruminants, they can even digest poor quality feed. Goats have less proportion of gut in relation their total body weight, which enables the rapid movement of digesta from the rumen and the entire gastrointestinal tract. | [19] |
Less initial investment | Minimum investment compared to large ruminants due to lower price. It is possible to get more animals at the cost of one cow. Less quantity of feed is required for goats compared to other domesticated livestock species. | [1] |
Women entrepreneurship | Because of their small size, goats are easy to herd by women. They can let the animals graze on common property resources and private fallow lands. As they move as a herd, it is easy to track them. | [19] |
Suitable for landless farmers | Small area is required to rear goats because of their small size, they require less feed and they can be easily integrated into other farming systems. | [14] |
Type of Heat Stress | Effect on Rumen Fermentation Pattern | Reference |
---|---|---|
Summer heat stress | Altered basic physiology of rumen function | [23] |
Extreme temperature stress | Reduced VFA production | [24] |
Summer heat stress | Decreased rumen pH and acidosis | [25] |
Heat stress | Reduction in ruminal pH; reduced rumen fermentation | [26] |
Heat stress | Decreased rumen pH | [27] |
Summer heat stress | Decreased VFA production; Reduced production of acetate | [28,29] |
Heat stress | Decrease in acetate and acetate to propionate ratio and an increase in butyrate | [30] |
Heat stress | Increase of Streptococcus genus bacteria and a decrease in the bacteria of Fibrobactor genus | [31] |
Heat stress | Decrease in the Streptococcus genus and increase in Clostridium coccoides–Eubacterium genus | [32] |
Increased temperature and RH | Decline in the concentrations of amylolytic and cellulolytic bacteria; decreased diet digestibility | [9] |
Late summer | Increase in enteric CH4 emissions | [33] |
Late summer season | Increase in enteric CH4 emissions | [34] |
Summer heat stress | increase in CH4 emission | [35] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pragna, P.; Chauhan, S.S.; Sejian, V.; Leury, B.J.; Dunshea, F.R. Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation. Animals 2018, 8, 235. https://doi.org/10.3390/ani8120235
Pragna P, Chauhan SS, Sejian V, Leury BJ, Dunshea FR. Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation. Animals. 2018; 8(12):235. https://doi.org/10.3390/ani8120235
Chicago/Turabian StylePragna, Pratap, Surinder S. Chauhan, Veerasamy Sejian, Brian J. Leury, and Frank R. Dunshea. 2018. "Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation" Animals 8, no. 12: 235. https://doi.org/10.3390/ani8120235
APA StylePragna, P., Chauhan, S. S., Sejian, V., Leury, B. J., & Dunshea, F. R. (2018). Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation. Animals, 8(12), 235. https://doi.org/10.3390/ani8120235