Dietary Cerium (Ammonium Ceric Nitrate) Promoted the Growth, Intestinal Digestive Enzyme Activity, and Positive Modulation of Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Experimental Animals and Feeding Management
2.3. Sampling
2.4. Measurement Indicators and Methods
2.4.1. Growth, Body Morphometric Indices and Nutrient Retention
2.4.2. Whole-Body Composition
2.4.3. Serum Biochemical Analysis
2.4.4. Intestinal Digestive Enzyme Activities
2.4.5. Intestinal Tissue Morphology
2.4.6. Intestinal Microbiota
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Retention and Whole-Body Composition
3.3. Serum Biochemical Indicators
3.4. Intestinal Digestive Enzyme Activity and Tissue Morphology
3.5. Intestinal Microbiota
4. Discussion
4.1. Growth Performance
4.2. Anti-Oxidative Capacity and Non-Specific Immune Indicators
4.3. Intestinal Digestive Enzyme Activity and Tissue Morphology
4.4. Intestinal Microbiota
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tariq, H.; Sharma, A.; Sarkar, S.; Ojha, L.; Pal, R.P.; Mani, V. Perspectives for rare earth elements as feed additive in livestock—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 373–381. [Google Scholar] [CrossRef]
- Cui, L.; Xu, W.; Wang, D. Effects of dietary rare earth elements on growth and innate immune response of turbot, Scophthalmus maximus. Period. Ocean. Univ. China 2011, 41, 97–100. [Google Scholar]
- Li, M.; Liang, H.; Xia, R.; Zhang, J.; Chen, J.; Zhou, W.; Ding, Q.; Yang, Y.; Zhang, Z.; Yao, Y.; et al. Effects of dietary supplementation with novel organic rare earths on growth performance, gut and liver health, gut microbiota in Golden pompano. Aquac. Rep. 2024, 40, 102604. [Google Scholar] [CrossRef]
- Jiang, Z.; Jia, Z.; Guo, Y.; Zhou, F.; Liu, H. Effect of rare earth elements on digest enzyme and growth of intestinal in common carp (Cyprinus carpio). Chin. J. Anim. Nutr. 2007, 19, 86–90. [Google Scholar]
- Bölükbaşı, S.C.; Al-sagan, A.A.; Ürüşan, H.; Erhan, M.K.; Durmuş, O.; Kurt, N. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk. J. Anim. Physiol. Anim. Nutr. 2016, 100, 686–693. [Google Scholar] [CrossRef]
- Zhou, Q.L.; Xie, J.; Ge, X.P.; Habte-Tsion, H.M.; Liu, B.; Ren, M.C. Growth performance and immune responses of gibel carp, Carassius auratus gibelio, fed with graded level of rare earth-chitosan chelate. Aquac. Inter. 2016, 24, 453–463. [Google Scholar] [CrossRef]
- Cui, L.; Xu, W.; Wang, D.; Zuo, R.; Mai, K.; Ai, Q. Alleviation effect of dietary cerium and its complex with chitosan oligosaccharide on cadmium accumulation in juvenile turbot, Scophthalmus maximus L., under cadmium stress. Aquac. Res. 2015, 47, 2426–2434. [Google Scholar] [CrossRef]
- Qin, F.; Shen, T.; Yang, H.; Qian, J.; Zou, D.; Li, J.; Liu, H.; Zhang, Y.; Song, X. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis). Fish Shellfish. Immunol. 2019, 92, 367–376. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs. China Fishery Statistics Yearbook; China Agriculture Press: Beijing, China, 2025; p. 25.
- Lin, X.; Chen, Y.; Ruenkoed, S.; Li, X.; Leng, X. Dietary effects of supplementing Clostridium butyricum culture or sodium butyrate in low fishmeal diet on growth, serum indicators, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 33, 101827. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Official Analytical Chemists International, 16th ed; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Hou, T.; Liu, H.; Li, C. Traditional Chinese herb formulas in diet enhance the non-specific immune responses of yellow catfish (Pelteobagrus fulvidraco) and resistance against Aeromonas hydrophila. Fish Shellfish. Immunol. 2022, 131, 631–636. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Fan, Y.; Xiao, Y.; Chen, Y.; Li, X.; Leng, X. Effects of dietary baicalin on growth performance, serum biochemical parameters, liver health, intestinal health, and microbiota of yellow catfish (Pelteobagrus fulvidraco). Animals 2025, 15, 2903. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Noreldin, A.E.; Arif, M.; Chaudhry, M.T.; Losacco, C.; Abdeen, A.; Abdel-Daim, M.M. Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum. Sci. Total Environ. 2019, 672, 1021–1032. [Google Scholar] [CrossRef]
- He, M.L.; Rambeck, W.A. Rare earth elements—A new generation of growth promoters for pigs? Arch. Anim. Nutr. 2000, 53, 323–334. [Google Scholar] [CrossRef]
- He, M.L.; Ranz, D.; Rambeck, W.A. Study on the performance enhancing effect of rare earth elements in growing and fattening pigs. J. Anim. Physiol. Anim. Nutr. 2000, 85, 263–270. [Google Scholar] [CrossRef]
- He, M.L.; Wehr, U.; Rambeck, W.A. Effect of low doses of dietary rare earth elements on growth performance of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 86–92. [Google Scholar] [CrossRef]
- Deng, M.; Gao, H.; Liu, J.; Wang, D. Biological functions of rare earth elements and their applications in animal production. Chin. J. Anim. Nutr. 2024, 36, 789–797. [Google Scholar]
- Wang, Y.; Xu, W.; Zuo, R.; Zhou, H.; Bai, Y.; Mai, K.; Wang, D.; Ai, Q. Effect of dietary chitosan oligosaccharide complex with Ce (IV) on growth, immunity and disease resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicas. Aquac. Res. 2017, 48, 1158–1167. [Google Scholar] [CrossRef]
- Gu, J. Effects of Antioxidants on Immune Functions of Animals and the Molecular Mechanisms Underlying It. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2013. [Google Scholar]
- Biller, J.D.; Takahashi, L.S. Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Ciências 2018, 90, 3403–3414. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ye, J.; Gao, J.; Chen, L.; Lu, Z. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile black carp Mylopharyngodon piceus. Fish Shellfish Immunol. 2016, 49, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Liang, J.X.; Li, W.S.; Sun, Y.; Wu, C.S.; Hu, Y.Z.; Li, J.; Zhang, Y.A.; Zhang, X.J. Complement c3a enhances the phagocytic activity of B cells through C3aR in a fish. Front. Immunol. 2022, 13, 873982. [Google Scholar] [CrossRef]
- Xu, X.Y.; Li, X.Q.; Xu, Z.; Yao, W.X.; Leng, X.J. Dietary Azomite, a natural trace mineral complex, improved the growth, immunity response, intestine health and resistance against bacterial infection in largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2021, 108, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Cheng, Z.; Hu, R.; Cui, Y.; Cai, J.; Li, N.; Gui, S.; Sang, X.; Sun, Q.; Wang, L.; et al. Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environ. Toxicol. 2014, 29, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, H.; Chu, D. Effect of cerium nitrate on mucous cells of gills and digestive tract in Cyprinus carpio linnaeus. J. Anhui Agric. 2015, 43, 217–218, 243. [Google Scholar]
- Liu, C.; Zhao, L.P.; Shen, Y.Q. A systematic review of advances in intestinal microflora of fish. Fish. Physiol. Biochem. 2021, 47, 2041–2053. [Google Scholar] [CrossRef]
- Yang, H.; Bian, Y.H.; Huang, L.L.; Lan, Q.; Ma, L.Z.; Li, X.Q.; Leng, X.J. Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 22, 100954. [Google Scholar] [CrossRef]
- Guo, B.; Huang, L.; Li, X.; Chen, Y.; Huang, T.; Ma, L.; Leng, X. Effects of fermented soybean meal substituting plant protein and fish meal on growth, flesh quality, and intestinal microbiota of largemouth bass (Micropterus salmoides). Aquac. Nutr. 2023, 2023, 6649754. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R. Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis 2018, 77, 99–113. [Google Scholar] [CrossRef]
- Smriga, S.; Sandin, S.A.; Azam, F. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol. Ecol. 2010, 73, 31–42. [Google Scholar] [CrossRef]
- Muroma, A. Studies in the bactericidal action of salts of certain rare earth metals. Ann. Med. Exp. Biol. Fenn. 1958, 36, 1–54. [Google Scholar]
- Zhao, R.M.; Liu, Y.; Xie, Z.X.; Shen, P.; Qu, S.S. Microcalorimetric study of the action of Ce (III) ions on the growth of E-coli. Biol. Trace Elem. Res. 2002, 86, 167–175. [Google Scholar]
- Chapagain, P.; Arivett, B.; Cleveland, B.M.; Walker, D.M.; Salem, M. Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus mykiss). BMC Genom. 2019, 20, 788. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, S.; Picchietti, S.; Rodiles, A.; Cossignani, L.; Merrifield, D.L.; Taddei, A.R.; Maradonna, F.; Olivotto, I.; Gioacchini, G.; Carnevali, O. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci. Rep. 2015, 5, 9336. [Google Scholar] [CrossRef] [PubMed]






| Ingredients a | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| Fish meal | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 |
| Soybean meal | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 |
| Soy protein concentrate | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 |
| Cottonseed protein concentrate | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
| Wheat flour | 125.00 | 124.96 | 124.92 | 124.84 | 124.76 | 124.68 | 124.52 |
| Pork meal | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 |
| Other ingredients b | 165.0 | 165.0 | 165.0 | 165.0 | 165.0 | 165.0 | 165.0 |
| Vitamin premix c | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| Mineral premix | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
| Cerium (Ce (NH4)2(NO3)6) | 0.00 | 0.04 | 0.08 | 0.16 | 0.24 | 0.32 | 0.48 |
| Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
| Proximate composition | |||||||
| Crude protein | 483.7 | 481.9 | 482.2 | 482.1 | 481.7 | 486.2 | 482.5 |
| Crude lipid | 129.6 | 128.5 | 129.3 | 130.6 | 130.4 | 129.7 | 131.4 |
| Ash | 92.2 | 96.4 | 98.5 | 89.6 | 98.6 | 95.3 | 97.1 |
| Moisture | 113.5 | 107.4 | 105.3 | 112.2 | 115.9 | 114.6 | 108.5 |
| Items | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| IBW/g | 16.91 ± 0.02 | 16.88 ± 0.04 | 16.88 ± 0.04 | 16.90 ± 0.09 | 16.89 ± 0.02 | 16.89 ± 0.02 | 16.88 ± 0.02 |
| FBW/g | 63.54 ± 2.94 a | 68.86 ± 2.79 ab | 69.89 ± 2.47 ab | 70.25 ± 3.91 b | 69.44 ± 3.15 ab | 67.17 ± 2.77 ab | 66.27 ± 2.52 ab |
| WG/% | 273.75 ± 17.27 a | 305.05 ± 16.41 ab | 311.11 ± 14.51 ab | 313.22 ± 23.01 b | 308.47 ± 18.52 ab | 295.14 ± 16.27 ab | 289.85 ± 14.81 ab |
| FCR | 1.02 ± 0.06 a | 0.92 ± 0.05 ab | 0.90 ± 0.04 ab | 0.89 ± 0.07 b | 0.91 ± 0.05 ab | 0.95 ± 0.05 ab | 0.96 ± 0.05 ab |
| SR/% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| Items | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| VSI/% | 5.75± 0.35 | 5.79 ± 0.53 | 5.62 ± 0.63 | 5.72 ± 0.46 | 5.68 ± 0.50 | 5.83 ± 0.27 | 5.78 ± 0.47 |
| HSI/% | 1.04 ± 0.22 | 1.09 ± 0.20 | 1.02 ± 0.09 | 1.07 ± 0.13 | 1.04 ± 0.12 | 1.06 ± 0.13 | 1.04 ± 0.19 |
| CF (g/cm−3) | 2.03 ± 0.08 | 2.07 ± 0.10 | 2.05 ± 0.16 | 2.06 ± 0.07 | 2.02 ± 0.15 | 2.01 ± 0.13 | 2.05 ± 0.06 |
| Items | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| Protein retention/% | 37.20 ± 3.02 | 40.08 ± 2.90 | 40.15 ± 1.90 | 40.63 ± 2.82 | 40.96 ± 2.84 | 38.21 ± 1.78 | 37.54 ± 1.63 |
| Lipid retention/% | 51.60 ± 1.52 | 49.96 ± 0.57 | 49.38 ± 0.67 | 49.02 ± 4.48 | 50.07 ± 2.76 | 50.83 ± 8.77 | 50.09 ± 10.17 |
| Moisture/% | 71.12 ± 1.17 | 71.42 ± 0.23 | 70.95 ± 0.20 | 71.66 ± 0.43 | 70.62 ± 0.72 | 71.05 ± 0.39 | 70.73 ± 0.34 |
| Crude protein/% | 17.20 ± 0.13 | 17.37 ± 0.27 | 17.15 ± 0.02 | 17.28 ± 0.12 | 17.51 ± 0.53 | 17.18 ± 0.13 | 17.19 ± 0.16 |
| Crude lipid/% | 5.79 ± 0.80 | 5.65 ± 1.59 | 5.63 ± 0.19 | 5.44 ± 0.09 | 5.61 ± 0.50 | 5.86 ± 1.67 | 5.77 ± 1.05 |
| Crude ash/% | 4.52 ± 0.93 | 4.29 ± 0.47 | 4.43 ± 0.24 | 4.27 ± 0.49 | 4.15 ± 0.20 | 4.52 ± 0.12 | 4.37 ± 0.05 |
| Items | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| SOD (u/mL) | 222.22 ± 27.35 a | 228.88 ± 17.93 ab | 259.2 ± 16.17 ab | 229.27 ± 25.88 ab | 275.53 ± 23.96 b | 270.99 ± 3.54 b | 273.49 ± 9.62 b |
| CAT(U/mL) | 9.96 ± 1.69 | 10.73 ± 0.22 | 10.61 ± 0.45 | 10.52 ± 2.36 | 10.30 ± 0.83 | 11.68 ± 0.16 | 10.79 ± 2.94 |
| T-AOC (U/ml) | 42.92 ± 1.98 a | 45.84 ± 3.20 ab | 48.10 ± 1.40 ab | 44.03 ± 3.31 ab | 49.95 ± 4.71 ab | 49.69 ± 3.61 ab | 50.94 ± 2.97 b |
| MDA (nmol/mL) | 4.47 ± 0.06 a | 4.39 ± 0.26 ab | 4.34 ± 0.63 ab | 4.20 ± 0.24 ab | 3.58 ± 0.06 bc | 3.65 ± 0.44 bc | 3.32 ± 0.31 c |
| TP (gprot/L) | 33.92 ± 0.79 a | 35.55 ± 0.54 ab | 35.79 ± 1.50 ab | 36.45 ± 1.10 ab | 36.93 ± 0.58 b | 35.61 ± 1.81 ab | 36.33 ± 2.26 ab |
| AKP (U/mL)) | 45.37 ± 4.82 a | 54.87 ± 7.63 ab | 49.46 ± 7.90 ab | 56.82 ± 9.06 ab | 62.27 ± 9.06 b | 54.96 ± 3.39 ab | 44.56 ± 3.28 a |
| ACP (U/mL) | 0.22 ± 0.01 a | 0.23 ± 0.02 ab | 0.24 ± 0.03 ab | 0.24 ± 0.02 ab | 0.26 ± 0.02 b | 0.24 ± 0.01 ab | 0.22 ± 0.01 ab |
| LZM (μg/mL) | 7.66 ± 1.37 | 7.88 ± 1.37 | 7.66 ± 1.09 | 7.55 ± 1.19 | 7.55 ± 0.85 | 7.60 ± 0.72 | 7.60 ± 1.19 |
| T-NOS (U/mL) | 34.4 ± 2.00 a | 36.67 ± 2.00 a | 35.39 ± 1.80 a | 36.06 ± 0.70 a | 38.30 ± 0.30 a | 43.68 ± 2.10 b | 36.31 ± 3.30 a |
| IgM (μg/mL) | 5.70 ± 0.73 | 5.58 ± 1.56 | 6.21 ± 0.18 | 5.17 ± 0.73 | 5.20 ± 0.38 | 6.03 ± 0.51 | 5.64 ± 0.15 |
| C3(μg/mL) | 20.96 ± 3.68 ab | 21.57 ± 2.71 ab | 20.87 ± 1.72 ab | 24.61 ± 2.46 a | 22.39 ± 2.52 ab | 21.52 ± 1.29 ab | 17.27 ± 1.29 b |
| Items | CON | Ce10 | Ce20 | Ce40 | Ce60 | Ce80 | Ce120 |
|---|---|---|---|---|---|---|---|
| Protease/(U/mgprot) | 4861.0 ± 455.7 ab | 5347.5 ± 58.7 bc | 5640.5 ± 35.0 c | 5718.8 ± 289.1 c | 5168.3 ± 383.9 bc | 4528.0 ± 140.9 ab | 4495.5 ± 35.1 ab |
| Amylase/(U/mgprot) | 0.29 ± 0.02 a | 0.34 ± 0.00 ab | 0.35 ± 0.00 ab | 0.40 ± 0.02 b | 0.36 ± 0.02 ab | 0.34 ± 0.00 a | 0.32 ± 0.07 a |
| Items | CON | Ce10 | Ce40 | Ce120 |
|---|---|---|---|---|
| Villi height/μm | 855.0 ± 17.4 | 852.7 ± 20.7 | 877.3 ± 8.5 | 878.7 ± 39.8 |
| Villi width/μm | 91.3 ± 0.5 | 91.8 ± 2.6 | 94.0 ± 3.0 | 94.0 ± 2.4 |
| Muscularis propria thickness/μm | 132.3 ± 3.1 | 135.3 ± 2.5 | 134.3 ± 1.5 | 135.7 ± 0.6 |
| Items | CON | Ce10 | Ce40 | Ce120 |
|---|---|---|---|---|
| Chao | 144.3 ± 35.7 ab | 135.8 ± 13.4 ab | 168.1 ± 42.7 b | 111.0 ± 16.9 a |
| Sobs | 118.3 ± 30.3 ab | 115.0 ± 8.5 ab | 155.0 ± 38.5 b | 104.5 ± 12.9 a |
| Ace | 144.5 ± 32.5 ab | 129.8 ± 10.4 ab | 166.7 ± 41.3 b | 109.7 ± 15.8 a |
| Coverage | 0.999 | 0.999 | 0.999 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, Y.; Chen, Y.; Xu, K.; Li, X.; Leng, X. Dietary Cerium (Ammonium Ceric Nitrate) Promoted the Growth, Intestinal Digestive Enzyme Activity, and Positive Modulation of Intestinal Microbiota of Largemouth Bass (Micropterus salmoides). Animals 2026, 16, 506. https://doi.org/10.3390/ani16030506
Zhang Y, Chen Y, Xu K, Li X, Leng X. Dietary Cerium (Ammonium Ceric Nitrate) Promoted the Growth, Intestinal Digestive Enzyme Activity, and Positive Modulation of Intestinal Microbiota of Largemouth Bass (Micropterus salmoides). Animals. 2026; 16(3):506. https://doi.org/10.3390/ani16030506
Chicago/Turabian StyleZhang, Yugui, Yunfeng Chen, Kaihui Xu, Xiaoqin Li, and Xiangjun Leng. 2026. "Dietary Cerium (Ammonium Ceric Nitrate) Promoted the Growth, Intestinal Digestive Enzyme Activity, and Positive Modulation of Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)" Animals 16, no. 3: 506. https://doi.org/10.3390/ani16030506
APA StyleZhang, Y., Chen, Y., Xu, K., Li, X., & Leng, X. (2026). Dietary Cerium (Ammonium Ceric Nitrate) Promoted the Growth, Intestinal Digestive Enzyme Activity, and Positive Modulation of Intestinal Microbiota of Largemouth Bass (Micropterus salmoides). Animals, 16(3), 506. https://doi.org/10.3390/ani16030506

