Evaluation of the Beef Cattle Systems Model to Replicate a Beef Cow Genotype × Nutritional Environment Interaction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. BCSM
2.2. Parameterization for This Study
2.2.1. Genetics
2.2.2. Management
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, D.C.; Clark, R.T.; Klopfenstein, T.J.; Volesky, J.D. Matching the Cow with Forage Resources. Rangelands 1996, 18, 57–62. [Google Scholar]
- Scholljegerdes, E.J.; Summers, A.F. How Do We Identify Energetically Efficient Grazing Animals? J. Anim. Sci. 2016, 94, 103–109. [Google Scholar] [CrossRef]
- Mulliniks, J.T.; Beard, J.K.; King, T.M. Invited Review: Effects of Selection for Milk Production on Cow-Calf Productivity and Profitability in Beef Production Systems. Appl. Anim. Sci. 2020, 36, 70–77. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Cow Type and the Nutritional Environment: Nutritional Aspects. J. Anim. Sci. 1985, 61, 725–741. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Baker, M.J.; Long, K.L. A Model to Evaluate Beef Cow Efficiency. In Nutrient Digestion and Utilization in Farm Animals: Modelling Approaches; Kebreab, E., Dijkstra, J., Bannink, A., Gerrits, W.J.J., France, J., Eds.; CABI Publishing: Cambridge, MA, USA, 2006; pp. 84–98. [Google Scholar]
- Jenkins, T.G.; Ferrell, C.L. Beef Cow Efficiency-Revisited. In Proceedings of the Beef Improvement Federation Annual Meeting, Omaha, NE, USA, 10–13 July 2002. [Google Scholar]
- Johnson, D.E. Maintenance Requirements for Beef Cattle: Importance and Physiological and Environmental Causes of Variation. In Proceedings of the Beef Cow Efficiency Forum, Fort Collins, CO, USA, 31 May 1984; pp. 6–14. [Google Scholar]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental Footprints of Beef Cattle Production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life Cycle Assessment of Greenhouse Gas Emissions from Beef Production in Western Canada: A Case Study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- Asem-Hiablie, S.; Battagliese, T.; Stackhouse-Lawson, K.R.; Alan Rotz, C. A Life Cycle Assessment of the Environmental Impacts of a Beef System in the USA. Int. J. Life Cycle Assess. 2019, 24, 441–455. [Google Scholar] [CrossRef]
- Dinkel, C.A.; Brown, M.A. An Evaluation of the Ratio of Calf Weight to Cow Weight as an Indicator of Cow Efficiency. J. Anim. Sci. 1978, 46, 614–617. [Google Scholar] [CrossRef]
- van Oijen, M.; Montaño-Bermudez, M.; Nielsen, M.K. Economical and Biological Efficiencies of Beef Cattle Differing in Level of Milk Production. J. Anim. Sci. 1993, 71, 44–50. [Google Scholar] [CrossRef]
- Aherin, D.G. Stochastic Systems Model Assessment of Historical Cow-Calf Biological and Economic Efficiency for Different Mature Cow Weight and Peak Lactation Combinations in the Kansas Flint Hills. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- Freking, B.A.; Marshall, D.M. Interrelationships of Heifer Milk Production and Other Biological Traits with Production Efficiency to Weaning. J. Anim. Sci. 1992, 70, 646–655. [Google Scholar] [CrossRef]
- Morris, C.A.; Wilton, J.W. Influence of Body Size on the Biological Efficiency of Cows: A Review. Can. J. Anim. Sci. 1976, 56, 613–647. [Google Scholar] [CrossRef]
- Montaño-Bermudez, M.; Nielsen, M.K. Biological Efficiency to Weaning and to Slaughter of Crossbred Beef Cattle with Different Genetic Potential for Milk. J. Anim. Sci. 1990, 68, 2297–2309. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.P.; Wilton, J.W.; Pfeiffer, W.C. Effects of Milk Yield on Biological Efficiency and Profit of Beef Production from Birth to Slaughter. J. Anim. Sci. 1999, 77, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Mourer, G.L. Effects of Cow Mature Size on Intake, Calf Weight and Milk Yield in a Spring-Calving Commercial Cow/Calf Operation. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2012. [Google Scholar]
- Walker, R.S.; Martin, R.M.; Gentry, G.T.; Gentry, L.R. Impact of Cow Size on Dry Matter Intake, Residual Feed Intake, Metabolic Response, and Cow Performance. J. Anim. Sci. 2015, 93, 672–684. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L. Productivity through Weaning of Nine Breeds of Cattle under Varying Feed Availabilities: I. Initial Evaluation. J. Anim. Sci. 1994, 72, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Bai, J.; Du, J.; Wu, X.; Thomsen, B.; Gao, H.; Su, G.; Wang, X.; Hao, D.; Bai, J.; et al. Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites 2021, 11, 753–769. [Google Scholar] [CrossRef]
- Fonseca, P.A.d.S.; Id-Lahoucine, S.; Reverter, A.; Medrano, J.F.; Fortes, M.S.; Casellas, J.; Miglior, F.; Brito, L.; Carvalho, M.R.S.; Schenkel, F.S.; et al. Combining Multi-OMICs Information to Identify Key-Regulator Genes for Pleiotropic Effect on Fertility and Production Traits in Beef Cattle. PLoS ONE 2018, 13, e0205295. [Google Scholar] [CrossRef]
- Aranciaga, N.; Morton, J.D.; Berg, D.K.; Gathercole, J.L. Proteomics and Metabolomics in Cow Fertility: A Systematic Review. Reproduction 2020, 160, 639–658. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, N.; Wang, S.; Liu, Y.; Peng, P.; Shi, L.; Han, B.; Wang, K.; Sun, D. Integrating Transcriptomic and Metabolomic Profiles of Primiparous Holstein Cows across Multiple Lactation Periods Reveals the Regulatory Mechanism Underlying Milk Component Traits. J. Dairy Sci. 2025, 108, 10377–10390. [Google Scholar] [CrossRef]
- Becchi, P.P.; Rocchetti, G.; Lucini, L. Advancing Dairy Science through Integrated Analytical Approaches Based on Multi-Omics and Machine Learning. Curr. Opin. Food Sci. 2025, 63, 101289. [Google Scholar] [CrossRef]
- Panigrahi, M.; Rajawat, D.; Nayak, S.S.; Bose, A.; Bharia, N.; Singh, S.; Sharma, A.; Dutt, T.; Panigrahi, M.; Rajawat, D.; et al. Advancements in Animal Breeding: From Mendelian Genetics to Machine Learning. Int. J. Mol. Sci. 2025, 26, 11352. [Google Scholar] [CrossRef]
- Nayak, S.S.; Parida, S.; Dutt, T.; Panigrahi, M. Do Genomic Patterns and Fibonacci-Like Regularity Hold the Key to Reproductive Fitness in Livestock? Biochem. Genet. 2025, 63, 1–7. [Google Scholar] [CrossRef]
- Cooke, R.F.; Cardoso, R.C.; Cerri, R.L.A.; Lamb, G.C.; Pohler, K.G.; Riley, D.G.; Vasconcelos, J.L.M. Cattle Adapted to Tropical and Subtropical Environments: Genetic and Reproductive Considerations. J. Anim. Sci. 2020, 98, skaa015. [Google Scholar] [CrossRef]
- Abdul Niyas, P.; Chaidanya, K.; Shaji, S.; Sejian, V.; Bhatta, R.; Bagath, M.; Rao, G.; Kurien, E.; Girish, V. Adaptation of Livestock to Environmental Challenges. J. Vet. Sci. Med. Diagn. 2015, 4, 2. [Google Scholar] [CrossRef]
- Wooley, J.; Lin, H. (Eds.) Catalyzing Inquiry at the Interface of Computing and Biology; National Academies Press (US): Washington, DC, USA, 2005. [Google Scholar]
- dos Reis, B.; Tedeschi, L.; Netto, A.S.; Silva, S.; Lancaster, P. Grazing Beef Cows Identified as Efficient Using a Nutrition Model Partition More Energy to Lactation. Anim. Prod. Sci. 2021, 62, 40–54. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition, 8th ed.; Animal Nutrition Series; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Jenkins, T.G.; Ferrell, C.L. Lactation Characteristics of Nine Breeds of Cattle Fed Various Quantities of Dietary Energy. J. Anim. Sci. 1992, 70, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, P.A.; Larson, R.L. Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems. Animals 2022, 12, 385. [Google Scholar] [CrossRef]
- Baldin, G.C.; Hildebrand, C.; Larson, R.L.; Lancaster, P.A. Evaluation and Development of a Nutrition Model to Predict Intake and Growth of Suckling Calves. Ruminants 2024, 4, 47–78. [Google Scholar] [CrossRef]
- Cortés-Lacruz, X.; Casasús, I.; Revilla, R.; Sanz, A.; Blanco, M.; Villalba, D. The Milk Yield of Dams and Its Relation to Direct and Maternal Genetic Components of Weaning Weight in Beef Cattle. Livest. Sci. 2017, 202, 143–149. [Google Scholar] [CrossRef]
- Marston, T.T.; Simms, D.D.; Schalles, R.R.; Zoellner, K.O.; Martin, L.C.; Fink, G.M. Relationship of Milk Production, Milk Expected Progeny Difference, and Calf Weaning Weight in Angus and Simmental Cow-Calf Pairs. J. Anim. Sci. 1992, 70, 3304–3310. [Google Scholar] [CrossRef]
- Beal, W.E.; Notter, D.R.; Akers, R.M. Techniques for Estimation of Milk Yield in Beef Cows and Relationships of Milk Yield to Calf Weight Gain and Postpartum Reproduction. J. Anim. Sci. 1990, 68, 937–943. [Google Scholar] [CrossRef]
- Mondragon, I.; Wilton, J.W.; Allen, O.B.; Song, H. Stage of Lactation Effects, Repeatabilities and Influences on Weaning Weights of Yield and Composition of Milk in Beef Cattle. Can. J. Anim. Sci. 1983, 63, 751–761. [Google Scholar] [CrossRef]
- Mallinckrodt, C.H.; Bourdon, R.M.; Golden, B.L.; Schalles, R.R.; Odde, K.G. Relationship of Maternal Milk Expected Progeny Differences to Actual Milk Yield and Calf Weaning Weight. J. Anim. Sci. 1993, 71, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Holloway, J.W.; Worley, T.L.; Butts, W.T. Pattern of Milk Intake as Related to Weaning Traits of Angus Calves Grazing Fescue-Legume or Fescue Pastures. Livest. Prod. Sci. 1983, 10, 351–364. [Google Scholar] [CrossRef]
- Meyer, K.; Carrick, M.J.; Donnelly, B.J. Genetic Parameters for Milk Production of Australian Beef Cows and Weaning Weight of Their Calves. J. Anim. Sci. 1994, 72, 1155–1165. [Google Scholar] [CrossRef]
- Fraga, F.J.R.; Lopez-Villalobos, N.; Martin, N.P.; Kenyon, P.R.; Morris, S.T.; Hickson, R.E.; Fraga, F.J.R.; Lopez-Villalobos, N.; Martin, N.P.; Kenyon, P.R.; et al. Intake of Milk and Pasture and Growth Rate of Calves Reared by Cows with High or Low Potential for Milk Production. Anim. Prod. Sci. 2018, 58, 523–529. [Google Scholar] [CrossRef]
- Abdelsamei, A.H.; Fox, D.G.; Tedeschi, L.O.; Thonney, M.L.; Ketchen, D.J.; Stouffer, J.R. The Effect of Milk Intake on Forage Intake and Growth of Nursing Calves. J. Anim. Sci. 2005, 83, 940–947. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G. Predicting Milk and Forage Intake of Nursing Calves. J. Anim. Sci. 2009, 87, 3380–3391. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; National Academies Press: Washington, DC, USA, 2021; ISBN 978-0-309-67777-6. [Google Scholar]
- Frobish, R.A.; Davis, C.L. Effects of Abomasal Infusions of Glucose and Proprionate on Milk Yield and Composition. J. Dairy Sci. 1977, 60, 204–209. [Google Scholar] [CrossRef]
- Hurtaud, C.; Lemosquet, S.; Rulquin, H. Effect of Graded Duodenal Infusions of Glucose on Yield and Composition of Milk from Dairy Cows. 2. Diets Based on Grass Silage. J. Dairy Sci. 2000, 83, 2952–2962. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.E.; Allen, M.S. Effects of Intrajugular Glucose Infusion on Feed Intake, Milk Yield, and Metabolic Responses of Early Postpartum Cows Fed Diets Varying in Protein and Starch Concentration. J. Dairy Sci. 2013, 96, 7132–7142. [Google Scholar] [CrossRef]
- Knowlton, K.F.; Dawson, T.E.; Glenn, B.P.; Huntington, G.B.; Erdman, R.A. Glucose Metabolism and Milk Yield of Cows Infused Abomasally or Ruminally with Starch. J. Dairy Sci. 1998, 81, 3248–3258. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.M. Relationship of Maternal Dietary Energy Intake to Milk Production, Body Composition, and Efficiency of Calf Growth. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2017. [Google Scholar]
- Lalman, D.L.; Williams, J.E.; Hess, B.W.; Thomas, M.G.; Keisler, D.H. Effect of Dietary Energy on Milk Production and Metabolic Hormones in Thin, Primiparous Beef Heifers. J. Anim. Sci. 2000, 78, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Restle, J.; Pacheco, P.S.; Moletta, J.L.; Brondani, I.L.; Cerdótes, L. Genetic Group and Postpartum Nutritional Level on the Milk Yield and Composition of Beef Cows. Rev. Bras. Zootec. 2003, 32, 585–597. [Google Scholar] [CrossRef]
- Williams, C.M.; Bayliff, C.L.; Garcia-Ascolani, M.E.; Reuter, R.R.; Horn, G.W.; Goad, C.L.; Lalman, D.L. The Relationship of Lactating Beef Cow Metabolizable Energy Intake to Energy Partitioning, Milk Composition, and Calf Performance. J. Anim. Sci. 2025, 103, skaf126. [Google Scholar] [CrossRef]
- van Milgen, J.; Bernier, J.F.; Lecozler, Y.; Dubois, S.; Noblet, J. Major Determinants of Fasting Heat Production and Energetic Cost of Activity in Growing Pigs of Different Body Weight and Breed/Castration Combination*. Br. J. Nutr. 1998, 79, 509–517. [Google Scholar] [CrossRef]
- Tess, M.W.; Dickerson, G.E.; Nienaber, J.A.; Ferrell, C.L. The Effects of Body Composition on Fasting Heat Production in Pigs. J. Anim. Sci. 1984, 58, 99–110. [Google Scholar] [CrossRef]
- Olthoff, J.C.; Dickerson, G.E. Relationship between Fasting Heat Production, Body Composition and Tissue Distribution, in Mature Ewes from Seven Breeds. J. Anim. Sci. 1989, 67, 2576–2588. [Google Scholar] [CrossRef]
- Baker, J.F.; Buckley, B.A.; Dickerson, G.E.; Nienaber, J.A. Body Composition and Fasting Heat Production from Birth to 14 Months of Age for Three Biological Types of Beef Heifers. J. Anim. Sci. 1991, 69, 4406–4418. [Google Scholar] [CrossRef]
- Agnew, R.E.; Birnie, J.W.; Gordon, F.J.; Yan, T. The Influence of Body Condition and Level of Feeding on the Heat Production of Nonpregnant, Nonlactating Dairy Cows. Proc. Br. Soc. Anim. Sci. 2001, 2001, 205. [Google Scholar] [CrossRef]
- Birnie, J.W.; Agnew, R.E.; Gordon, F.J. The Influence of Body Condition on the Fasting Energy Metabolism of Nonpregnant, Nonlactating Dairy Cows. J. Dairy Sci. 2000, 83, 1217–1223. [Google Scholar] [CrossRef]
- Russel, A.J.F.; Wright, I.A. Factors Affecting Maintenance Requirements of Beef Cows. Anim. Sci. 1983, 37, 329–334. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Nienaber, J.A.; Ferrell, C.L.; Wenk, C.; Boessinger, M. Heat Production of Mature Hereford and Simmental Cows. In Proceedings of the 12th Symposium on Energy Metabolism, Katuse Ittingen, Switzerland, 1–7 September 1991. [Google Scholar]
- Jenkins, T.G.; Ferrell, C.L. Changes in Proportions of Empty Body Depots and Constituents for Nine Breeds of Cattle under Various Feed Availabilities. J. Anim. Sci. 1997, 75, 95–104. [Google Scholar] [CrossRef]
- Chaokaur, A.; Nishida, T.; Sommart, K. Effects of Various Levels of Crude Protein and Metabolizable Energy Intake on Heat Production of Brahman Cattle Fed under Humid Tropical Conditions. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010. [Google Scholar]
- Ferrell, C.L.; Koong, L.J.; Nienaber, J.A. Effect of Previous Nutrition on Body Composition and Maintenance Energy Costs of Growing Lambs. Br. J. Nutr. 1986, 56, 595–605. [Google Scholar] [CrossRef]
- Koong, L.J.; Ferrell, C.L.; Nienaber, J.A. Assessment of Interrelationships among Levels of Intake and Production, Organ Size and Fasting Heat Production in Growing Animals. J. Nutr. 1985, 115, 1383–1390. [Google Scholar] [CrossRef]
- Freetly, H.C.; Nienaber, J.A.; Brown-Brandl, T. Changes in Heat Production by Mature Cows after Changes in Feeding Level. J. Anim. Sci. 2006, 84, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.D.; Bentley, B.E. Visceral Organ Mass and Cellularity in Growth-Restricted and Refed Beef Steers. J. Anim. Sci. 1997, 75, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Hersom, M.J.; Krehbiel, C.R.; Horn, G.W. Effect of Live Weight Gain of Steers during Winter Grazing: II. Visceral Organ Mass, Cellularity, and Oxygen Consumption. J. Anim. Sci. 2004, 82, 184–197. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, M.P.; Krehbiel, C.R.; Horn, G.W.; Lancaster, P.A.; Wagner, J.J. Effects of Winter Growing Program on Visceral Organ Mass, Composition, and Oxygen Consumption of Beef Steers during Growing and Finishing. J. Anim. Sci. 2010, 88, 1554–1563. [Google Scholar] [CrossRef]
- Sharman, E.D.; Lancaster, P.A.; McMurphy, C.P.; Mafi, G.G.; Starkey, J.D.; Krehbiel, C.R.; Horn, G.W. Effect of Rate of Body Weight Gain of Steers during the Stocker Phase. II. Visceral Organ Mass and Body Composition of Growing-Finishing Beef Cattle. J. Anim. Sci. 2013, 91, 2355–2366. [Google Scholar] [CrossRef]
- Ferrell, C.L. Contribution of Visceral Organs to Animal Energy Expenditure. J. Anim. Sci. 1988, 66, 23–34. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Maltby, S.A. Regulation of Nutrient Partitioning by Visceral Tissues in Ruminants. J. Nutr. 1994, 124, 1399S–1403S. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Tyrrell, H.F.; Reynolds, P.J. Effects of Diet Forage-to-Concentrate Ratio and Intake on Energy Metabolism in Growing Beef Heifers: Whole Body Energy and Nitrogen Balance and Visceral Heat Production. J. Nutr. 1991, 121, 994–1003. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Energy Utilization by Mature, Nonpregnant, Nonlactating Cows of Different Types. J. Anim. Sci. 1984, 58, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Montaño-Bermudez, M.; Nielsen, M.K.; Deutscher, G.H. Energy Requirements for Maintenance of Crossbred Beef Cattle with Different Genetic Potential for Milk. J. Anim. Sci. 1990, 68, 2279–2288. [Google Scholar] [CrossRef]
- Lemenager, R.P.; Nelson, L.A.; Hendrix, K.S. Influence of Cow Size and Breed Type on Energy Requirements. J. Anim. Sci. 1980, 51, 566–576. [Google Scholar] [CrossRef]
- Gibson, J.P. Efficiency and Performance of Genetically High and Low Milk-Producing British Friesian and Jersey Cattle. Anim. Sci. 1986, 42, 161–182. [Google Scholar] [CrossRef]
- Taylor, C.S.; Thiessen, R.B.; Murray, J. Inter-Breed Relationship of Maintenance Efficiency to Milk Yield in Cattle. Anim. Sci. 1986, 43, 37–61. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L.; Cundiff, L.V. Relationship of Components of the Body among Mature Cows as Related to Size, Lactation Potential and Possible Effects on Productivity. Anim. Sci. 1986, 43, 245–254. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Garrett, W.N.; Hinman, N.; Grichting, G. Energy Utilization by Pregnant and Non-Pregnant Heifers. J. Anim. Sci. 1976, 42, 937–950. [Google Scholar] [CrossRef]
- Freetly, H.C.; Nienaber, J.A.; Brown-Brandl, T. Partitioning of Energy in Pregnant Beef Cows during Nutritionally Induced Body Weight Fluctuation. J. Anim. Sci. 2008, 86, 370–377. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Ferrell, C.L.; Robertson, D.A.; Ford, S.P. Metabolism of the Gravid Uterus, Foetus and Utero-Placenta at Several Stages of Gestation in Cows. J. Agric. Sci. 1986, 106, 437–444. [Google Scholar] [CrossRef]
- Wood, K.M.; Awda, B.J.; Fitzsimmons, C.; Miller, S.P.; McBride, B.W.; Swanson, K.C. Influence of Pregnancy in Mid-to-Late Gestation on Circulating Metabolites, Visceral Organ Mass, and Abundance of Proteins Relating to Energy Metabolism in Mature Beef Cows. J. Anim. Sci. 2013, 91, 5775–5784. [Google Scholar] [CrossRef]
- Freetly, H.C.; Ferrell, C.L. Oxygen Consumption by and Blood Flow across the Portal-Drained Viscera and Liver of Pregnant Ewes1. J. Anim. Sci. 1997, 75, 1950–1955. [Google Scholar] [CrossRef]
- Guinguina, A.; Yan, T.; Bayat, A.R.; Lund, P.; Huhtanen, P. The Effects of Energy Metabolism Variables on Feed Efficiency in Respiration Chamber Studies with Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 7983–7997. [Google Scholar] [CrossRef]
- Hotovy, S.K.; Johnson, K.A.; Johnson, D.E.; Carstens, G.E.; Bourdon, R.M.; Seidel, G.E. Variation among Twin Beef Cattle in Maintenance Energy Requirements. J. Anim. Sci. 1991, 69, 940–946. [Google Scholar] [CrossRef]
- Veerkamp, R.F.; Emmans, G.C. Sources of Genetic Variation in Energetic Efficiency of Dairy Cows. Livest. Prod. Sci. 1995, 44, 87–97. [Google Scholar] [CrossRef]
- Morris, D.L.; Kononoff, P.J. Derivation of the Maintenance Energy Requirements and Efficiency of Metabolizable Energy Utilization for Dry and Lactating Jersey Cows. J. Dairy Sci. 2021, 104, 9726–9734. [Google Scholar] [CrossRef]
- Nugent, R.A.; Jenkins, T.G.; Roberts, A.J.; Klindt, J. Relationship of Post-Partum Interval in Mature Beef Cows with Nutritional Environment, Biological Type and Serum IGF-1 Concentrations. Anim. Sci. 1993, 56, 193–200. [Google Scholar] [CrossRef]
- DiCostanzo, A.; Meiske, J.C.; Plegge, S.D.; Peters, T.M.; Goodrich, R.D. Within-Herd Variation in Energy Utilization for Maintenance and Gain in Beef Cows. J. Anim. Sci. 1990, 68, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R.; Meiske, J.C.; Goodrich, R.D.; Rust, J.R.; Byers, F.M. Influence of Body Composition on Energy Requirements of Beef Cows during Winter. J. Anim. Sci. 1983, 56, 1241–1252. [Google Scholar] [CrossRef]
- Vizcarra, J.A.; Wettemann, R.P.; Spitzer, J.C.; Morrison, D.G. Body Condition at Parturition and Postpartum Weight Gain Influence Luteal Activity and Concentrations of Glucose, Insulin, and Nonesterified Fatty Acids in Plasma of Primiparous Beef Cows. J. Anim. Sci. 1998, 76, 927. [Google Scholar] [CrossRef]
- Selk, G.E.; Wettemann, R.P.; Lusby, K.S.; Oltjen, J.W.; Mobley, S.L.; Rasby, R.J.; Garmendia, J.C. Relationships among Weight Change, Body Condition and Reproductive Performance of Range Beef Cows. J. Anim. Sci. 1988, 66, 3153–3159. [Google Scholar] [CrossRef]
- Rutter, L.M.; Randel, R.D. Postpartum Nutrient Intake and Body Condition: Effect on Pituitary Function and Onset of Estrus in Beef Cattle. J. Anim. Sci. 1984, 58, 265–274. [Google Scholar] [CrossRef]
- Rae, D.O.; Kunkle, W.E.; Chenoweth, P.J.; Sand, R.S.; Tran, T. Relationship of Parity and Body Condition Score to Pregnancy Rates in Florida Beef Cattle. Theriogenology 1993, 39, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.W.; Spitzer, J.C.; Warner, M.B. Effect of Varying Levels of Postpartum Nutrition and Body Condition at Calving on Subsequent Reproductive Performance in Beef Cattle. J. Anim. Sci. 1986, 62, 300–306. [Google Scholar] [CrossRef]
- Lents, C.A.; White, F.J.; Ciccioli, N.H.; Wettemann, R.P.; Spicer, L.J.; Lalman, D.L. Effects of Body Condition Score at Parturition and Postpartum Protein Supplementation on Estrous Behavior and Size of the Dominant Follicle in Beef Cows. J. Anim. Sci. 2008, 86, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L. Daily Dry Matter Intake to Sustain Body Weight of Mature, Nonlactating, Nonpregnant Cows. J. Anim. Sci. 2007, 85, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
- Daley, D.R.; McCuskey, A.; Bailey, C.M. Composition and Yield of Milk from Beef-Type Bos Taurus and Bos Indicus × Bos Taurus Dams. J. Anim. Sci. 1987, 64, 373–384. [Google Scholar] [CrossRef]
- White, M.B. Variation in Energy Expenditure Between Growing Steers with Divergent Residual Feed Intake. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2004. [Google Scholar]
- Solis, J.C.; Byers, F.M.; Schelling, G.T.; Long, C.R.; Greene, L.W. Maintenance Requirements and Energetic Efficiency of Cows of Different Breed Types. J. Anim. Sci. 1988, 66, 764–773. [Google Scholar] [CrossRef]
- Tedeschi, L.O. Integrating Genomics with Nutrition Models to Improve the Prediction of Cattle Performance and Carcass Composition under Feedlot Conditions. PLoS ONE 2015, 10, e0143483. [Google Scholar] [CrossRef] [PubMed]
- Hay, E.H. Machine Learning for the Genomic Prediction of Growth Traits in a Composite Beef Cattle Population. Animals 2024, 14, 3014. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.A.E.-H. Integration of Assisted Reproductive Technologies and Artificial Intelligence for Optimizing Fertility and Genetic Selection in Livestock Production. Discov. Appl. Sci. 2025, 7, 1143. [Google Scholar] [CrossRef]
- Nayeri, S.; Sargolzaei, M.; Tulpan, D. A Review of Traditional and Machine Learning Methods Applied to Animal Breeding. Anim. Health Res. Rev. 2019, 20, 31–46. [Google Scholar] [CrossRef]
- González-Recio, O.; Rosa, G.J.M.; Gianola, D. Machine Learning Methods and Predictive Ability Metrics for Genome-Wide Prediction of Complex Traits. Livest. Sci. 2014, 166, 217–231. [Google Scholar] [CrossRef]







| MSBW (kg) | Peak Milk (kg/d) | Pregnancy (%) | Calving (%) | Weaning (%) |
|---|---|---|---|---|
| 450 | 8 | 96.0 | 88.3 | 84.2 |
| 10 | 95.7 | 88.2 | 84.2 | |
| 12 | 95.4 | 88.1 | 84.1 | |
| 550 | 8 | 96.0 | 88.3 | 84.3 |
| 10 | 95.8 | 88.3 | 84.2 | |
| 12 | 95.6 | 88.2 | 84.2 | |
| 650 | 8 | 96.1 | 88.3 | 84.3 |
| 10 | 95.9 | 88.3 | 84.3 | |
| 12 | 95.7 | 88.2 | 84.2 |
| Dry Matter Intake (g/kg0.75) | Pregnancy (%) | Calving (%) | Weaning (%) |
|---|---|---|---|
| 58 | 85.5 | 84.2 | 80.4 |
| 76 | 95.0 | 88.1 | 84.1 |
| 93 | 96.2 | 88.4 | 84.3 |
| 111 | 96.2 | 88.4 | 84.3 |
| MSBW (kg) | Peak Milk (kg/d) | Birth Weight (kg) | Creep DMI (kg/d) | Weaning Age (d) | Pre-Weaning ADG (kg/d) | Weaning Weight (kg) | Weaning Weight per Cow Exposed (kg) |
|---|---|---|---|---|---|---|---|
| 450 | 8 | 33.5 | 0.43 | 187 | 0.64 | 151 | 149 |
| 10 | 33.5 | 0.45 | 186 | 0.76 | 173 | 170 | |
| 12 | 33.5 | 0.47 | 186 | 0.88 | 195 | 192 | |
| 550 | 8 | 34.0 | 0.46 | 187 | 0.68 | 158 | 155 |
| 10 | 34.0 | 0.48 | 187 | 0.81 | 181 | 178 | |
| 12 | 34.0 | 0.51 | 186 | 0.93 | 205 | 201 | |
| 650 | 8 | 34.4 | 0.49 | 187 | 0.71 | 164 | 161 |
| 10 | 34.4 | 0.52 | 187 | 0.84 | 188 | 185 | |
| 12 | 34.4 | 0.54 | 187 | 0.98 | 213 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Elkins, I.; Lancaster, P.A.; Larson, R.L.; Thompson, L. Evaluation of the Beef Cattle Systems Model to Replicate a Beef Cow Genotype × Nutritional Environment Interaction. Animals 2026, 16, 372. https://doi.org/10.3390/ani16030372
Elkins I, Lancaster PA, Larson RL, Thompson L. Evaluation of the Beef Cattle Systems Model to Replicate a Beef Cow Genotype × Nutritional Environment Interaction. Animals. 2026; 16(3):372. https://doi.org/10.3390/ani16030372
Chicago/Turabian StyleElkins, Ivy, Phillip A. Lancaster, Robert L. Larson, and Logan Thompson. 2026. "Evaluation of the Beef Cattle Systems Model to Replicate a Beef Cow Genotype × Nutritional Environment Interaction" Animals 16, no. 3: 372. https://doi.org/10.3390/ani16030372
APA StyleElkins, I., Lancaster, P. A., Larson, R. L., & Thompson, L. (2026). Evaluation of the Beef Cattle Systems Model to Replicate a Beef Cow Genotype × Nutritional Environment Interaction. Animals, 16(3), 372. https://doi.org/10.3390/ani16030372

