Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Library Preparation and Whole-Genome Sequencing
2.3. Quality Control, Read Alignment, and Variant Calling
2.4. Genetic Diversity Analysis
2.5. Runs of Homozygosity (ROH) Analysis
2.6. Principal Component Analysis
2.7. Phylogenetic Analysis
3. Results
3.1. Sequencing Quality and Genomic Variants
3.2. Genetic Diversity
3.3. Runs of Homozygosity
3.4. Population Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, C.-S.; Chen, C.; Berthouly-Salazar, C.; Chazara, O.; Lee, Y.; Chang, C.; Chang, K.; Bed’Hom, B.; Tixier-Boichard, M. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Anim. Genet. 2012, 43, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.-C.; Lin, C.-J.; Liu, M.-C.; Hsu, Z.-T.; Chen, C.-F. Genomic Prediction and Genome-Wide Association Study for Growth-Related Traits in Taiwan Country Chicken. Animals 2025, 15, 376. [Google Scholar] [CrossRef]
- Pham, M.-H.; Chang, W.-H.; Berthouly-Salazar, C.; Lin, D.-Y.; Yungrahang, S.; Wang, C.-C.; Lee, Y.-P.; Tixier-Boichard, M.; Chen, C.-F. Genetic characterization of Taiwan commercial native chickens ascertained by microsatellite markers. J. Poult. Sci. 2013, 50, 290–299. [Google Scholar] [CrossRef]
- Gheyas, A.; Vallejo-Trujillo, A.; Kebede, A.; Dessie, T.; Hanotte, O.; Smith, J. Whole genome sequences of 234 indigenous African chickens from Ethiopia. Sci. Data 2022, 9, 53. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, W.; Wu, Y.; Wei, S.; Shu, G.; Tian, Y.; Du, X.; Tang, J.; Feng, Y.; Wu, G. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genom. 2023, 24, 570. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, J.; Dong, J.; Huang, M.; Li, Q.; Wang, H.; Bai, L.; Cui, M.; Zhou, Z.; Yang, S. Whole-genome variants dataset of 209 local chickens from China. Sci. Data 2024, 11, 169. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Liu, Y.; Sun, T.; Xiao, C.; Zou, L.; Zeng, L.; Deng, J.; Yang, X. New insights into genetic architecture of Guangxi indigenous chickens using whole-genome sequencing. Poult. Sci. 2025, 104, 105836. [Google Scholar] [CrossRef]
- Yue, Y.-X.; Zhang, X.; Zhai, B.; Zhang, Z.-H.; Li, Y.-J.; Li, Z.-J.; Kang, X.-T.; Li, H.; Wang, K.-J.; Li, W.-T. Whole-genome resequencing revealed genetic structure and specific breed identification loci of Ningxia Jingyuan chicken breed (Gallus gallus). BMC Genom. 2025, 26, 772. [Google Scholar] [CrossRef]
- Fan, W.-L.; Ng, C.S.; Chen, C.-F.; Lu, M.-Y.J.; Chen, Y.-H.; Liu, C.-J.; Wu, S.-M.; Chen, C.-K.; Chen, J.-J.; Mao, C.-T. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol. 2013, 5, 1376–1392. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.; Tillett, B.J.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Wu, S.; Dou, T.; Wang, K.; Yuan, S.; Yan, S.; Xu, Z.; Liu, Y.; Jian, Z.; Zhao, J.; Zhao, R. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genom. 2024, 25, 428. [Google Scholar] [CrossRef]
- Kerstens, H.H.; Crooijmans, R.P.; Dibbits, B.W.; Vereijken, A.; Okimoto, R.; Groenen, M.A. Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries. BMC Genom. 2011, 12, 94. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, C.; Li, X.; Ning, Z.; Chen, Y.; Jia, Y.; Han, J.; Wang, L.; Lv, X.; Yang, W. Genome-wide population genetic analysis of commercial, indigenous, game, and wild chickens using 600K SNP microarray data. Front. Genet. 2020, 11, 543294. [Google Scholar] [CrossRef] [PubMed]
- Talebi, R.; Szmatoła, T.; Mészáros, G.; Qanbari, S. Runs of homozygosity in modern chicken revealed by sequence data. G3 Genes Genomes Genet. 2020, 10, 4615–4623. [Google Scholar] [CrossRef]
- Tan, X.; Liu, L.; Dong, J.; Huang, M.; Zhang, J.; Li, Q.; Wang, H.; Bai, L.; Cui, M.; Zhou, Z. Genome-wide detections for runs of homozygosity and selective signatures reveal novel candidate genes under domestication in chickens. BMC Genom. 2024, 25, 485. [Google Scholar] [CrossRef]
- Yuan, J.; Li, S.; Sheng, Z.; Zhang, M.; Liu, X.; Yuan, Z.; Yang, N.; Chen, J. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genom. 2022, 23, 91. [Google Scholar] [CrossRef]
- Kim, J.; Macharia, J.K.; Kim, M.; Heo, J.M.; Yu, M.; Choo, H.J.; Lee, J.H. Runs of homozygosity analysis for selection signatures in the Yellow Korean native chicken. Anim. Biosci. 2024, 37, 1683. [Google Scholar] [CrossRef]
- Bossu, C.M.; Rodriguez, M.; Rayne, C.; Chromczak, D.A.; Higgins, P.G.; Trulio, L.A.; Ruegg, K.C. Genomic approaches to mitigating genetic diversity loss in declining populations. Mol. Ecol. 2023, 32, 5228–5240. [Google Scholar] [CrossRef]
- Ojeda-Marín, C.; Cervantes, I.; Moreno, E.; Goyache, F.; Gutiérrez, J.P. Breeding strategies to optimize effective population size in low census captive populations: The case of gazella cuvieri. Animals 2021, 11, 1559. [Google Scholar] [CrossRef]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci. 2014, 166, 26–34. [Google Scholar] [CrossRef]





| Farm 1 | Total Reads | Total Yield (Gbp) | Q30 (%) | Q20 (%) | Mapped Reads | Mapped Reads % (Out of Total Reads) | Mapped Yield (Mbp) | Mapped Mean Depth (×) |
|---|---|---|---|---|---|---|---|---|
| A | 142,581,649 | 21.53 | 94.66% | 97.15% | 139,883,098 | 98.09% | 21,122.36 | 16.40 |
| B | 132,541,394 | 20.01 | 94.79% | 97.23% | 130,424,493 | 98.42% | 19,694.12 | 15.53 |
| C | 118,019,141 | 17.82 | 92.08% | 95.50% | 115,174,475 | 97.63% | 17,391.35 | 15.29 |
| D | 135,219,896 | 20.42 | 94.36% | 97.02% | 132,407,501 | 97.92% | 19,993.53 | 15.87 |
| Farm 1 | Na 2 | Ne 3 | Pi 4 | PIC 5 | MAF 6 | Nei 7 | Ho 8 | He 9 |
|---|---|---|---|---|---|---|---|---|
| A | 2.058 | 1.400 | 0.280 | 0.177 | 0.170 | 0.280 | 0.274 | 0.279 |
| B | 2.059 | 1.407 | 0.279 | 0.177 | 0.173 | 0.279 | 0.273 | 0.278 |
| C | 2.058 | 1.386 | 0.284 | 0.179 | 0.164 | 0.284 | 0.260 | 0.283 |
| D | 2.058 | 1.405 | 0.280 | 0.177 | 0.172 | 0.280 | 0.273 | 0.279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hsiao, Y.-W.; Su, K.-Y.; Chang, C.-S. Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens. Animals 2026, 16, 286. https://doi.org/10.3390/ani16020286
Hsiao Y-W, Su K-Y, Chang C-S. Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens. Animals. 2026; 16(2):286. https://doi.org/10.3390/ani16020286
Chicago/Turabian StyleHsiao, Ya-Wen, Kang-Yi Su, and Chi-Sheng Chang. 2026. "Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens" Animals 16, no. 2: 286. https://doi.org/10.3390/ani16020286
APA StyleHsiao, Y.-W., Su, K.-Y., & Chang, C.-S. (2026). Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens. Animals, 16(2), 286. https://doi.org/10.3390/ani16020286

