Suidae Coronaviruses: Epidemiology, Transmission, and Molecular Diagnosis
Simple Summary
Abstract
1. Introduction
2. Classification of Swine Coronaviruses
- -
- High animal density: increases chances of co-infection and recombination;
- -
- Intensive pig farming: amplifies viral transmission and mutation pressure;
- -
- Global trade: facilitates the spread of the virus across different territories;
- -
- Wildlife interfaces: enable spillover and adaptation to new hosts.
2.1. Porcine Epidemic Diarrhea Virus
- -
- G1s (classical strains): Originally reported in Europe and Asia in the 1970s–1990s.
- -
- G2s (highly pathogenic strains): Emerged in China in 2010 and were responsible for major outbreaks in the U.S. in 2013.
2.2. Transmissible Gastroenteritis and Porcine Respiratory Coronavirus
2.3. Porcine Hemagglutinating Encephalomyelitis Virus
2.4. Swine Acute Diarrhea Syndrome Coronavirus and Porcine Deltacoronavirus
3. Molecular Diagnostic Techniques for Swine Coronaviruses
- -
- SYBR Green assays based on the intercalation of fluorescent dye in double-stranded DNA. Although cost-effective, SYBR Green assays can suffer from nonspecific amplification and require post-amplification melting curve analysis.
- -
- Assays based on TaqMan probes use fluorescently labeled probes that bind specifically to target sequences, providing greater specificity and enabling multiplexing capabilities [80].
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masters, P.S. The Molecular Biology of Coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef] [PubMed]
- Dolan, P.T.; Whitfield, Z.J.; Andino, R. Mapping the Evolutionary Potential of RNA Viruses. Cell Host Microbe 2018, 23, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Kenney, S.P.; Wang, Q.; Vlasova, A.; Jung, K.; Saif, L. Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Vet. Pathol. 2021, 58, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Molini, U.; Franzo, G.; Settypalli, T.B.K.; Hemberger, M.Y.; Khaiseb, S.; Cattoli, G.; Dundon, W.G.; Lamien, C.E. Viral Co-Infections of Warthogs in Namibia with African Swine Fever Virus and Porcine Parvovirus 1. Animals 2022, 12, 1697. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Tu, Z.; Sun, H.; Wang, T.; Liu, Y.; Xu, Y.; Peng, P.; Qin, S.; Tu, C.; He, B. Node role of wild boars in virus circulation among wildlife and domestic animals. Nat. Commun. 2025, 16, 8938. [Google Scholar] [CrossRef]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef]
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar] [CrossRef]
- See Hemnani, M.; da Silva, P.G.; Thompson, G.; Poeta, P.; Rebelo, H.; Mesquita, J.R. Detection and Prevalence of Coronaviruses in European Bats: A Systematic Review. Ecohealth 2024, 21, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Saif, L.J. Porcine Epidemic Diarrhea Virus Infection: Etiology, Epidemiology, Pathogenesis and Immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.; Ji, C.M.; Yang, Y.L.; Liang, Q.Z.; Zhao, P.; Xu, L.D.; Lei, X.M.; Luo, W.T.; Qin, P.; et al. Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry. J. Virol. 2018, 92, e00318-18. [Google Scholar] [CrossRef]
- Song, D.; Park, B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 2012, 44, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Lednicky, J.A.; Tagliamonte, M.S.; White, S.K.; Elbadry, M.A.; Alam, M.M.; Stephenson, C.J.; Bonny, T.S.; Loeb, J.C.; Telisma, T.; Chavannes, S.; et al. Independent infections of porcine deltacoronavirus among Haitian children. Nature 2021, 600, 133–137. [Google Scholar] [CrossRef]
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef]
- Winter, M.; Marfil, M.J.; La Sala, L.F.; Suarez, M.; Maidana, C.; Rodriguez, C.; Mesplet, M.; Abate, S.; Rosas, C.; Martinez, J.P.; et al. Serological survey suggests circulation of coronavirus on wild Suina from Argentina, 2014–2017. EcoHealth 2022, 19, 159–163. [Google Scholar] [CrossRef]
- Kaden, V.; Lange, E.; Hänel, A.; Hlinak, A.; Mewes, L.; Hergarten, G.; Irsch, B.; Dedek, J.; Bruer, W. Retrospective serological survey on selected viral pathogens in wild boar populations in Germany. Eur. J. Wildl. Res. 2009, 55, 153. [Google Scholar] [CrossRef]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef]
- Zhou, P.; Fan, H.; Lan, T.; Yang, X.; Shi, W.; Zhan, W.; Zhu, Y.; Zhang, Y.; Xie, Q.; Mani, S.; et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018, 556, 255–258. [Google Scholar] [CrossRef]
- Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011, 8, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Laude, H.; Van Reeth, K.; Pensaert, M. Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet. Res. 1993, 24, 125–150. [Google Scholar] [PubMed]
- Pensaert, M.; Callebaut, P.; Vergote, J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986, 8, 257–261. [Google Scholar] [CrossRef]
- Boniotti, M.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Marthaler, D. Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy. Emerg. Infect. Dis. 2016, 22, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, G.W.; Hoang, H.; Schwartz, K.J.; Burrough, E.R.; Sun, D.; Madson, D.; Cooper, V.L.; Pillatzki, A.; Gauger, P.; Schmitt, B.J.; et al. Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences. J. Vet. Diagn. Investig. 2013, 25, 649–654. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M.; et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–4008. [Google Scholar] [CrossRef]
- Doyle, L.P.; Hutchings, L.M. A transmissible gastroenteritis in pigs. J. Am. Vet. Med. Assoc. 1946, 108, 257–259. [Google Scholar]
- Enjuanes, L.; Van Der Zeijst, B.A.M. Molecular Basis of Transmissible Gastroenteritis Virus Epidemiology. In The Coronaviridae; Springer: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- Ferrara, G.; Nocera, F.P.; Longobardi, C.; Ciarcia, R.; Fioretti, A.; Damiano, S.; Iovane, G.; Pagnini, U.; Montagnaro, S. Retrospective Serosurvey of Three Porcine Coronaviruses among the Wild Boar (Sus scrofa) Population in the Campania Region of Italy. J. Wildl. Dis. 2022, 58, 887–891. [Google Scholar] [CrossRef]
- Wesley, R.D.; Woods, R.D.; Cheung, A.K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1990, 64, 4761–4766. [Google Scholar] [CrossRef]
- Sun, R.; Cai, R.; Chen, Y.; Liang, P.; Chen, D.; Song, C. Outbreak of porcine epidemic diarrhea in Suckling Piglets, China. Emerg. Infect. Dis. 2018, 18, 161–163. [Google Scholar] [CrossRef]
- Carvajal, A.; Argüello, H.; Martínez-Lobo, F.J.; Costillas, S.; Miranda, R.; De Nova, P.J.G.; Rubio, P. Porcine epidemic diarrhoea: New insights into an old disease. Porc. Health Manag. 2015, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, V.; Zakhartchouk, A. Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet. Microbiol. 2016, 206, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; D’Anza, E.; Rossi, A.; Improda, E.; Iovane, V.; Pagnini, U.; Iovane, G.; Montagnaro, S. A serological investigation of porcine reproductive and respiratory syndrome and three coronaviruses in the Campania region, southern Italy. Viruses 2023, 15, 300. [Google Scholar] [CrossRef] [PubMed]
- Mora-Díaz, J.C.; Piñeyro, P.E.; Houston, E.; Zimmerman, J.; Giménez-Lirola, L.G. Porcine Hemagglutinating Encephalomyelitis Virus: A Review. Front. Vet. Sci. 2019, 6, 53. [Google Scholar] [CrossRef]
- Pensaert, M.B.; Callebaut, P.E. Characteristics of a coronavirus causing vomition and wasting in pigs. Arch. Virol. 1974, 44, 35–50. [Google Scholar] [CrossRef]
- Cartwright, S.F.; Lucas, M.; Cavill, J.P.; Gush, A.F.; Blandford, T.B. Vomiting and wasting disease of piglets. Vet. Rec. 1969, 84, 175–176. [Google Scholar] [CrossRef]
- Saif, L.J.; Wang, Q.; Vlasova, A.N.; Jung, K.; Xiao, S. Coronaviruses. In Diseases of Swine, 1st ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 488–523. [Google Scholar]
- Wang, L.; Byrum, B.; Zhang, Y. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. Emerg. Infect. Dis. 2014, 20, 1227–1230. [Google Scholar] [CrossRef]
- Jung, K.; Hu, H.; Eyerly, B.; Lu, Z.; Chepngeno, J.; Saif, L.J. Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs. Emerg. Infect. Dis. 2015, 21, 650–654. [Google Scholar] [CrossRef]
- Saeng-Chuto, K.; Lorsirigool, A.; Temeeyasen, G.; Vui, D.T.; Stott, C.J.; Madapong, A.; Tripipat, T.; Wegner, M.; Intrakamhaeng, M.; Chongcharoen, W.; et al. Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015. Transbound. Emerg. Dis. 2016, 64, 3–10. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, X.; Qin, P.; Wang, B.; Zhao, P.; Yang, Y.; Wang, L.; Wang, D.; Song, Y.; Zhang, X.; et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 2017, 211, 15–21. [Google Scholar] [CrossRef]
- Marthaler, D.; Jiang, Y.; Collins, J.; Rossow, K. Complete Genome Sequence of Strain SDCV/USA/Illinois121/2014, a Porcine Deltacoronavirus from the United States. Genome Announc. 2014, 2, e00218-14. [Google Scholar] [CrossRef]
- Gong, L.; Li, J.; Zhou, Q.; Xu, Z.; Chen, L.; Zhang, Y.; Xue, C.; Wen, Z.; Cao, Y. A new Bat-HKU2–like coronavirus in Swine, China, 2017. Emerg. Infect. Dis. 2017, 23, 1607–1609. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, J.R.; Honing, R.H.D.; Almeida, A.; Lourenço, M.; Van Der Poel, W.H.M.; Nascimento, M.S.J. Outbreak of porcine epidemic diarrhea virus in Portugal, 2015. Transbound. Emerg. Dis. 2015, 62, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Marthaler, D.; Wang, Q.; Culhane, M.R.; Rossow, K.D.; Rovira, A.; Collins, J.; Saif, L.J. Distinct Characteristics and Complex evolution of PEDV strains, North America, May 2013–February 2014. Emerg. Infect. Dis. 2014, 20, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Madson, D.M.; Magstadt, D.R.; Arruda, P.H.E.; Hoang, H.; Sun, D.; Bower, L.P.; Bhandari, M.; Burrough, E.R.; Gauger, P.C.; Pillatzki, A.E.; et al. Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet. Microbiol. 2014, 174, 60–68. [Google Scholar] [CrossRef]
- Kocherhans, R.; Bridgen, A.; Ackermann, M.; Tobler, K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes. 2001, 23, 137–144. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare. Scientific Opinion on porcine epidemic diarrhoea and emerging pig deltacoronavirus. EFSA J. 2014, 12, 3877. [Google Scholar] [CrossRef]
- Antas, M.; Olech, M.; Szczotka-Bochniarz, A. Porcine enteric coronavirus infections in wild boar in Poland—A pilot study. J. Vet. Res. 2021, 65, 265–269. [Google Scholar] [CrossRef]
- Lee, D.U.; Kwon, T.; Je, S.H.; Yoo, S.J.; Seo, S.W.; Sunwoo, S.Y.; Lyoo, Y.S. Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir. Vet. Microbiol. 2016, 192, 90–94. [Google Scholar] [CrossRef]
- Fernandez-Lopez, J.; Acevedo, P.; Blanco-Aguiar, J.A.; Vicente, J. Analysis of wild boar-domestic pig interface in Europe: Preliminary analysis. EFSA Support. Publ. 2020, 17, 1834E. [Google Scholar] [CrossRef]
- Wang, D.; Fang, L.; Xiao, S. Porcine epidemic diarrhea in China. Virus Res. 2016, 226, 7–13. [Google Scholar] [CrossRef]
- Khbou, M.K.; Jedidi, M.D.; Zaafouri, F.B.; Benzarti, M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet. Med. Sci. 2020, 7, 322–347. [Google Scholar] [CrossRef] [PubMed]
- Jori, F.; Hernandez-Jover, M.; Magouras, I.; Dürr, S.; Brookes, V.J. Wildlife–livestock interactions in animal production systems: What are the biosecurity and health implications? Anim. Front. 2021, 11, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Delmas, B.; Gelfi, J.; L’Haridon, R.; Vogel, L.K.; Sjöström, H.; Norén, O.; Laude, H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 1992, 357, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D.; Brien, D.A.; Brinton, M.; Enjuanes, L.; Holmes, K.V.; Horzinek, M.C.; Lai, M.M.C.; Laude, H.; Plagemann, P.G.W.; Siddell, S.; et al. Revision of the taxonomy of the Coronavirus, Torovirus and Arterivirus genera. Arch. Virol. 1994, 135, 227–237. [Google Scholar] [CrossRef]
- Saif, L.J. Coronavirus immunogens. Vet. Microbiol. 1993, 37, 285–297. [Google Scholar] [CrossRef]
- Pensaert, M.B.; Cox, E. Porcine respiratory coronavirus related to transmissible gastroenteritis virus. Vet. Q. 1989, 10, 17–21. [Google Scholar]
- Ruiz-Fons, F.; Segalés, J.; Gortázar, C. A review of viral diseases of the European wild boar: Effects of population dynamics and reservoir rôle. Vet. J. 2007, 176, 158–169. [Google Scholar] [CrossRef]
- Lelli, D.; Papetti, A.; Sabelli, C.; Rosti, E.; Moreno, A.; Boniotti, M. Detection of coronaviruses in bats of various species in Italy. Viruses 2013, 5, 2679–2689. [Google Scholar] [CrossRef]
- Andries, K.; Pensaert, M.B. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation. Am. J. Vet. Res. 1980, 41, 1372–1378. [Google Scholar] [CrossRef]
- Hirano, N.; Tohyama, K.; Taira, H.; Hashikawa, T. Spread of hemagglutinating encephalomyelitis virus (HEV) in the CNS of rats inoculated by intranasal route. In The Nidoviruses; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2001; pp. 127–132. [Google Scholar] [CrossRef]
- Andries, K.; Pensaert, M.; Callebaut, P. Pathogenicity of Hemagglutinating Encephalomyelitis (Vomiting and Wasting Disease) Virus of Pigs, using Different Routes of Inoculation. Zentralbl. Veterinärmed. B 1978, 25, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Swine Health Information Center 2019 Progress Report. Available online: https://www.swinehealth.org/wp-content/uploads/2020/01/SHIC-2019-Progress-Report-12-11-19.pdf (accessed on 4 April 2025).
- Li, Z.; He, W.; Lan, Y.; Zhao, K.; Lv, X.; Lu, H.; Ding, N.; Zhang, J.; Shi, J.; Shan, C.; et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. PeerJ 2016, 4, e2443. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lai, K.K.Y.; Huang, Y.; Lee, P.; Luk, G.S.M.; Dyrting, K.C.; Chan, K.; Yuen, K. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3C coronavirus. J. Virol. 2008, 83, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.; Lee, P.; Tsang, A.K.; Yip, C.C.; Tse, H.; Lee, R.A.; So, L.Y.; Lau, Y.L.; Chan, K.H.; Woo, P.C.; et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 2011, 85, 11325–11337. [Google Scholar] [CrossRef]
- Edwards, C.E.; Yount, B.L.; Graham, R.L.; Leist, S.R.; Hou, Y.J.; Dinnon, K.H.; Sims, A.C.; Swanstrom, J.; Gully, K.; Scobey, T.D.; et al. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc. Natl. Acad. Sci. USA 2020, 117, 26915–26925. [Google Scholar] [CrossRef]
- Jung, K.; Wang, Q.; Scheuer, K.A.; Lu, Z.; Zhang, Y.; Saif, L.J. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg. Infect. Dis. 2014, 20, 668–671. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Y.; Lan, T.; Wu, R.; Chen, J.; Wu, Z.; Xie, Q.; Zhang, X.; Ma, J. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China. Transbound. Emerg. Dis. 2019, 66, 687–695. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J.; Huang, Y. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res. 2020, 285, 198024. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Liang, X.; Lou, F.; Oglesbee, M.; Krakowka, S.; Li, J. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. mBio 2015, 6, e00064. [Google Scholar] [CrossRef]
- Homwong, N.; Jarvis, M.C.; Lam, H.C.; Diaz, A.; Rovira, A.; Nelson, M.; Marthaler, D. Characterization and evolution of porcine deltacoronavirus in the United States. Prev. Vet. Med. 2015, 123, 168–174. [Google Scholar] [CrossRef]
- Wang, Q.; Vlasova, A.N.; Kenney, S.P.; Saif, L.J. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 2019, 34, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Jung, K.; Vlasova, A.N.; Chepngeno, J.; Lu, Z.; Wang, Q.; Saif, L.J. Isolation and Characterization of Porcine Deltacoronavirus from Pigs with Diarrhea in the United States. J. Clin. Microbiol. 2015, 53, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Hu, H.; Saif, L.J. Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Res. 2016, 226, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, H.; Li, B.; Ding, Q.; Wang, Y.; Gao, W.; Guo, D.; Wei, Z.; Hu, H. Susceptibility of chickens to porcine deltacoronavirus infection. Viruses 2019, 11, 573. [Google Scholar] [CrossRef]
- Bustin, S.A.; Nolan, T. RT-QPCR testing of SARS-CoV-2: A primer. Int. J. Mol. Sci. 2020, 21, 3004. [Google Scholar] [CrossRef]
- Chen, N.; Ye, M.; Xiao, Y.; Li, S.; Huang, Y.; Li, X.; Tian, K.; Zhu, J. Development of universal and quadruplex real-time RT-PCR assays for simultaneous detection and differentiation of porcine reproductive and respiratory syndrome viruses. Transbound. Emerg. Dis. 2019, 66, 2271–2278. [Google Scholar] [CrossRef]
- Lin, C.; Hou, Y.; Marthaler, D.G.; Gao, X.; Liu, X.; Zheng, L.; Saif, L.J.; Wang, Q. Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Vet. Microbiol. 2017, 201, 62–71. [Google Scholar] [CrossRef]
- Chae, H.; Roh, H.S.; Jo, Y.M.; Kim, W.G.; Chae, J.B.; Shin, S.; Kang, J.W. Development of a one-step reverse transcription-quantitative polymerase chain reaction assay for the detection of porcine reproductive and respiratory syndrome virus. PLoS ONE 2023, 18, e0293042. [Google Scholar] [CrossRef]
- Zhu, J.; Rawal, G.; Aljets, E.; Yim-Im, W.; Yang, Y.; Huang, Y.; Krueger, K.; Gauger, P.; Main, R.; Zhang, J. Development and clinical applications of a 5-Plex Real-Time RT-PCR for swine enteric coronaviruses. Viruses 2022, 14, 1536. [Google Scholar] [CrossRef]
- Rawal, G.; Yim-Im, W.; Aljets, E.; Halbur, P.G.; Zhang, J.; Opriessnig, T. Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs. Pathogens 2023, 12, 1097. [Google Scholar] [CrossRef]
- Hu, X.; Feng, S.; Shi, K.; Shi, Y.; Yin, Y.; Long, F.; Wei, X.; Li, Z. Development of a quadruplex real-time quantitative RT-PCR for detection and differentiation of PHEV, PRV, CSFV, and JEV. Front. Vet. Sci. 2023, 10, 1276505. [Google Scholar] [CrossRef]
- Boniotti, M.B.; Papetti, A.; Bertasio, C.; Giacomini, E.; Lazzaro, M.; Cerioli, M.; Faccini, S.; Bonilauri, P.; Vezzoli, F.; Lavazza, A.; et al. Porcine Epidemic Diarrhoea Virus in Italy: Disease spread and the role of transportation. Transbound. Emerg. Dis. 2018, 65, 1935–1942. [Google Scholar] [CrossRef]
- Guo, J.; Lai, Y.; Yang, Z.; Song, W.; Zhou, J.; Li, Z.; Su, W.; Xiao, S.; Fang, L. Coinfection and nonrandom recombination drive the evolution of swine enteric coronaviruses. Emerg. Microbes Infect. 2024, 13, 2332653. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, Q.; Jin, Q.; Li, P.; Xing, G.; Zhang, G. Phylogenetically evolutionary analysis provides insights into the genetic diversity and adaptive evolution of porcine deltacoronavirus. BMC Vet. Res. 2024, 20, 22. [Google Scholar] [CrossRef]
- Thakor, J.C.; Dinesh, M.; Manikandan, R.; Bindu, S.; Sahoo, M.; Sahoo, D.; Dhawan, M.; Pandey, M.K.; Tiwari, R.; Emran, T.B.; et al. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet. Q. 2022, 42, 125–147. [Google Scholar] [CrossRef]
- Pepin, K.M.; Miller, R.S.; Wilber, M.Q. A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Prev. Vet. Med. 2021, 188, 105281. [Google Scholar] [CrossRef]

| Virus | Epidemiology | Target Organs | Main Symptoms | Transmission | References |
|---|---|---|---|---|---|
| TGEV | Major outbreaks in Europe, Asia, USA | Small intestine (enterocytes) | Severe watery diarrhea, vomiting, dehydration | Fecal–oral route, ingestion of contaminated feces, feed, or water | [23,24,27,28,29] |
| PRCV | Major outbreaks in Europe, Asia, USA | Respiratory tract (nasal mucosa, trachea, lungs) | Mild respiratory disease, coughing, nasal discharge | Via aerosols, respiratory secretions, and direct nasal–oral contact | [22,29,30] |
| PEDV | Major epidemics in USA, China, Korea; continues to circulate in Asia and parts of Europe | Small intestine (villus enterocytes) | Profuse watery diarrhea, vomiting, dehydration | Fecal–oral route, contaminated environments, feed, or equipment | [24,25,26,31,32,33,34] |
| PHEV | Reported in Asia, North America, and Europe | Central nervous system, stomach | Vomiting, wasting, ataxia, paralysis | Oro-nasal route, exposure to contaminated secretions | [35,36,37,38] |
| PDCoV | Reported in USA (2014); now detected in North America and Asia | Small intestine | Watery diarrhea, vomiting, dehydration | Fecal–oral route, contaminated equipment | [12,15,26,39,40,41] |
| SADS-CoV | Reported in North America, Asia, and more recently in Europe | Small intestine | Acute watery diarrhea, severe dehydration, high mortality | Fecal–oral route | [20,26,42,43,44] |
| Virus | Primers/Probes | Sequences (5′-3′) | References |
|---|---|---|---|
| TGEV | Forward | GTGGTAATATGYTRTATGGCYTACAA | |
| Reverse | GCCAGACCATTGATTTTCAAAACT | [83] | |
| Probe | TTGCTTATTTACATGGTGCYAGT | ||
| PRCV | Forward | TTGTCTGGGTTGCCAAGGAT | |
| Reverse | CATCGAATYTCAAAGCTTTGGATT | [84] | |
| Probe | ACKCTTGGTAGTCGTGG | ||
| PEDV | Forward | GAAGAGGCCATCTACGATGATGT | |
| Reverse | AACAGCTGTGTCCCATTCCAA | [83] | |
| Probe | TGTGCCATCTGATGTGACTCATGCCA | ||
| PHEV | Forward | CCAGAAGGATGTTTATGAATTGC | |
| Reverse | CCTGATGTTGATAGGCATTCA | [85] | |
| Probe | TGGCGCGATTAGATTTGAYAGCACACTC | ||
| Forward | CCAGACATGTGCCTGGTGTT | ||
| PDCoV | Reverse | CCCYGCCTGAAAGTTGCT | [83] |
| Probe | ARATGCTTTTCGCTGGCCACCTTG | ||
| Forward | CCAGGCCTCAAAGTGGTAAAAA | ||
| SADS-CoV | Reverse | TGCTTACGAGCCGGTTTAGG | [83] |
| Probe | ACCCAAACC/ZEN/AAGAAGCAGAGCTGTCTCAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ortello, C.; Pace, L.; Farina, D.; Manzulli, V.; Rondinone, V.; Cipolletta, D.; Galante, D. Suidae Coronaviruses: Epidemiology, Transmission, and Molecular Diagnosis. Animals 2026, 16, 257. https://doi.org/10.3390/ani16020257
Ortello C, Pace L, Farina D, Manzulli V, Rondinone V, Cipolletta D, Galante D. Suidae Coronaviruses: Epidemiology, Transmission, and Molecular Diagnosis. Animals. 2026; 16(2):257. https://doi.org/10.3390/ani16020257
Chicago/Turabian StyleOrtello, Chiara, Lorenzo Pace, Donatella Farina, Viviana Manzulli, Valeria Rondinone, Dora Cipolletta, and Domenico Galante. 2026. "Suidae Coronaviruses: Epidemiology, Transmission, and Molecular Diagnosis" Animals 16, no. 2: 257. https://doi.org/10.3390/ani16020257
APA StyleOrtello, C., Pace, L., Farina, D., Manzulli, V., Rondinone, V., Cipolletta, D., & Galante, D. (2026). Suidae Coronaviruses: Epidemiology, Transmission, and Molecular Diagnosis. Animals, 16(2), 257. https://doi.org/10.3390/ani16020257

