Utilizing an In Vitro Fermentation Model to Assess Probiotics on Eimeria-Disturbed Cecal Microbiome and Metabolome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Probiotic Strains
2.2. Cecal Culture Preparation
2.3. In Vitro Fermentation and Treatment
2.4. Microbial and Metabolome Sampling
2.5. 16S rRNA Sequencing and Bioinformatics
2.6. Untargeted Metabolomics and Bioinformatics
2.7. Data Analysis
3. Results
3.1. Microbial Diversity
3.2. Microbial Compositions
3.3. Differentiated Metabolites
3.4. Correlation Network Between Microbes and Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LR | Lactobacillus rhamnosus |
| BS | Bacillus subtilis |
| VL | Viande Levure |
| OTU | Operational taxonomic unit |
| PCoA | Principal coordinate analysis |
| LDA | Linear discriminant analysis |
References
- Arendt, M.K.; Knoll, L.J.; Cook, M.E. Oral antibody to interleukin-10 receptor 2, but not interleukin-10 receptor 1, as an effective Eimeria species immunotherapy in broiler chickens. Poult. Sci. 2019, 98, 3471–3480. [Google Scholar] [CrossRef]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Farnell, Y.Z.; Kiess, A.S.; Peebles, E.D.; Wamsley, K.G.S.; Zhai, W. Effects of Bacillus subtilis and coccidial vaccination on cecal microbial diversity and composition of Eimeria-challenged male broilers. Poult. Sci. 2019, 98, 3839–3849. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, W.; Zhang, H.; Wang, J.; Zhang, W.; Gao, J.; Wu, S.; Qi, G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci. Rep. 2018, 8, 15358. [Google Scholar] [CrossRef]
- Su, L.; Huang, S.; Huang, Y.; Bai, X.; Zhang, R.; Lei, Y.; Wang, X. Effects of Eimeria challenge on growth performance, intestine integrity, and cecal microbial diversity and composition of yellow broilers. Poult. Sci. 2024, 103, 104470. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W. Interactions of microbiota and mucosal immunity in the ceca of broiler chickens infected with Eimeria tenella. Vaccines 2022, 10, 1941. [Google Scholar] [CrossRef]
- Felici, M.; Tugnoli, B.; Ghiselli, F.; Baldo, D.; Ratti, C.; Piva, A.; Grilli, E. Investigating the effects of essential oils and pure botanical compounds against Eimeria tenella in vitro. Poult. Sci. 2023, 102, 102898. [Google Scholar] [CrossRef]
- Prescott, J.F.; Smyth, J.A.; Shojadoost, B.; Vince, A. Experimental reproduction of necrotic enteritis in chickens: A review. Avian Pathol. 2016, 45, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Hailegebreal, G.; Molla, T.B.; Woldegiorgis, W.; Sulayeman, M.; Sori, T. Epidemiological investigation of morbidity and mortality of improved breeds of chickens in small holder poultry farms in selected districts of Sidama Region, Ethiopia. Heliyon 2022, 8, e10074. [Google Scholar] [CrossRef]
- Dong, S.; Li, L.; Hao, F.; Fang, Z.; Zhong, R.; Wu, J.; Fang, X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult. Sci. 2024, 103, 103287. [Google Scholar] [CrossRef]
- Khalid, A.; Khalid, F.; Mahreen, N.; Hussain, S.M.; Shahzad, M.M.; Khan, S.; Wang, Z. Effect of spore-forming probiotics on the poultry production: A review. Food Sci. Anim. Resour. 2022, 42, 968–980. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Huang, S.; Huang, Y.; Shi, H.; Bai, X. Effects of dietary essential oil supplementation on growth performance, carcass yield, meat quality, and intestinal tight junctions of broilers with or without Eimeria challenge. Poult. Sci. 2023, 102, 102874. [Google Scholar] [CrossRef]
- Asare, P.T.; Greppi, A.; Pennacchia, A.; Brenig, K.; Geirnaert, A.; Schwab, C.; Stephan, R.; Lacroix, C. In vitro modeling of chicken cecal microbiota ecology and metabolism using the PolyFermS platform. Front. Microbiol. 2021, 12, 780092. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Yan, W.; Mai, C.; Duan, Z.; Zheng, J.; Sun, C.; Yang, N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome 2021, 9, 126. [Google Scholar] [CrossRef]
- Feye, K.M.; Rubinelli, P.M.; Chaney, W.E.; Pavlidis, H.O.; Kogut, M.H.; Ricke, S.C. The preliminary development of an in vitro poultry cecal culture model to evaluate the effects of original XPCTM for the reduction of Campylobacter jejuni and its potential effects on the microbiota. Front. Microbiol. 2020, 10, 3062. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhu, H.; Yang, H.; Yao, W.; Zheng, W. In vitro fermentation properties of magnesium hydride and related modulation effects on broiler cecal microbiome and metabolome. Front. Microbiol. 2023, 14, 1175858. [Google Scholar] [CrossRef]
- Kathayat, D.; Closs, G., Jr.; Helmy, Y.A.; Deblais, L.; Srivastava, V.; Rajashekara, G. In vitro and in vivo evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 against avian pathogenic Escherichia coli and identification of novel probiotic-derived bioactive peptides. Probiotics Antimicrob. Proteins 2022, 14, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Sun, Y.; Mu, P.; Zheng, T.; Mu, H.; Deng, F.; Deng, Y.; Wen, J. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochemical. Pharmacol. 2020, 175, 113868. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Luo, Z.; Liu, D. Supplemental Bacillus subtilis PB6 improves growth performance and gut health in broilers challenged with Clostridium perfringens. J. Immunol. Res. 2021, 2021, 2549541. [Google Scholar] [CrossRef]
- Khalifa, A.; Ibrahim, H.M.; Sheikh, A. Bacillus subtilis PM5 from camel milk boosts chicken immunity and abrogates Salmonella entertitidis infections. Microorganisms 2023, 11, 1719. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; SerpaVieira, B.; de Paula Dorigam, J.C.; Menconi, A.; Sokale, A.; Doranalli, K.; Applegate, T.J. Bacillus subtilis DSM 32315 supplementation attenuates the effects of Clostridium perfringens challenge on the growth performance and intestinal microbiota of broiler chickens. Microorganisms 2019, 7, 71. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Xu, S.; Yang, J.; Wang, K.; Zhan, X. Bacillus subtilis DSM29784 alleviates negative effects on growth performance in broilers by improving the intestinal health under necrotic enteritis challenge. Front. Microbiol. 2021, 12, 723187. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, X.; Li, X.; Wang, X.; Lei, Y.; Zhang, C. Effect of chilling methods on the surface color and water retention of yellow-feathered chickens. Poult. Sci. 2020, 99, 2246–2255. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Lin, S.; Lin, Q.; Wei, S.; Ye, D.; Liu, J. The digestive tract histology and geographical distribution of gastrointestinal microbiota in yellow-feather broilers. Poult. Sci. 2023, 102, 102844. [Google Scholar] [CrossRef]
- NY/T 3645-2020; Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Nutrient Requirements of Yellow Chickens. China Agriculture Press: Beijing, China, 2020.
- Gong, Y.; Yang, H.; Wang, X.; Xia, W.; Lv, W.; Xiao, Y. Early intervention with cecal fermentation broth regulates the colonization and development of gut microbiota in broiler chickens. Front. Microbiol. 2019, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.G.h.; Fatemeh, N. Guidelines for an optimized differential centrifugation of cells. Biochem. Biophys. Rep. 2023, 36, 101585. [Google Scholar] [CrossRef]
- Muhammad, S.; Xu, Y.; Zhang, T.; Ren, Q.; Sun, C. 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poult. Sci. 2019, 98, 842–854. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, S.; Zeng, D.; Ni, X.; Zhou, M.; Zeng, Y.; Wang, H.; Zhou, Y.; Zhu, H.; Pan, K.; et al. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE 2017, 12, e0182426. [Google Scholar] [CrossRef]
- Cai, H.; Liao, S.; Li, J.; Liu, Q.; Luo, S.; Lv, M.; Lin, X.; Hu, J.; Zhang, J.; Qi, N.; et al. Single and combined effects of Clostridium butyricum and coccidiosis vaccine on growth performance and the intestinal microbiome of broiler chickens. Front. Microbiol. 2022, 13, 811428. [Google Scholar] [CrossRef]
- Qumar, S.; Majid, M.; Qaria, M.A.; Mendem, S.K.; Ahmed, N. Functional molecular characterization and the assessment of the transmission route of multidrug-resistant Helicobacter pullorum isolates from free-range and broiler chickens. Microb. Pathog. 2023, 182, 106253. [Google Scholar] [CrossRef]
- Stanley, J.; Linton, D.; Burnens, A.P.; Dewhirst, F.E.; On, S.L.; Porter, A.; Owen, R.J.; Costas, M. Helicobacter pullorum sp. nov.—genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology 1994, 140, 3441–3449. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ju, T.; Bhardwaj, T.; Korver, D.R.; Willing, B.P. Week-old chicks with high Bacteroides abundance have increased short-chain fatty acids and reduced markers of gut inflammation. Microbiol. Spectr. 2023, 11, e0361622. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Y.; Zhu, X.; Cai, L.; Farooq, M.Z.; Yan, X. Bacteroides-derived isovaleric acid enhances mucosal immunity by facilitating intestinal IgA response in broilers. J. Anim. Sci. Biotechnol. 2023, 14, 4. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Mahendran, A.; Orlando, B.J. Genome wide structural prediction of ABC transporter systems in Bacillus subtilis. Front. Microbiol. 2024, 15, 1469915. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xu, J.Y.; Xing, Y.; Wu, P.; Jin, Y.W.; Wei, W.; Zhao, L.; Yang, J.; Chen, G.C.; Qin, L.Q. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol. Res. 2024, 286, 127821. [Google Scholar] [CrossRef]
- Guo, S.; Xi, Y.; Xia, Y.; Wu, T.; Zhao, D.; Zhang, Z.; Ding, B. Dietary Lactobacillus fermentum and Bacillus coagulans supplementation modulates intestinal immunity and microbiota of broiler chickens challenged by Clostridium perfringens. Front. Vet. Sci. 2021, 8, 680742. [Google Scholar] [CrossRef]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef] [PubMed]
- Tabascoa, R.; de Palenciab, P.F.; Fontechaa, J.; Peláeza, C.; Requenaa, T. Competition mechanisms of lactic acid bacteria and bifidobacteria: Fermentative metabolism and colonization. LWT- Food Sci. Technol. 2014, 55, 680–684. [Google Scholar] [CrossRef]
- Liu, Q.; Song, Y.; Wang, R.; Sun, J.; He, J.; Li, Q.; Zhang, G.; Ma, X.; Li, C.; Liu, L. Inhibition of Helicobacter pylori by Lactobacillus rhamnosus L08 in combination with Curcuma longa extracts. Food Biosci. 2024, 59, 104129. [Google Scholar] [CrossRef]
- Zuo, F.; Somiah, T.; Gebremariam, H.G.; Jonsson, A.B. Lactobacilli downregulate transcription factors in helicobacter pylori that affect motility, acid tolerance and antimicrobial peptide survival. Inter. J. Mol. Sci. 2022, 23, 15451. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Rock, C.O. Phosphatidic acid synthesis in bacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013, 1831, 495–502. [Google Scholar] [CrossRef]
- Geiger, O.; López-Lara, I.M.; Sohlenkamp, C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim. Biophys. Acta 2013, 1831, 503–513. [Google Scholar] [CrossRef]
- Geiger, O.; González-Silva, N.; López-Lara, I.M.; Sohlenkamp, C. Amino acid-containing membrane lipids in bacteria. Prog. Lipid Res. 2010, 49, 46–60. [Google Scholar] [CrossRef]
- Chen, X.; Yue, W.; Li, Z.; Jin, W.; Lin, H.; Liu, J. Influence of Bacillus subtilis supplementation on growth performance and gut microbial composition in broiler chickens based on low-protein diets. Poult. Sci. 2025, 104, 106002. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, T.M.; Sun, W.; Bumbie, G.Z.; Elokil, A.A.; Mohammed, K.A.F.; Zebin, R.; Hu, P.; Wu, L.; Tang, Z. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front. Microbiol. 2022, 12, 798350. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Achard, C.; Barbe, F.; Chevaux, E.; Ronholm, J.; Zhao, X. Bacillus pumilus and Bacillus subtilis promote early maturation of cecal microbiota in broiler chickens. Microorganisms 2021, 9, 1899. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Qiu, K.; Li, C.L.; Wang, J.; Qi, G.H.; Gao, J.; Zhang, H.J.; Wu, S.G. Effects of dietary supplementation with Bacillus subtilis, as an alternative to antibiotics, on growth performance, serum immunity, and intestinal health in broiler chickens. Front. Nutr. 2021, 8, 786878. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Prévéraud, D.P.; Pinloche, E.; Morat, A.; Govindin, P.; Blottière, H.M.; Matthieu, E.; Devillard, E.; Consuegra, J. Unraveling the benefits of Bacillus subtilis DSM 29784 poultry probiotic through its secreted metabolites: An in vitro approach. Microbiol. Spectr. 2024, 12, e0017724. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, Y.; You, X.; Huang, S.; Chai, J.; Zeng, Y.; Shi, H.; Wang, X. Utilizing an In Vitro Fermentation Model to Assess Probiotics on Eimeria-Disturbed Cecal Microbiome and Metabolome. Animals 2026, 16, 245. https://doi.org/10.3390/ani16020245
Wu Y, You X, Huang S, Chai J, Zeng Y, Shi H, Wang X. Utilizing an In Vitro Fermentation Model to Assess Probiotics on Eimeria-Disturbed Cecal Microbiome and Metabolome. Animals. 2026; 16(2):245. https://doi.org/10.3390/ani16020245
Chicago/Turabian StyleWu, Yani, Xueting You, Shuping Huang, Ju Chai, Yongqi Zeng, Haitao Shi, and Xi Wang. 2026. "Utilizing an In Vitro Fermentation Model to Assess Probiotics on Eimeria-Disturbed Cecal Microbiome and Metabolome" Animals 16, no. 2: 245. https://doi.org/10.3390/ani16020245
APA StyleWu, Y., You, X., Huang, S., Chai, J., Zeng, Y., Shi, H., & Wang, X. (2026). Utilizing an In Vitro Fermentation Model to Assess Probiotics on Eimeria-Disturbed Cecal Microbiome and Metabolome. Animals, 16(2), 245. https://doi.org/10.3390/ani16020245

