Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Astaxanthin Feeding Experiment
2.2. Sample Collection
2.3. RNA Isolation and cDNA Synthesis
2.4. Library Construction and Transcriptome Sequencing
2.5. Quality Control, Assembly, and Annotation
2.6. Differential Expression Analysis, Gene Annotation, and GO and KEGG Enrichment Analysis
2.7. Gene Set Enrichment Analysis
2.8. Validation of DEGs by Quantitative Real-Time PCR
2.9. Statistical Analysis
3. Results
3.1. Basic Information of the Transcriptome Sequencing
3.2. Screening of Differentially Expressed Genes and Functional Analysis
3.2.1. Intestine Response to AST Supplementation
3.2.2. Hepatopancreas Response to AST Supplementation
3.2.3. Muscle Response to AST Supplementation
3.3. Results of Gene Set Enrichment Analysis
3.4. Summary of Metabolic Processes of Astaxanthin in E. carinicauda
4. Discussion
4.1. Intestinal Absorption of Astaxanthin and Its Impact on the Antioxidant Capacity of the Intestine
4.2. Hepatopancreas as a Major Site of Astaxanthin Metabolism and Storage
4.3. Muscle Tissue Response to Astaxanthin
4.4. The Impact of Astaxanthin on Gene Expression Regulation Within the Organism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakagawa, K.; Kiko, T.; Miyazawa, T.; Carpentero Burdeos, G.; Kimura, F.; Satoh, A.; Miyazawa, T. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. Br. J. Nutr. 2011, 105, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Elbahnaswy, S.; Elshopakey, G.E. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: A review. Fish Physiol. Biochem. 2024, 50, 97–126. [Google Scholar] [CrossRef] [PubMed]
- Altincicek, B.; Kovacs, J.L.; Gerardo, N.M. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol. Lett. 2012, 8, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Maoka, T.; Koyanagi, T.; Kawase, N.; Nishida, R.; Tsuchida, T.; Hironaka, M.; Ueda, T.; Misawa, N. Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly. BMC Zool. 2021, 6, 19. [Google Scholar] [CrossRef]
- Nishida, Y.; Berg, P.C.; Shakersain, B.; Hecht, K.; Takikawa, A.; Tao, R.; Kakuta, Y.; Uragami, C.; Hashimoto, H.; Misawa, N.; et al. Astaxanthin: Past, Present, and Future. Mar. Drugs 2023, 21, 514. [Google Scholar] [CrossRef]
- Tyssandier, V.; Lyan, B.; Borel, P. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2001, 1533, 285–292. [Google Scholar] [CrossRef]
- von Lintig, J.; Moon, J.; Lee, J.; Ramkumar, S. Carotenoid metabolism at the intestinal barrier. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158580. [Google Scholar] [CrossRef]
- Bhosale, P.; Bernstein, P.S. Vertebrate and invertebrate carotenoid-binding proteins. Arch. Biochem. Biophys. 2007, 458, 121–127. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Y.; Liu, H.; Ye, Z.; Ma, Q.; Wei, Y.; Xiao, L.; Liang, M.; Xu, H. Dietary Lysophosphatidylcholine Improves the Uptake of Astaxanthin and Modulates Cholesterol Transport in Pacific White Shrimp Litopenaeus vannamei. Antioxidants 2024, 13, 505. [Google Scholar] [CrossRef]
- Jiang, X.; Pan, K.; Yang, Y.; Shu-Chien, A.C.; Wu, X. Dietary DHA Oil Supplementation Promotes Ovarian Development and Astaxanthin Deposition during the Ovarian Maturation of Chinese Mitten Crab Eriocheir sinensis. Aquac. Nutr. 2022, 2022, 9997317. [Google Scholar] [CrossRef]
- Weaver, R.J.; Gonzalez, B.K.; Santos, S.R.; Havird, J.C. Red Coloration in an Anchialine Shrimp: Carotenoids, Genetic Variation, and Candidate Genes. Biol. Bull. 2020, 238, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Wade, N.M.; Gabaudan, J.; Glencross, B.D. A review of carotenoid utilisation and function in crustacean aquaculture. Rev. Aquac. 2017, 9, 141–156. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Li, J.; Liu, P.; Li, J.; Zhao, F. Antioxidant, Transcriptome and the Metabolome Response to Dietary Astaxanthin in Exopalaemon carinicauda. Front. Physiol. 2022, 13, 859305. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Li, S.; Yu, Y.; Zhang, C.; Zhang, X.; Li, F. Transcriptome Analysis Provides Insights into the Mechanism of Astaxanthin Enrichment in a Mutant of the Ridgetail White Prawn Exopalaemon carinicauda. Genes 2021, 12, 618. [Google Scholar] [CrossRef]
- Xu, W.; Xie, J.; Shi, H.; Li, C. Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture 2010, 300, 25–31. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, Y.; Yu, Y.; Xiang, J.; Li, F. Effects of natural astaxanthin from microalgae and chemically synthetic astaxanthin supplementation on two different varieties of the ridgetail white prawn (Exopalaemon carinicauda). Algal Res. 2021, 57, 102347. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P: A desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007, 23, 3251–3253. [Google Scholar] [CrossRef]
- Johnson, G.; Nour, A.A.; Nolan, T.; Huggett, J.; Bustin, S. Minimum information necessary for quantitative real-time PCR experiments. Methods Mol. Biol. 2014, 1160, 5–17. [Google Scholar] [CrossRef]
- Olsen, R.E.; Kiessling, A.; Milley, J.E.; Ross, N.W.; Lall, S.P. Effect of lipid source and bile salts in diet of Atlantic salmon, Salmo salar L., on astaxanthin blood levels. Aquaculture 2005, 250, 804–812. [Google Scholar] [CrossRef]
- Alrefai, W.A.; Gill, R.K. Bile acid transporters: Structure, function, regulation and pathophysiological implications. Pharm. Res. 2007, 24, 1803–1823. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Li, K.; Vik, J.O.; Hillestad, M.; Olsen, R.E. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. Aquac. Nutr. 2024, 2024, 8265746. [Google Scholar] [CrossRef] [PubMed]
- During, A.; Dawson, H.D.; Harrison, E.H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J. Nutr. 2005, 135, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Chen, Z.; Xiao, J.; Zhou, A.; Fu, Y.; Cao, Y. Cluster-determinant 36 (CD36) mediates intestinal absorption of dietary astaxanthin and affects its secretion. Food Res. Int. 2023, 173, 113328. [Google Scholar] [CrossRef]
- Schmeisser, J.; Verlhac-Trichet, V.; Madaro, A.; Lall, S.P.; Torrissen, O.; Olsen, R.E. Molecular Mechanism Involved in Carotenoid Metabolism in Post-Smolt Atlantic Salmon: Astaxanthin Metabolism During Flesh Pigmentation and Its Antioxidant Properties. Mar. Biotechnol. 2021, 23, 653–670. [Google Scholar] [CrossRef]
- Shete, V.; Costabile, B.K.; Kim, Y.-K.; Quadro, L. Low-Density Lipoprotein Receptor Contributes to β-Carotene Uptake in the Maternal Liver. Nutrients 2016, 8, 765. [Google Scholar] [CrossRef]
- Ando, S.; Hatano, M. Isolation of apolipoproteins from carotenoid-carrying lipoprotein in the serum of chum salmon, oncorhynchus-keta. J. Lipid Res. 1988, 29, 1264–1271. [Google Scholar] [CrossRef]
- Alessio, A.; Pergolizzi, S.; Gervasi, T.; Aragona, M.; Lo Cascio, P.; Cicero, N.; Lauriano, E.R. Biological effect of astaxanthin on alcohol-induced gut damage in Carassius auratus used as experimental model. Nat. Prod. Res. 2021, 35, 5737–5743. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int. J. Biol. Macromol. 2020, 164, 884–891. [Google Scholar] [CrossRef]
- Chang, C.; Worley, B.L.; Phaeton, R.; Hempel, N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers 2020, 12, 2197. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Song, Z.; Liang, H.; Zhong, S.; Yu, Y.; Liu, T.; Sha, H.; He, L.; Gan, J. Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants 2022, 11, 1944. [Google Scholar] [CrossRef] [PubMed]
- Zelko, I.N.; Folz, R.J. Myeloid zinc finger (MZF)-like, Kruppel-like and Ets families of transcription factors determine the cell-specific expression of mouse extracellular superoxide dismutase. Biochem. J. 2003, 369, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.N.; Wang, S.Q. Role of kruppel-like transcription factors in adipogenesis. Dev. Biol. 2013, 373, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef]
- Mateos-Diaz, E.; Sutto-Ortiz, P.; Sahaka, M.; Byrne, D.; Gaussier, H.; Carriere, F. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 2. Discriminative recognition of various micellar systems and characterization of PLRP2-DPPC-bile salt complexes. Chem. Phys. Lipids 2018, 211, 66–76. [Google Scholar] [CrossRef]
- Nishida, Y.; Adachi, K.; Kasai, H.; Shizuri, Y.; Shindo, K.; Sawabe, A.; Komemushi, S.; Miki, W.; Misawa, N. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls. Appl. Environ. Microbiol. 2005, 71, 4286–4296. [Google Scholar] [CrossRef]
- Borel, P.; Moussa, M.; Reboul, E.; Lyan, B.; Defoort, C.; Vincent-Baudry, S.; Maillot, M.; Gastaldi, M.; Darmon, M.; Portugal, H.; et al. Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. Br. J. Nutr. 2009, 101, 680–687. [Google Scholar] [CrossRef]
- Haasbroek, K.; Takabe, W.; Yagi, M.; Yonei, Y. High-fat Diet Induced Dysbiosis & Amelioration by Astaxanthin. Med. Sci. 2019, 48, 58–66. [Google Scholar] [CrossRef]
- Ghonimy, A.; Greco, L.S.L.; Li, J.; Wade, N.M. A hypothesis on crustacean pigmentation metabolism: L-carnitine and nuclear hormone receptors as limiting factors. Crustaceana 2023, 96, 939–956. [Google Scholar] [CrossRef]
- Tuma, M.C.; Gelfand, V.I. Molecular mechanisms of pigment transport in melanophores. Pigment Cell Res. 1999, 12, 283–294. [Google Scholar] [CrossRef]
- Ertl, N.G.; Elizur, A.; Brooks, P.; Kuballa, A.V.; Anderson, T.A.; Knibb, W.R. Molecular Characterisation of Colour Formation in the Prawn Fenneropenaeus merguiensis. PLoS ONE 2013, 8, e56920. [Google Scholar] [CrossRef] [PubMed]
- Brasil, F.B.; Souza de Almeida, F.J.; Luckachaki, M.D.; Dall’Oglio, E.L.; de Oliveira, M.R. Astaxanthin prevents mitochondrial impairment in the dopaminergic SH-SY5Y cell line exposed to glutamate-mediated excitotoxicity: Role for the Nrf2/HO-1/CO-BR axis. Eur. J. Pharmacol. 2021, 908, 174336. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.D.; Kang, H.E.; Yang, S.H.; Lee, M.G.; Shin, W.G. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 2011, 105, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.O.; Ali, A.; Leeds, T.; Salem, M. RNA-Seq analysis of the pyloric caecum, liver, and muscle reveals molecular mechanisms regulating fillet color in rainbow trout. BMC Genom. 2023, 24, 579. [Google Scholar] [CrossRef]
- Riddiford, L.M.; Hiruma, K.; Zhou, X.F.; Nelson, C.A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 2003, 33, 1327–1338. [Google Scholar] [CrossRef]
Gene ID | fpkm_W | fpkm_WAST | log2(fc) | FDR | Description |
---|---|---|---|---|---|
Unigene0015436 | 4.763 | 0.001 | −12.218 | 0.00050 | ileal sodium/bile acid cotransporter-like |
Unigene0053153 | 58.360 | 120.623 | 1.047 | 0.00075 | glutathione peroxidase 3 |
Unigene0057281 | 7.047 | 17.680 | 1.327 | 0.02856 | cytochrome P450 2L1-like |
Unigene0058216 | 0.193 | 1.190 | 2.622 | 0.01725 | vitellogenin receptor |
Unigene0003119 | 0.283 | 1.393 | 2.298 | 0.00390 | low-density lipoprotein receptor-related protein 2-like |
Unigene0009296 | 0.047 | 24.990 | 9.065 | 0.02805 | mucin-22-like |
Unigene0004856 | 8.497 | 21.160 | 1.316 | 0.00105 | zygotic DNA replication licensing factor mcm6-B-like |
Unigene0056003 | 6.413 | 15.893 | 1.309 | 0.01734 | zygotic DNA replication licensing factor mcm3-like |
Unigene0008818 | 10.453 | 22.793 | 1.124 | 0.00361 | DNA replication licensing factor Mcm5-like |
Unigene0057764 | 6.207 | 2.633 | −1.237 | 0.00013 | Poly [ADP-ribose] polymerase 12 |
Unigene0031882 | 1.897 | 17.117 | 3.174 | 0.03692 | Krueppel 1-like protein |
Unigene0002302 | 17.290 | 47.237 | 1.450 | 0.00163 | long-chain-fatty-acid-CoA ligase ACSBG2-like |
Unigene0029001 | 27.190 | 60.677 | 1.158 | 0.03692 | delta(7)-sterol 5(6)-desaturase-like |
Unigene0010977 | 121.277 | 44.893 | −1.434 | 0.00004 | pancreatic lipase-related protein 2-like |
Unigene0048711 | 0.001 | 4.410 | 12.107 | 0.00617 | fatty acid-binding protein |
Unigene0001951 | 0.047 | 7.027 | 7.234 | 0.44870 | chitinase 10 isoform X4 |
Unigene0003091 | 0.0433 | 3.207 | 6.209 | 0.00136 | molting fluid carboxypeptidase A precursor |
Unigene0001284 | 166.973 | 48.970 | −1.770 | 0.00166 | cardiac muscle actin |
Unigene0000217 | 7.707 | 0.633 | −3.605 | 0.00366 | actin, muscle-like |
Unigene0042797 | 11.293 | 0.870 | −3.698 | 0.00410 | actin, muscle |
Unigene0050957 | 20.147 | 2.233 | −3.173 | 0.01956 | troponin C, isotype gamma-like isoform X1 |
Unigene0019959 | 4.460 | 0.240 | −4.216 | 0.03396 | troponin C-like |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Yu, Y.; Zhang, C.; Li, S.; Yuan, J.; Li, F. Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda. Animals 2025, 15, 1314. https://doi.org/10.3390/ani15091314
Han Y, Yu Y, Zhang C, Li S, Yuan J, Li F. Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda. Animals. 2025; 15(9):1314. https://doi.org/10.3390/ani15091314
Chicago/Turabian StyleHan, Yumin, Yang Yu, Chengsong Zhang, Shihao Li, Jianbo Yuan, and Fuhua Li. 2025. "Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda" Animals 15, no. 9: 1314. https://doi.org/10.3390/ani15091314
APA StyleHan, Y., Yu, Y., Zhang, C., Li, S., Yuan, J., & Li, F. (2025). Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda. Animals, 15(9), 1314. https://doi.org/10.3390/ani15091314