Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Predicted EAA Supply
3.2. Dietary Crude Protein Levels
3.3. Nutrient Intake and Digestibility
3.4. Milk Yield and Composition
3.5. Nitrogen Balance
3.6. Plasma Free Amino Acids
3.7. Plasma Metabolites and Hormones
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EAA | Essential amino acid |
CP | Crude protein |
DM | Dry matter |
DMI | Dry matter intake |
NDF | Neutral detergent fiber |
ADF | Acid detergent fiber |
AIA | Acid insoluble ash |
IGF-I | Insulin-like growth factor |
GH | Growth hormone |
BW | Body weight |
MUN | Milk urea nitrogen |
ECM | Energy-corrected milk |
mTOR | Mammalian target of rapamycin |
References
- Hristov, A.N.; Price, W.J.; Shafii, B. A Meta-Analysis Examining the Relationship among Dietary Factors, Dry Matter Intake, and Milk and Milk Protein Yield in Dairy Cows. J. Dairy Sci. 2004, 87, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, H.; Sorensen, P.; Eggum, B.O. Protein and Energy Metabolism in Broiler Chickens Selected for Either Body Weight Gain or Feed Efficiency. Br. Poult. Sci. 1990, 31, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Kalscheur, K.F.; Baldwin VI, R.L.; Glenn, B.P.; Kohn, R.A. Milk Production of Dairy Cows Fed Differing Concentrations of Rumen-Degraded Protein. J. Dairy Sci. 2006, 89, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Arriola Apelo, S.I.; Singer, L.M.; Lin, X.Y.; McGilliard, M.L.; St-Pierre, N.R.; Hanigan, M.D. Isoleucine, Leucine, Methionine, and Threonine Effects on Mammalian Target of Rapamycin Signaling in Mammary Tissue. J. Dairy Sci. 2014, 97, 1047–1056. [Google Scholar] [CrossRef]
- Yoder, P.S.; Ruiz-Cortes, T.; Castro, J.J.; Hanigan, M.D. Effects of Varying Extracellular Amino Acid Profile on Intracellular Free Amino Acid Concentrations and Cell Signaling in Primary Mammary Epithelial Cells. J. Dairy Sci. 2019, 102, 8977–8985. [Google Scholar] [CrossRef]
- Bai, M.; Wang, L.; Liu, H.; Xu, K.; Deng, J.; Huang, R.; Yin, Y. Imbalanced Dietary Methionine-to-Sulfur Amino Acid Ratio Can Affect Amino Acid Profiles, Antioxidant Capacity, and Intestinal Morphology of Piglets. Anim. Nutr. 2020, 6, 447–456. [Google Scholar] [CrossRef]
- Ranga Niroshan Appuhamy, J.A.D.; Knoebel, N.A.; Deepthi Nayananjalie, W.A.; Escobar, J.; Hanigan, M.D. Isoleucine and Leucine Independently Regulate MTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. J. Nutr. 2012, 142, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.M.; Hanigan, M.D.; Lin, X.Y.; Zhao, K.; Jiang, F.G.; White, R.R.; Wang, Y.; Hu, Z.Y.; Wang, Z.H. Methionine, Leucine, Isoleucine, or Threonine Effects on Mammary Cell Signaling and Pup Growth in Lactating Mice. J. Dairy Sci. 2017, 100, 4038–4050. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, W.; Lin, X.Y.; Hu, Z.Y.; Yan, Z.G.; Wang, Y.; Shi, K.R.; Liu, G.M.; Wang, Z.H. Effects of Rumen-Protected Methionine and Other Essential Amino Acid Supplementation on Milk and Milk Component Yields in Lactating Holstein Cows. J. Dairy Sci. 2019, 102, 7936–7947. [Google Scholar] [CrossRef]
- Cant, J.P.; Kim, J.J.M.; Cieslar, S.R.L.; Doelman, J. Symposium Review: Amino Acid Uptake by the Mammary Glands: Where Does the Control Lie? J. Dairy Sci. 2018, 101, 5655–5666. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021; ISBN 978-0-309-67777-6. [Google Scholar]
- Calsamiglia, S.; Stern, M.D. A Three-Step in Vitro Procedure for Estimating Intestinal Digestion of Protein in Ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Chemists, A.A. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990; Volume I. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A. Altering Physically Effective Fiber Intake through Forage Proportion and Particle Length: Chewing and Ruminai PH. J. Dairy Sci. 2007, 90, 2826–2838. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, C.; Stevenson, M.; Armentano, L.E. Effect of Two Levels of Crude Protein and Methionine Supplementation on Performance of Dairy Cows. J. Dairy Sci. 2003, 86, 4033–4042. [Google Scholar] [CrossRef]
- Castro, J.J.; Arriola Apelo, S.I.; Appuhamy, J.A.D.R.N.; Hanigan, M.D. Development of a Model Describing Regulation of Casein Synthesis by the Mammalian Target of Rapamycin (MTOR) Signaling Pathway in Response to Insulin, Amino Acids, and Acetate. J. Dairy Sci. 2016, 99, 6714–6736. [Google Scholar] [CrossRef]
- Zhang, Q.; Bertics, S.J.; Luchini, N.D.; White, H.M. The Effect of Increasing Concentrations of DL-Methionine and 2-Hydroxy-4-(Methylthio) Butanoic Acid on Hepatic Genes Controlling Methionine Regeneration and Gluconeogenesis. J. Dairy Sci. 2016, 99, 8451–8460. [Google Scholar] [CrossRef]
- Griinari, J.M.; Mcguire, M.A.; Dwyer, D.A.; Bauman, D.E.; Barbano, D.M.; House, W.A. The Role of Insulin in the Regulation of Milk Protein Synthesis in Dairy Cows. J. Dairy Sci. 1997, 80, 2361–2371. [Google Scholar] [CrossRef]
- Mackle, T.R.; Dwyer, D.A.; Ingvartsen, K.L.; Chouinard, P.Y.; Lynch, J.M.; Barbano, D.M.; Bauman, D.E. Effects of Insulin and Amino Acids on Milk Protein Concentration and Yield from Dairy Cows. J. Dairy Sci. 1999, 82, 1512–1524. [Google Scholar] [CrossRef] [PubMed]
- Mackle, T.R.; Dwyer, D.A.; Ingvartsen, K.L.; Chouinard, P.Y.; Ross, D.A.; Bauman, D.E. Effects of Insulin and Postruminal Supply of Protein on Use of Amino Acids by the Mammary Gland for Milk Protein Synthesis. J. Dairy Sci. 2000, 83, 93–105. [Google Scholar] [CrossRef]
- Molento, C.F.M.; Block, E.; Cue, R.I.; Petitclerc, D. Effects of Insulin, Recombinant Bovine Somatotropin, and Their Interaction on Insulin-like Growth Factor-1 Secretion and Milk Protein Production in Dairy Cows. J. Dairy Sci. 2002, 85, 738–747. [Google Scholar] [CrossRef]
- Xu, T.; Alharthi, A.S.M.; Batistel, F.; Helmbrecht, A.; Parys, C.; Trevisi, E.; Shen, X.; Loor, J.J. Hepatic Phosphorylation Status of Serine/Threonine Kinase 1, Mammalian Target of Rapamycin Signaling Proteins, and Growth Rate in Holstein Heifer Calves in Response to Maternal Supply of Methionine. J. Dairy Sci. 2018, 101, 8476–8491. [Google Scholar] [CrossRef]
- Chew, B.P.; Eisenman, J.R.; Tanaka, T.S. Arginine Infusion Stimulates Prolactin, Growth Hormone, Insulin, and Subsequent Lactation in Pregnant Dairy Cows. J. Dairy Sci. 1984, 67, 2507–2518. [Google Scholar] [CrossRef] [PubMed]
- Kuhara, T.; Ikeda, S.; Ohneda, A.; Sasaki, Y. Effects of Intravenous Infusion of 17 Amino Acids on the Secretion of GH, Glucagon, and Insulin in Sheep. Am. J. Physiol. Endocrinol. Metab. 1991, 260, E21–E26. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.N.; Rulquin, H.; Lemosquet, S. Milk Protein Responses in Dairy Cows to Changes in Postruminal Supplies of Arginine, Isoleucine, and Valine. J. Dairy Sci. 2013, 96, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shen, Y.; Wang, Y.; Zhou, G.; Zhang, X.; Wang, M.; Loor, J.J.; Chen, L.; Zhang, J. Jugular Arginine Supplementation Increases Lactation Performance and Nitrogen Utilization Efficiency in Lactating Dairy Cows. J. Anim. Sci. Biotechnol. 2019, 10, 3. [Google Scholar] [CrossRef]
- Yoder, P.S.; Huang, X.; Teixeira, I.A.; Cant, J.P.; Hanigan, M.D. Effects of Jugular Infused Methionine, Lysine, and Histidine as a Group or Leucine and Isoleucine as a Group on Production and Metabolism in Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 2387–2404. [Google Scholar] [CrossRef] [PubMed]
Item | Dietary CP (%), AA (g/d) | |||
---|---|---|---|---|
16%CP | 12%CP | 12%CP + AA | 14%CP + AA | |
Ingredient, % of DM | ||||
Corn meal | 2.14 | 2.14 | 2.14 | 2.16 |
Corn grain, ground | 18.24 | 27.09 | 27.09 | 21.12 |
Soybean meal | 13.66 | 4.87 | 4.87 | 10.59 |
Corn silage | 31.30 | 31.29 | 31.29 | 31.35 |
Wheat bran | 3.87 | 3.88 | 3.88 | 3.87 |
Whole cottonseed | 3.25 | 3.25 | 3.25 | 3.26 |
Oaten hay | 3.74 | 3.87 | 3.87 | 3.91 |
Alfalfa hay | 15.96 | 15.75 | 15.75 | 15.89 |
Brewers grains | 3.67 | 3.67 | 3.67 | 3.67 |
Hydrogenated vegetable fat product | 0.61 | 0.61 | 0.61 | 0.61 |
Minerals and vitamins premix 1 | 3.57 | 3.57 | 3.57 | 3.57 |
Rumen-protected Met (RP-Met), 2 g/d | - | - | 16.71 | 9.28 |
Rumen-protected Leu (RP-Leu), 3 g/d | - | - | 66.78 | 33.39 |
Rumen-protected Ile (RP-Ile), 4 g/d | - | - | 55.54 | 24.90 |
Rumen-protected Thr (RP-Thr), 5 g/d | - | - | 103.31 | 47.35 |
Nutrient level, %, DM basis | ||||
CP 8 | 16.0 | 12.4 | 12.4 | 8 |
RDP 6 | 10.8 | 8.1 | 8.1 | 9.9 |
RUP 6 | 5.2 | 4.4 | 4.4 | 4.9 |
Microbial Protein 6 | 1.93 | 1.56 | 1.56 | 1.76 |
MP 6 | 9.38 | 7.79 | 7.79 | 8.87 |
NEL, Mcal/kg 6 | 1.72 | 1.73 | 1.73 | 1.73 |
Ether extract | 3.34 | 3.52 | 3.52 | 3.41 |
NDF | 33.1 | 32.9 | 32.9 | 33.1 |
ADF | 20.6 | 20.2 | 20.2 | 20.5 |
NFC 7 | 42.1 | 46.2 | 46.2 | 43.4 |
Ash | 5.5 | 5 | 5 | 5.4 |
Starch | 27.2 | 35.1 | 35.1 | 29.8 |
dMet from RP-Met, g/d | - | - | 9 | 5 |
dLeu from RP-Leu, g/d | - | - | 36 | 18 |
dIle from RP-Ile, g/d | - | - | 29 | 13 |
dThr from RP-Thr, g/d | - | - | 24 | 11 |
EAA | Diet 1 | |||||||
---|---|---|---|---|---|---|---|---|
16%CP | 12%CP | 12%CP + AA 2 | 14%CP + AA | |||||
AA Flow, | MP, | AA Flow, | MP, | AA Flow, | MP, | AA Flow, | MP, | |
g/d | % | g/d | % | g/d | % | g/d | % | |
Arg | 131 | 5.66 | 99 | 5.33 | 99 | 5.07 | 117 | 5.47 |
His | 56 | 2.42 | 45 | 2.42 | 45 | 2.30 | 50 | 2.34 |
Ile | 135 | 5.83 | 106 | 5.71 | 135 | 6.91 | 135 | 6.31 |
Leu | 213 | 9.20 | 177 | 9.54 | 213 | 10.90 | 213 | 9.95 |
Lys | 171 | 7.39 | 131 | 7.06 | 131 | 6.70 | 153 | 7.15 |
Met | 51 | 2.20 | 42 | 2.26 | 51 | 2.61 | 51 | 2.38 |
Phe | 133 | 5.75 | 106 | 5.71 | 106 | 5.42 | 120 | 5.61 |
Thr | 121 | 5.23 | 97 | 5.23 | 121 | 6.19 | 121 | 5.65 |
Trp | 30 | 1.30 | 23 | 1.24 | 23 | 1.18 | 27 | 1.26 |
Dietary CP (%), AA | SEM 1 | Contrast 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 12 | 12 + AA | 14 + AA | 16 vs. 12 | 12 + AA vs. 12 | 12 + AA vs. 16 | 14 + AA vs. 16 | 14 + AA vs. 12 + AA | ||
Nutrient intake, kg/d | ||||||||||
DM | 24.66 | 23.81 | 24.23 | 24.67 | 0.254 | 0.46 | 0.44 | 0.47 | 1.00 | 0.88 |
OM | 22.78 | 21.98 | 22.36 | 22.78 | 0.233 | 0.45 | 0.43 | 0.45 | 1.00 | 0.87 |
CP | 3.87 | 3.07 | 3.15 | 3.70 | 0.061 | <0.01 | <0.01 | <0.01 | 0.19 | <0.01 |
NDF | 7.86 | 8.17 | 8.35 | 8.05 | 0.083 | 0.38 | 0.92 | 0.02 | 0.75 | 0.08 |
ADF | 4.78 | 4.98 | 5.09 | 4.88 | 0.051 | 0.34 | 0.83 | 0.01 | 0.82 | 0.06 |
Apparent digestibility 3, % | ||||||||||
DM | 67.21 | 60.49 | 61.04 | 64.72 | 0.753 | <0.01 | 0.12 | <0.01 | 0.54 | 0.01 |
OM | 69.40 | 62.85 | 62.44 | 67.15 | 0.731 | <0.01 | 0.08 | <0.01 | 0.58 | <0.01 |
CP | 67.95 | 57.00 | 58.00 | 62.06 | 0.982 | 0.05 | <0.01 | <0.01 | 0.13 | <0.01 |
NDF | 49.33 | 40.74 | 40.98 | 46.67 | 1.174 | 0.03 | 0.22 | <0.01 | 0.82 | 0.05 |
ADF | 44.53 | 37.09 | 36.59 | 43.95 | 1.295 | 0.15 | 0.19 | 0.03 | 0.99 | 0.12 |
Item | Dietary CP (%), AA | SEM 1 | Contrast 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 12 | 12 + AA | 14 + AA | 16 vs. 12 | 12 + AA vs. 12 | 16 vs. 12 + AA | 16 vs. 14 + AA | 14 + AA vs. 12 + AA | ||
Milk yield, kg/d | 34.88 | 31.39 | 34.72 | 34.95 | 0.572 | 0.03 | 0.04 | 0.93 | 0.97 | 0.13 |
DMI, kg/d | 24.77 | 23.81 | 24.23 | 24.66 | 0.251 | 0.47 | 0.45 | 0.47 | 1.00 | 0.88 |
Feed efficiency, 3 kg/kg | 1.40 | 1.32 | 1.44 | 1.42 | 0.023 | 0.17 | 0.04 | 0.63 | 0.82 | 0.67 |
Milk protein, % | 3.80 | 3.54 | 3.60 | 3.81 | 0.038 | <0.01 | 0.58 | 0.04 | 0.91 | <0.01 |
kg/d | 1.32 | 1.13 | 1.24 | 1.33 | 0.024 | <0.01 | <0.01 | 0.19 | 1.00 | 0.55 |
Milk fat, % | 4.42 | 4.41 | 4.26 | 4.67 | 0.094 | 1.00 | 0.74 | 0.57 | 0.76 | 0.94 |
kg/d | 1.54 | 1.40 | 1.47 | 1.63 | 0.041 | 0.63 | 0.18 | 0.56 | 0.84 | 0.93 |
Milk lactose, % | 5.05 | 5.06 | 5.04 | 4.99 | 0.018 | 1.00 | 0.64 | 0.86 | 0.73 | 1.00 |
kg/d | 1.76 | 1.59 | 1.77 | 1.74 | 0.032 | 0.05 | 0.05 | 0.96 | 0.86 | 0.83 |
Milk SNF, % | 9.07 | 8.86 | 8.81 | 9.04 | 0.283 | 0.29 | 0.37 | <0.01 | 0.97 | 0.05 |
kg/d | 3.16 | 2.79 | 2.64 | 3.16 | 0.152 | 0.06 | 0.86 | 0.60 | 0.99 | 0.08 |
Milk TS, % | 13.49 | 13.27 | 13.07 | 13.72 | 0.101 | 0.44 | 0.47 | 0.14 | 0.41 | 0.02 |
kg/d | 4.70 | 4.19 | 4.56 | 4.79 | 0.153 | 0.03 | 0.05 | 0.53 | 0.69 | 0.05 |
ECM, 4 kg/d | 38.53 | 34.47 | 37.08 | 39.63 | 0.754 | 0.05 | 0.06 | 0.49 | 0.58 | 0.22 |
ECM feed efficiency, 5 kg/kg | 1.55 | 1.45 | 1.53 | 1.60 | 0.028 | 0.12 | 0.13 | 0.65 | 0.54 | 0.29 |
Milk NEL, 6 Mcal/d | 28.70 | 25.73 | 27.66 | 29.58 | 0.563 | 0.05 | 0.06 | 0.49 | 0.58 | 0.22 |
MUN, mg/dL | 13.67 | 9.27 | 10.31 | 11.77 | 0.292 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Dietary CP (%), AA | SEM 1 | Contrast 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 12 | 12 + AA | 14 + AA | 16 vs. 12 | 12 + AA vs. 12 | 12 + AA vs. 16 | 14 + AA vs. 16 | 14 + AA vs. 12 + AA | ||
N intake, g/d | 610 | 490 | 510 | 590 | 9 | <0.01 | 0.13 | <0.01 | 0.15 | <0.01 |
N secretion and excretion, g/d | ||||||||||
Milk N | 202.8 | 177.7 | 199.4 | 212.8 | 3.62 | <0.01 | 0.01 | 0.71 | 0.29 | 0.10 |
Urinary N | 212.9 | 154.9 | 166.1 | 191.2 | 4.43 | <0.01 | 0.20 | <0.01 | 0.01 | <0.01 |
Fecal N | 193.3 | 211.4 | 208.6 | 206.0 | 4.31 | 0.14 | 0.82 | 0.21 | 0.30 | 0.83 |
As proportion of N intake, % | ||||||||||
Milk N | 33.3 | 36.5 | 39.0 | 36.3 | 0.57 | <0.01 | 0.40 | <0.01 | 0.04 | 0.13 |
Urinary N | 34.9 | 31.8 | 32.5 | 32.6 | 0.59 | 0.09 | 0.76 | 0.17 | 0.21 | 0.91 |
Fecal N | 31.7 | 43.4 | 40.8 | 35.1 | 1.03 | <0.01 | 0.19 | <0.01 | 0.41 | 0.02 |
Estimated N balance, g/d | 0.8 | −57.2 | −62.5 | −23.8 | 6.62 | <0.01 | 0.97 | <0.01 | 0.14 | 0.03 |
Dietary CP (%), AA | SEM 1 | Contrast 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 12 | 12 + AA | 14 + AA | 16 vs. 12 | 12 + AA vs. 12 | 12 + AA vs. 16 | 14 + AA vs. 16 | 14 + AA vs. 12 + AA | ||
Arg | 81.9 | 74.00 | 69.0 | 81.7 | 1.88 | 0.11 | 0.52 | 0.03 | 0.64 | <0.01 |
His | 49.3 | 41.4 | 42.2 | 52.0 | 1.45 | 0.05 | 0.82 | 0.09 | 0.53 | 0.02 |
Ile | 118 | 96.5 | 105 | 111 | 2.2 | <0.01 | 0.06 | 0.04 | 0.24 | 0.37 |
Leu | 158 | 132 | 139 | 150 | 3.3 | <0.01 | 0.16 | 0.07 | 0.40 | 0.33 |
Lys | 91.2 | 77.5 | 77.1 | 86.1 | 1.93 | 0.03 | 0.98 | 0.02 | 0.43 | 0.14 |
Met | 24.4 | 22.2 | 24.2 | 24.7 | 0.36 | 0.01 | 0.01 | 0.96 | 0.73 | 0.69 |
Phe | 42.0 | 38.4 | 37.6 | 40.2 | 0.63 | 0.04 | 0.81 | 0.02 | 0.41 | 0.13 |
Thr | 79.6 | 78.6 | 79.1 | 79.4 | 1.42 | 0.69 | 0.59 | 0.90 | 0.99 | 0.89 |
Val | 253 | 204 | 212 | 236 | 5.3 | <0.01 | 0.42 | 0.04 | 0.33 | 0.09 |
EAA | 898 | 765 | 784 | 861 | 15.2 | <0.01 | 0.36 | 0.02 | 0.47 | 0.08 |
EAA-LIMT | 517 | 435 | 438 | 496 | 9.6 | <0.01 | 0.73 | <0.01 | 0.55 | 0.03 |
Ala | 193 | 204 | 204 | 197 | 3.2 | 0.27 | 0.40 | 0.05 | 0.50 | 0.20 |
Asp | 20.5 | 19.2 | 19.0 | 18.2 | 0.46 | 0.24 | 0.67 | 0.43 | 0.18 | 0.55 |
Cys | 1.60 | 1.66 | 1.56 | 1.52 | 0.031 | 0.45 | 0.26 | 0.68 | 0.36 | 0.62 |
Glu | 85.2 | 88.2 | 86.3 | 82.8 | 1.58 | 0.38 | 0.62 | 0.68 | 0.92 | 0.60 |
Gly | 221 | 279 | 262 | 238 | 6.3 | <0.01 | 0.51 | <0.01 | 0.10 | 0.16 |
Ser | 69.3 | 76.0 | 68.0 | 69.0 | 1.53 | 0.12 | 0.21 | 0.75 | 0.54 | 0.76 |
Tau | 34.2 | 33.6 | 30.6 | 31.2 | 0.78 | 0.56 | 0.57 | 0.25 | 0.17 | 0.81 |
Tyr | 54.6 | 48.4 | 48.5 | 50.5 | 1.13 | 0.09 | 0.63 | 0.03 | 0.29 | 0.26 |
NEAAs | 680 | 750 | 720 | 688 | 9.7 | <0.01 | 0.61 | 0.01 | 0.27 | 0.16 |
Item | Dietary CP (%), AA | SEM 1 | Contrast 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 12 | 12 + AA | 14 + AA | 16 vs. 12 | 12 + AA vs. 12 | 12 + AA vs. 16 | 14 + AA vs. 16 | 14 + AA vs. 12 + AA | ||
Total protein, g/L | 75.66 | 74.67 | 78.14 | 75.81 | 1.478 | 0.82 | 0.42 | 0.57 | 0.97 | 0.58 |
Urea, mmol/L | 4.32 | 2.34 | 2.84 | 4.28 | 0.143 | <0.01 | <0.01 | <0.01 | 0.85 | <0.01 |
Glucose, mmol/L | 3.50 | 3.65 | 3.57 | 3.68 | 0.052 | 0.31 | 0.60 | 0.59 | 0.19 | 0.42 |
Nitric oxide, μmol/L | 106.25 | 87.82 | 73.06 | 105.83 | 8.237 | 0.45 | 0.53 | 0.16 | 0.99 | 0.16 |
Insulin, μIU/mL | 25.75 | 23.14 | 16.85 | 23.74 | 1.114 | 0.39 | 0.04 | <0.01 | 0.50 | 0.02 |
Glucagon, pg/mL | 102.12 | 101.87 | 120.34 | 109.27 | 3.513 | 0.78 | 0.04 | 0.07 | 0.45 | 0.25 |
Growth hormone, ng/mL | 1.19 | 1.06 | 1.24 | 1.38 | 0.052 | 0.34 | 0.20 | 0.71 | 0.15 | 0.28 |
IGF-I, mg/mL | 96.51 | 88.67 | 104.45 | 111.09 | 6.214 | 0.66 | 0.38 | 0.65 | 0.41 | 0.71 |
Prolactin, ng/mL | 10.90 | 10.15 | 12.04 | 11.91 | 0.245 | 0.11 | <0.01 | 0.07 | 0.21 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Lin, X.; Hanigan, M.D.; Zhao, K.; Hu, Z.; Wang, Y.; Hou, Q.; Wang, Z. Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy Cows. Animals 2025, 15, 1210. https://doi.org/10.3390/ani15091210
Qin X, Lin X, Hanigan MD, Zhao K, Hu Z, Wang Y, Hou Q, Wang Z. Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy Cows. Animals. 2025; 15(9):1210. https://doi.org/10.3390/ani15091210
Chicago/Turabian StyleQin, Xiaoli, Xueyan Lin, Mark D. Hanigan, Kai Zhao, Zhiyong Hu, Yun Wang, Qiuling Hou, and Zhonghua Wang. 2025. "Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy Cows" Animals 15, no. 9: 1210. https://doi.org/10.3390/ani15091210
APA StyleQin, X., Lin, X., Hanigan, M. D., Zhao, K., Hu, Z., Wang, Y., Hou, Q., & Wang, Z. (2025). Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy Cows. Animals, 15(9), 1210. https://doi.org/10.3390/ani15091210