Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Sample Collection
2.3. Characteristics of PM2.5 and PM10
2.4. DNA Extraction and PCR Amplification
2.5. Sequence Analyses
2.6. Statistical Analysis
3. Results
3.1. Morphological and Chemical Analysis of PM2.5 and PM10
3.2. Taxonomic Diversity and Composition of Bacteria and Fungi in PM2.5 and PM10
3.3. Bacterial Assemblage Composition in PM2.5 and PM10
3.4. Fungal Assemblage Composition in PM2.5 and PM10
3.5. Potential Pathogens and Allergens in PM2.5 and PM10
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOHC | Ministry of Health of the People’s Republic of China |
NMDS | nonmetric multidimensional scaling |
PCoA | principal coordinate |
PM | particulate matter |
PM2.5 | fine particulate matter |
References
- Homidan, A.A.; Robertson, J.; Petchey, A. Review of the effect of ammonia and dust concentrations on broiler performance. World. Poultry Sci. J. 2003, 59, 340–349. [Google Scholar] [CrossRef]
- Kalkowska, D.A.; Boender, G.J.; Smit, L.A.; Baliatsas, C.; Yzermans, J.; Heederik, D.J.; Hagenaars, T.J. Associations between pneumonia and residential distance to livestock farms over a five-year period in a large population-based study. PLoS ONE 2018, 13, e0200813. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.M.; Smit, L.A.; Erbrink, H.J.; Hagenaars, T.J.; Hoek, G.; Ogink, N.W.; Winkel, A.; Heederik, D.J.; Wouters, I.M. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. Environ. Int. 2019, 132, 105009. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, N.; Gelmez, B.; Yildiz-Pekoz, A. Lung microbiota: Its relationship to respiratory system diseases and Approaches for lung-targeted probiotic bacteria delivery. Mol. Pharmaceut. 2023, 20, 3320–3337. [Google Scholar] [CrossRef]
- Pérez-Cobas, A.E.; Rodríguez-Beltrán, J.; Baquero, F.; Coque, T.M. Ecology of the respiratory tract microbiome. Trends Microbiol. 2023, 31, 972–984. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 2019, 169, 237–245. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Jin, X.; Li, C. Distribution characteristics of bioaerosols inside pig houses and the respiratory tract of pigs. Ecotoxicol. Environ. Safe. 2021, 212, 112006. [Google Scholar] [CrossRef]
- Koenen, M.H.; de Steenhuijsen Piters, W.A.; Bogaert, D.; Verhagen, L.M. The microbiota in respiratory tract infections: From association to intervention. Curr. Opin. Infect. Dis. 2022, 35, 215–222. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, M.; Yang, L.; Gao, L.; Sun, W. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Front. Immunol. 2023, 14, 1032355. [Google Scholar] [CrossRef]
- Claassen-Weitz, S.; Lim, K.Y.; Mullally, C.; Zar, H.J.; Nicol, M.P. The association between bacteria colonizing the upper respiratory tract and lower respiratory tract infection in young children: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Haak, B.W.; Brands, X.; Davids, M.; Peters-Sengers, H.; Kullberg, R.F.; van Houdt, R.; Hugenholtz, F.; Faber, D.R.; Zaaijer, H.L.; Scicluna, B.P. Bacterial and viral respiratory tract microbiota and host characteristics in adults with lower respiratory tract infections: A case-control study. Clin. Infect. Dis. 2022, 74, 776–784. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, D.; Dai, P.; Liu, J.; Zhang, M.; Deng, K.; Li, C. Pectin alleviates the pulmonary inflammatory response induced by PM2.5 from a pig house by modulating intestinal microbiota. Ecotoxicol. Environ. Safe 2023, 261, 115099. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Guo, Z.; Huang, K.; Dai, P.; Jin, X.; Li, Y.; Li, C. Inflammation-associated pulmonary microbiome and metabolome changes in broilers exposed to particulate matter in broiler houses. J. Hazard. Mater. 2022, 421, 126710. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Shen, D.; Dai, P.; Li, Y.; Li, C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. Sci. Total Environ. 2020, 708, 134921. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, K.; Liu, J.; Wu, S.; Shen, D.; Dai, P.; Li, C. Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere 2019, 236, 124373. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Eissa, N.; Bernstein, C.N.; Khafipour, E.; Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: A role of the gut microbiota. PLoS ONE 2015, 10, e0142536. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, Y.; Yang, S.; Huang, J.; Huang, L. ITS2 secondary structure improves discrimination between medicinal “Mu Tong” species when using DNA barcoding. PLoS ONE 2015, 10, e0131185. [Google Scholar] [CrossRef]
- Simon-Nobbe, B.; Denk, U.; Pöll, V.; Rid, R.; Breitenbach, M. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2007, 145, 58–86. [Google Scholar] [CrossRef]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.; Aarnink, A.J.A.; Ogink, N. Particulate matter emitted from poultry and pig houses: Source identification and quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Zhang, Y.; Lee, J.; Su, J.; Gates, R.S. Characterization of trace elements and ions in PM10 and PM2.5 emitted from animal confinement buildings. Atmos. Environ. 2011, 45, 7096–7104. [Google Scholar] [CrossRef]
- Seedorf, J.; Hartung, J. Emission of airborne particulates from animal production. Landbauforsch. Völk. 2001, 226, 15–20. [Google Scholar]
- Cambra-López, M.; Torres, A.; Aarnink, A.J.A.; Ogink, N.W. Source analysis of fine and coarse particulate matter from livestock houses. Atmos. Environ. 2011, 45, 694–707. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, B.; Zhu, R.; Che, C.; Ma, D.; Wang, R.; Dai, H. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. Sci. Total Environ. 2022, 831, 154665. [Google Scholar] [CrossRef] [PubMed]
- Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 2016, 139, 214–221. [Google Scholar] [CrossRef]
- Dai, P.; Shen, D.; Tang, Q.; Huang, K.; Li, C. PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environ. Pollut. 2020, 256, 113368. [Google Scholar] [CrossRef]
- Wang, M.; Peng, S.; Liu, D.; Long, D.; Liu, Z.; Pu, S. Characteristics and Traceability Analysis of Microbial Assemblage in Fine Particulate Matter from a Pig House. Animals 2023, 13, 1058. [Google Scholar] [CrossRef]
- Du, P.; Du, R.; Ren, W.; Lu, Z.; Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 2018, 610, 308–315. [Google Scholar] [CrossRef]
- Meyer, S.; Hüttig, N.; Zenk, M.; Jäckel, U.; Pöther, D.C. Bioaerosols in swine confinement buildings: A metaproteomic view. Environ. Microbiol. Rep. 2023, 15, 684–697. [Google Scholar] [CrossRef]
- Smith, B.L.; King, M.D. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms 2023, 11, 2068. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Sroka, J.; Zając, V.; Wasiński, B.; Cisak, E.; Sawczyn, A.; Kloc, A.; Wójcik-Fatla, A. Streptococcus suis: A re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I-Epidemiology. Ann. Agric. Environ. Med. 2017, 24, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Escrivá, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Simon, C.; Latorre-Fernandez, J.; Zarazaga, M.; Torres, C. Nasal staphylococci community of healthy pigs and pig-farmers in Aragon (Spain). Predominance and within-host resistome diversity in MRSA-CC398 and MSSA-CC9 lineages. One Health 2023, 16, 100505. [Google Scholar] [CrossRef] [PubMed]
- Pexara, A.; Solomakos, N.; Govaris, A. Occurrence, antibiotic resistance and enteroxigenicity of Staphylococcus spp. in tonsils of slaughtered pigs in Greece. Lett. Appl. Microbiol. 2020, 71, 394–399. [Google Scholar] [CrossRef]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: A closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef]
- Garcés-Ordóñez, O.; Córdoba-Meza, T.; Sáenz-Arias, S.; Blandón, L.; Espinosa-Díaz, L.F.; Pérez-Duque, A.; Thiel, M.; Canals, M. Potentially pathogenic bacteria in the plastisphere from water, sediments, and commercial fish in a tropical coastal lagoon: An assessment and management proposal. J. Hazard. Mater. 2024, 479, 135638. [Google Scholar] [CrossRef]
- Wu, H.J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef]
- Cormier, Y.; Tremblay, G.; Meriaux, A.; Brochu, G.; Lavoie, J. Airborne microbial contents in two types of swine confinement buildings in Quebec. Am. Ind. Hyg. Assoc. J. 1990, 51, 304–309. [Google Scholar] [CrossRef]
- Diener, U.L.; Cole, R.J.; Sanders, T.H.; Payne, G.A.; Lee, L.S.; Klich, M.A. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 1987, 25, 249–270. [Google Scholar] [CrossRef]
- Neglia, J.P.; Hurd, D.D.; Ferrieri, P.; Snover, D.C. Invasive Scopulariopsis in the immunocompromised host. Am. J. Med. 1987, 83, 1163–1166. [Google Scholar] [CrossRef]
PM10 in Winter | PM2.5 in Winter | PM10 in Spring | PM2.5 in Spring | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
O | 44.7 | 40.73 | 42.35 | 48.75 | 39.9 | 43.68 | 40.47 | 36.78 | 38.78 | 35.6 | 28.9 | 32.41 |
C | 37.98 | 32.02 | 34.86 | 29.65 | 21.17 | 23.92 | 37.1 | 19.05 | 29.59 | 41.24 | 27.37 | 35.89 |
Si | 8.72 | 6.89 | 7.73 | 18.48 | 11.64 | 15.52 | 19.26 | 8.04 | 12.26 | 19.82 | 8.61 | 12.52 |
N | 5.16 | 2.08 | 4.01 | - | - | - | 3.51 | 1.81 | 2.67 | 4.54 | 2.99 | 3.76 |
Al | 2.51 | 2.1 | 2.28 | 2.28 | 1.88 | 2.09 | 2.26 | 1.1 | 1.55 | 2.4 | 1.3 | 1.62 |
K | 3.5 | 0.88 | 1.62 | 1.47 | 1.06 | 1.26 | 1.73 | 1.04 | 1.42 | 2.27 | 1.08 | 1.61 |
Mg | 1.76 | 0.98 | 1.45 | 1.19 | 0.18 | 0.48 | 0.8 | 0.2 | 0.4 | 0.5 | 0.15 | 0.3 |
Ca | 1.57 | 1.11 | 1.37 | 2.71 | 1.12 | 1.8 | 2.55 | 1.54 | 2.1 | 2.72 | 1.23 | 1.86 |
Na | 1.64 | 0.74 | 1.1 | 5.02 | 3.13 | 4.31 | 4.38 | 2.24 | 3.13 | 3.53 | 2.33 | 2.91 |
Zn | 0.81 | 0.64 | 0.71 | 3.02 | 1.78 | 2.31 | 4.37 | 1.84 | 2.59 | 4.98 | 1.88 | 3.02 |
P | 0.89 | 0.41 | 0.68 | - | - | - | 0.87 | 0.31 | 0.53 | 0.73 | 0.27 | 0.46 |
W | 0.62 | 0.55 | 0.58 | 1.45 | 1.4 | 1.42 | 1.67 | 0.86 | 1.26 | 0.81 | 0.79 | 0.80 |
Ba | 0.74 | 0.19 | 0.46 | 4.07 | 2.42 | 3.09 | 5.51 | 2.16 | 3.3 | 6.42 | 2.37 | 3.73 |
Fe | 0.46 | 0.35 | 0.41 | 0.25 | 0.08 | 0.16 | 0.39 | 0.2 | 0.3 | 0.45 | 0.22 | 0.31 |
S | 0.35 | 0.3 | 0.33 | 0.8 | 0.32 | 0.47 | 1.69 | 0.71 | 1.13 | 1.24 | 0.65 | 0.81 |
Cl | 0.37 | 0.25 | 0.32 | 0.25 | 0.13 | 0.17 | 0.67 | 0.18 | 0.36 | 0.49 | 0.28 | 0.4 |
Ti | - | - | 0.08 | - | - | 0.12 | - | - | 0.18 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Zhang, M.; Yu, L.; Deng, K.; Mao, H.; Hu, J.; Wang, C. Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn. Animals 2025, 15, 1116. https://doi.org/10.3390/ani15081116
Tang Q, Zhang M, Yu L, Deng K, Mao H, Hu J, Wang C. Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn. Animals. 2025; 15(8):1116. https://doi.org/10.3390/ani15081116
Chicago/Turabian StyleTang, Qian, Minyang Zhang, Lili Yu, Kaidong Deng, Huihua Mao, Jingwen Hu, and Chuang Wang. 2025. "Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn" Animals 15, no. 8: 1116. https://doi.org/10.3390/ani15081116
APA StyleTang, Q., Zhang, M., Yu, L., Deng, K., Mao, H., Hu, J., & Wang, C. (2025). Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn. Animals, 15(8), 1116. https://doi.org/10.3390/ani15081116