Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
Breed | Sex | Aged | Body Weight (kg) | Sample Size | Parity |
---|---|---|---|---|---|
STH | ewe | 2–3 years | 48.6 ± 3.2 | 110 | 2–4 |
WHS | ram | 3–4 years | 102.4 ± 5.7 | 26 | - |
2.2. Nutritional Regimen and Housing
2.3. Performance Evaluation Protocols
2.3.1. Growth Metrics
2.3.2. Feedlot Trial
2.3.3. Carcass Analysis
2.3.4. Morphological Evaluation
2.4. Reproductive Monitoring
2.5. Statistical Framework
3. Results
3.1. Morphological Characteristics
3.2. Growth Performance
3.3. Feedlot Performance
3.4. Slaughter Traits
3.5. Slaughter Performance
3.6. Reproductive Performance
4. Discussion
4.1. Genetic and Phenotypic Advantages
4.2. Growth and Feed Efficiency
4.3. Carcass and Meat Quality Improvements
4.4. Reproductive Trade-Offs
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quan, K.; Li, J.; Han, H.; Wei, H.; Zhao, J.; Si, H.A.; Zhang, X.; Zhang, D. Review of Huang-huai sheep, a new multiparous mutton sheep breed first identified in China. Trop Anim Health Prod. 2020, 53, 35. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, H.; Hickford, J.G.H.; Hao, Z.; Shen, J.; Luo, Y.; Hu, J.; Liu, X.; Li, S. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep. Front. Genet. 2020, 11, 472. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, X.; Xu, D.; Zhang, D.; Zhang, Y.; Song, Q.; Li, X.; Zhao, Y.; Zhao, L.; Li, W.; et al. Relationship between Rumen Microbial Differences and Traits among Hu Sheep, Tan Sheep, and Dorper Sheep. J. Anim. Sci. 2022, 100, skac261. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.; Berhane, G.; Getachew, T.; Gizaw, S.; Haile, A. Reproductive Performance and Productivity of Local and Dorper × Local Crossbred Ewes under Community-Based Management System, Ethiopia. Heliyon 2023, 9, e19906. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Horses: Sixth Revised Edition; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- NY/T 630-2002; Lamb and Mutton Evaluation and Grading. China Ministry of Agriculture: Beijing, China, 2002.
- Gutiérrez, J.; Rubio, M.S.; Méndez, R.D. Effects of Crossbreeding Mexican Pelibuey Sheep with Rambouillet and Suffolk on Carcass Traits. Meat Sci. 2005, 70, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Freking, B.A.; Leymaster, K.A.; Young, L.D. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale Breeds of Sheep: I. Effects of Ram Breed on Productivity of Ewes of Two Crossbred Populations. J. Anim. Sci. 2000, 78, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.T.; Wan, Y.J.; You, J.H.; Wang, Z.Y.; Lan, S.; Fan, Y.X.; Wang, F. Effect of Age on Energy Requirement for Maintenance and Growth of Dorper and Hu Crossbred F1 Ewes Weighing 20 to 50 kg. Asian-Australas. J. Anim. Sci. 2015, 28, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Zhu, Y.; Wang, L.; Zhang, X.; Zhang, J.; Long, X.; Gu, Q.; Han, H. Dynamic Changes in the Global Transcriptome of Postnatal Skeletal Muscle in Different Sheep. Genes 2023, 14, 1298. [Google Scholar] [CrossRef] [PubMed]
- Kalds, P.; Crispo, M.; Li, C.; Tesson, L.; Anegón, I.; Chen, Y.; Wang, X.; Menchaca, A. Generation of Double-Muscled Sheep and Goats by CRISPR/Cas9-Mediated Knockout of the Myostatin Gene. Methods Mol. Biol. 2022, 2495, 295–323. [Google Scholar] [CrossRef] [PubMed]
- Boegheim, I.J.M.; Leegwater, P.A.J.; van Lith, H.A.; Back, W. Current Insights into the Molecular Genetic Basis of Dwarfism in Livestock. Vet. J. 2017, 224, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Askar, A.R. Effects of Supplementary Feeding Level on Digestion and Energy Utilization by Sheep and Goats Grazing Arid-Area Rangelands. Anim. Feed Sci. Technol. 2020, 267, 114695. [Google Scholar] [CrossRef]
- Huo, Q.; Sun, X.; Wu, T.; Li, Z.; Jonker, A.; You, P.; Li, R.; Li, J.; Tian, W.; Li, C.; et al. Supplementation of Graded Levels of Rumen-Protected Choline to a Pelleted Total Mixed Ration Did Not Improve the Growth and Slaughter Performance of Fattening Lambs. Front. Vet. Sci. 2022, 9, 1034895. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, M.; Yang, Y.; Zhang, L.; Sun, Y.; Chen, L.; Xu, Z.; Zhang, X.; Zhang, Z.; Zhou, H.; et al. Grazing Regulates Soil Water-Holding Functions via Altering Plant Functional Groups in the Southern Qilian Mountains. Sci. Total Environ. 2025, 966, 178702. [Google Scholar] [CrossRef] [PubMed]
- Sebsibe, I. Humans-Livestock Predators Conflict in the Central and Eastern Part of Bale Mountains National Park, Ethiopia. BMC Ecol. Evol. 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.T.; Gao, K.; Choe, H.M.; Jin, Z.Y.; Chang, S.Y.; Quan, B.H.; Yin, X.J. Effects of Myostatin Gene Knockout on Porcine Extraocular Muscles. Anim. Biotechnol. 2023, 34, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Bogdanowicz, J.; Modzelewska-Kapituła, M.; Białobrzewski, I.; Mozolewski, W. Biochemical and Textural Changes in Beef from Bulls and Steers of Different Crossbreeds Shortly after Slaughter and during Ageing. Meat Sci. 2022, 183, 108641. [Google Scholar] [CrossRef] [PubMed]
- Casas, E.; Freking, B.A.; Leymaster, K.A. Evaluation of Dorset, Finnsheep, Romanov, Texel, and Montadale Breeds of Sheep: V. Reproduction of F1 Ewes in Spring Mating Seasons. J. Anim. Sci. 2005, 83, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Gudra, D.; Valdovska, A.; Kairisa, D.; Galina, D.; Jonkus, D.; Ustinova, M.; Viksne, K.; Kalnina, I.; Fridmanis, D. Genomic Diversity of the Locally Developed Latvian Darkheaded Sheep Breed. Heliyon 2024, 10, e31455. [Google Scholar] [CrossRef] [PubMed]
- McHugh, N.; Pabiou, T.; Wall, E.; McDermott, K.; Berry, D.P. Considerable Potential Exists to Improve Lambing Performance Traits in Sheep through Breeding. Livest. Sci. 2020, 240, 104007. [Google Scholar] [CrossRef]
- Freking, B.A.; Bennett, G.L. Rambouillet and Romanov Reciprocal Breed Effects on Survival and Growth Traits of F1 Lambs and on Reproductive Traits of F1 Ewes. J. Anim. Sci. 2019, 97, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Claffey, N.A.; Fahey, A.G.; Gkarane, V.; Moloney, A.P.; Monahan, F.J.; Diskin, M.G. Effect of Breed and Castration on Production and Carcass Traits of Male Lambs Following an Intensive Finishing Period. Transl. Anim. Sci. 2018, 2, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.M.; Wang, X.Y.; He, X.Y.; Liu, Y.F.; Yu, P.; Chu, M.X.; Di, R. Progress on the Effect of FecB Mutation on BMPR1B Activity and BMP/SMAD Pathway in Sheep. Yi Chuan 2023, 45, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Sun, W.; Lang, X.; Wu, J.; Zhu, C.; Jia, J.; Jin, J.; La, Y.; Casper, D.P. Study on the Correlation between BMPR1B Protein in Sheep Blood and Reproductive Performance. J. Anim. Sci. 2020, 98, skaa100. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.I.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-Genome Resequencing of Wild and Domestic Sheep Identifies Genes Associated with Morphological and Agronomic Traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.W.; Freking, B.A. Comparison of Performance of F1 Romanov Crossbred Ewes with Wool and Hair Breeds during Fall Lambing and Body Weight and Longevity through Six Production Years. J. Anim. Sci. 2021, 99, skaa400. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ding, S.; Song, X.; Gao, S.; Liu, Y. A Study on the Long-Term Effects and Mechanisms of Internet Information Behavior on Poverty Alleviation among Smallholder Farmers: Evidence from China. Heliyon 2023, 9, e19174. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, Q. Towards More Efficient Low-Carbon Agricultural Technology Extension in China: Identifying Lead Smallholder Farmers and Their Behavioral Determinants. Environ. Sci. Pollut. Res. 2023, 30, 27833–27845. [Google Scholar] [CrossRef] [PubMed]
Types | Index | Instrumentation | Precision |
---|---|---|---|
Digital scale | Body weight (BW) | Mettler Toledo MS3002TS (Mettler Toledo, Zürich, Switzerland) | ±0.1 kg |
Linear measurements | Body height (BH) | Seca 206 telescopic measuring rod (Secon, Gondelsheim, Germany) | ±1 mm |
Body length (BL) | Lufkin W606PM tape (LUFKIN, Lufkin, TX, USA) | ±0.5 cm | |
Chest circumference (CC) | Lufkin W606PM tape | ±0.5 cm | |
Cannon bone circumference (CBC) | Vernier caliper | ±0.02 mm |
Index | Instrumentation | Precision |
---|---|---|
pH | Testo 205 pH meter (Testo, Titisee-Neustadt, Germany) | dual calibration: pH 4.0/7.0 |
Meat color | Minolta CR-400 (Minolta CR-400, Osaka, Japan) | D65 illuminant, 8 mm aperture |
Body length | TA.XT Plus texture analyzer (SMS company, Glasgow, UK) | Volodkevich bite jaw, 60% compression |
Trait | WHS | F1 Generation | BC1 Generation | STH |
---|---|---|---|---|
Head features | Short, broad, hornless, flat ears | Medium head, small horns (males), drooping ears | Short, broad head, hornless, flat ears | Delicate head, large spiral horns (males), drooping ears |
Body structure | Broad chest, muscular hindquarters | Intermediate chest width and hindquarter muscle | Paternal-like broad chest, square rump | Narrow chest, cylindrical body, short fat tail |
Limb features | Short, sturdy limbs, solid hooves | Taller limbs, partially mottled hooves | Robust limbs, entirely white hooves | Slender limbs, yellowish hooves |
Sex | WHS | F1 Generation | BC1 Generation | STH |
---|---|---|---|---|
Ram | Robust head, muscular shoulders | Thicker neck, occasional small horns | Broad head, pronounced shoulder muscles | Large head, spiral horns, combat-prone |
Ewe | Refined head, compact hindquarters | Slender neck, hornless, narrow body | Narrow head, rounded hindquarters | Small head, underdeveloped rib cage |
Group | Sample Sizes | Birth Weight (kg) | 3-Month Weight (kg) | |||
---|---|---|---|---|---|---|
Male (n) | Female (n) | Male | Female | Male | Female | |
F1 | 210 | 203 | 3.5 ± 0.5 | 3.4 ± 0.4 | 25.6 ± 1.5 | 23.8 ± 1.3 |
BC1 | 231 | 241 | 3.6 ± 0.4 | 3.3 ± 0.3 | 28.0 ± 1.6 * | 25.5 ± 1.4 |
STH | 24 | 115 | 3.1 ± 0.5 | 2.9 ± 0.4 | 19.5 ± 1.0 | 18.7 ± 0.9 |
Age | Breed | Sample Size (n) | BW (kg) | BH (cm) | BL (cm) | CC (cm) | CBC (cm) |
---|---|---|---|---|---|---|---|
6-month | STH♂ | 24 | 37.8 ± 1.7 | 62.2 ± 1.9 | 63.5 ± 2.4 | 73.1 ± 2.6 | 8.6 ± 0.3 |
STH♀ | 115 | 35.9 ± 1.5 | 60.1 ± 1.7 | 62.3 ± 2.2 | 71.2 ± 2.5 | 8.4 ± 0.3 | |
F1♂ | 210 | 52.3 ± 2.3 * | 63.0 ± 2.4 * | 73.1 ± 2.9 * | 83.5 ± 3.3 * | 9.6 ± 0.4 * | |
F1♀ | 203 | 45.6 ± 1.9 * | 60.5 ± 2.1 | 70.8 ± 2.7 * | 80.1 ± 2.9 * | 9.3 ± 0.3 * | |
BC1♂ | 231 | 55.2 ± 2.6 * | 65.8 ± 2.6 * | 75.6 ± 3.1 * | 86.3 ± 3.4 * | 10.1 ± 0.5 * | |
BC1♀ | 241 | 49.3 ± 2.3 * | 63.5 ± 2.4 * | 72.8 ± 2.9 * | 83.2 ± 3.3 * | 9.6 ± 0.4 * | |
12-month | STH♂ | 16 | 67.5 ± 3.0 | 77.5 ± 2.4 | 78.8 ± 2.7 | 90.2 ± 3.3 | 9.9 ± 0.4 |
STH♀ | 112 | 54.1 ± 2.8 | 72.8 ± 2.2 | 72.5 ± 2.5 | 83.3 ± 3.1 | 9.6 ± 0.3 | |
F1♂ | 134 | 86.7 ± 8.2 * | 76.0 ± 2.9 | 81.5 ± 3.4 * | 96.8 ± 4.3 * | 11.3 ± 0.5 * | |
F1♀ | 164 | 59.8 ± 5.3 * | 68.2 ± 2.7 | 78.6 ± 3.1 * | 92.5 ± 3.8 * | 10.1 ± 0.4 * | |
BC1♂ | 213 | 91.8 ± 8.0 * | 78.5 ± 3.0 * | 83.2 ± 3.5 * | 99.3 ± 4.5 * | 12.1 ± 0.5 * | |
BC1♀ | 204 | 63.3 ± 5.6 * | 70.5 ± 2.9 * | 80.1 ± 3.3 * | 95.2 ± 4.1 * | 10.6 ± 0.4 * | |
Adult | STH♂ | 16 | 118.5 ± 12.5 | 91.2 ± 8.8 | 92.8 ± 9.3 | 106.5 ± 9.7 | 10.7 ± 0.5 |
STH♀ | 112 | 73.8 ± 8.2 | 81.0 ± 7.6 | 82.5 ± 7.0 | 92.2 ± 8.5 | 10.3 ± 0.4 | |
F1♂ | 134 | 109.4 ± 10.6 | 89.4 ± 6.1 | 92.8 ± 6.3 | 109.5 ± 9.2 | 11.3 ± 0.6 | |
F1♀ | 164 | 72.1 ± 9.3 | 79.8 ± 6.7 | 83.2 ± 6.5 | 95.9 ± 8.3 | 10.4 ± 0.5 | |
BC1♂ | 213 | 110.9 ± 11.1 | 92.5 ± 7.3 * | 96.8 ± 7.5 * | 114.1 ± 9.2 * | 12.3 ± 0.7 * | |
BC1♀ | 204 | 75.7 ± 9.5 | 84.5 ± 6.5 * | 89.0 ± 7.4 * | 102.0 ± 8.2 * | 11.0 ± 0.6 * | |
WHS♂ | 26 | 102.5 ± 14.2 | 87.5 ± 5.9 | 92.5 ± 6.3 | 108.8 ± 8.8 | 12.2 ± 0.8 | |
WHS♀ | 33 | 72.8 ± 13.1 | 80.2 ± 5.6 | 85.5 ± 6.9 | 99.5 ± 7.4 | 10.7 ± 0.7 |
Group | Sample Size | ADG (g/d) | F/G (kg/kg) | Final Weight (kg) |
---|---|---|---|---|
BC1 | 231 | 423 ± 21 c | 4.2 ± 0.4 a | 61.3 ± 2.5 c |
F1 | 210 | 370 ± 19 b | 4.6 ± 0.5 b | 54.6 ± 2.2 b |
STH | 24 | 345 ± 17 a | 5.1 ± 0.6 c | 49.7 ± 2.0 a |
Parameter | Sample Size | F1 | BC1 | STH |
---|---|---|---|---|
Live weight (kg) | 6 | 52.3 ± 2.1 a | 55.8 ± 2.3 b | 46.5 ± 1.8 c |
Carcass weight (kg) | 6 | 29.4 ± 1.2 a | 32.5 ± 1.6 b | 23.1 ± 1.8 c |
Dressing percentage (%) | 6 | 56.1 ± 1.2 a | 58.3 ± 1.5 b | 49.8 ± 1.5 c |
LDMA (cm2) | 6 | 16.5 ± 1.0 a | 18.5 ± 1.2 b | 12.3 ± 0.8 c |
Parameter | Sample Size | BC1 | F1 | STH |
---|---|---|---|---|
Shear force (N) | 6 | 32.5 ± 1.8 b | 30.2 ± 1.5 a | 41.6 ± 2.0 c |
Intramuscular fat (%) | 6 | 4.5 ± 0.3 c | 4.8 ± 0.4 c | 3.8 ± 0.2 a |
pH (24 h) | 6 | 5.68 ± 0.04 | 5.73 ± 0.05 | 5.81 ± 0.06 |
Parameter | Sample Size | STH | F1 | BC1 |
---|---|---|---|---|
Lambing rate (%) | 112 | 265 ± 28 | 178 ± 23 * | 142 ± 19 * |
Lambs weaned/ewe/year | 112 | 3.6 | 3.2 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, K.; Li, J.; Han, H.; Liu, K.; Shi, H.; Wang, H.; Jin, M.; Sun, W.; Wei, C. Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China. Animals 2025, 15, 1071. https://doi.org/10.3390/ani15071071
Quan K, Li J, Han H, Liu K, Shi H, Wang H, Jin M, Sun W, Wei C. Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China. Animals. 2025; 15(7):1071. https://doi.org/10.3390/ani15071071
Chicago/Turabian StyleQuan, Kai, Jun Li, Haoyuan Han, Kun Liu, Huibin Shi, Huihua Wang, Meilin Jin, Wei Sun, and Caihong Wei. 2025. "Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China" Animals 15, no. 7: 1071. https://doi.org/10.3390/ani15071071
APA StyleQuan, K., Li, J., Han, H., Liu, K., Shi, H., Wang, H., Jin, M., Sun, W., & Wei, C. (2025). Two-Generation Crossbreeding of White-Headed Suffolk and Small-Tailed Han Sheep: Heterosis, Sustainable Production Traits, and Morphological Features in Central China. Animals, 15(7), 1071. https://doi.org/10.3390/ani15071071