A Mini-Review on Multi-Hurdle Control of Salmonella Along Poultry Production Continuum
Simple Summary
Abstract
1. Introduction
2. Salmonella Complexity in Poultry Production
3. Pre-Harvest Control Strategies
4. Post-Harvest Strategies
5. Multi-Hurdle Approach to Controlling Salmonella
Strategies | Type of Application | Application | References |
---|---|---|---|
Feed management | Prebiotics | In feed | [47,48,50,51] |
Probiotics, phytobiotics, postbiotics, feed additives | In feed | [28,29] | |
In ovo strategies | Bioactive substances | In Ovo | [52,130] |
Vaccines | Live attenuated, inactivated, subunit, killed | In Ovo, oral, intramuscular | [29,37,38,54,55,57] |
Bacteriophages | Lytic phage lysates | Intra-cloacal | [131] |
Encapsulated phage | In drinking water | [132,133] | |
Lytic phage | Chicken breast fillet and skin | [115] | |
Drinking water management | Sanitizers | In drinking water | [58,59,60,61] |
Biosecurity | Physical barriers | General on-farm practices | Physical barriers |
Rodent and fly control Red mite management | Sanitation protocols | [65,134] | |
Litter management | Fresh wood shavings | Composting | [66,67] |
HACCP | Good manufacturing practices | Sanitation procedures | [24,30,34] |
Bio-mapping | Identification of contamination hotspots | Sampling at processing | [72,73,74,75,77] |
Antimicrobials | Peracetic acid (PAA) | In water processing | [31,32,84,87,88,89,90] |
Sanitation | Chlorine-based compounds | Sprays | [79,80] |
Quaternary ammonium compounds | Sprays | [33,80,82,84] | |
Multi-technology | Pre-harvest | [48,54,62,65,124] | |
Post-harvest | [108,109,111,115,116] |
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture USDA. Poultry & Eggs. Available online: https://www.ers.usda.gov/topics/animal-products/poultry-eggs (accessed on 20 July 2024).
- Shahbandeh, M. Global Chicken Meat Production 2012–2024. Available online: https://www.statista.com/statistics/237637/production-of-poultry-meat-worldwide-since-1990/ (accessed on 20 July 2024).
- National Chicken Council NCC. Per Capita Consumption of Poultry and Livestock, 1965 to Forecast 2022, in Pounds. Available online: https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2012-in-pounds/ (accessed on 20 July 2024).
- Poultry World. The Future of Chicken: Poultry Beyond 2050. Available online: https://www.poultryworld.net/the-industrymarkets/market-trends-analysis-the-industrymarkets-2/the-future-of-chicken-poultry-beyond-2050/ (accessed on 20 July 2024).
- United States Department of Agriculture USDA. Poultry. Available online: https://www.climatehubs.usda.gov/topics/poultry (accessed on 20 July 2024).
- Ricke, S.C. Poultry food safety and foodborne illness. In Encyclopedia of Meat Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 47–55. [Google Scholar] [CrossRef]
- Alali, W.Q.; Hofacre, C.L. Preharvest food safety in broiler chicken production. Microbiol. Spectr. 2016, 4, 1128. [Google Scholar] [CrossRef] [PubMed]
- Neeteson, A.M.; Avendaño, S.; Koerhuis, A.; Duggan, B.; Souza, E.; Mason, J.; Ralph, J.; Rohlf, P.; Burnside, T.; Kranis, A.; et al. Evolutions in commercial meat poultry breeding. Animals 2023, 13, 3150. [Google Scholar] [CrossRef] [PubMed]
- Pepin, K.M.; Spackman, E.; Brown, J.D.; Pabilonia, K.L.; Garber, L.P.; Weaver, J.T.; Kennedy, D.A.; Patyk, K.A.; Huyvaert, K.P.; Miller, R.S.; et al. Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Prev. Vet. Med. 2014, 113, 376–397. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C.; Rothrock, M.J. Gastrointestinal microbiomes of broilers and layer hens in alternative production systems. Poult. Sci. 2020, 99, 660–669. [Google Scholar] [CrossRef] [PubMed]
- El Jeni, R.; Dittoe, D.K.; Olson, E.G.; Lourenco, J.; Seidel, D.S.; Ricke, S.C.; Callaway, T.R. An overview of health challenges in alternative poultry production systems. Poult. Sci. 2021, 100, 101173. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Siceloff, A.T.; Crowe, M.G.; Scott, H.M.; Shariat, N.W. Combined Quantification and Deep Serotyping for Salmonella Risk Profiling in Broiler Flocks. Appl. Environ. Microbiol. 2023, 89, e02035-22. [Google Scholar] [CrossRef]
- Obe, T.; Boltz, T.; Kogut, M.; Ricke, S.C.; Brooks, L.A.; Macklin, K.; Peterson, A. Controlling Salmonella: Strategies for feed, the farm, and the processing plant. Poult. Sci. 2023, 102, 103086. [Google Scholar] [CrossRef]
- Gal-Mor, O.; Boyle, E.C.; Grassl, G.A. Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 2014, 5, 391. [Google Scholar] [CrossRef]
- Mujahid, S.; Hansen, M.; Miranda, R.; Newsom-Stewart, K.; Rogers, J.E. Prevalence and antibiotic resistance of Salmonella and Campylobacter isolates from raw chicken breasts in retail markets in the United States and comparison to data from the plant level. Life 2023, 13, 642. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention CDC. Salmonella Infection (Salmonellosis). Available online: https://www.cdc.gov/salmonella/signs-symptoms/index.html (accessed on 24 July 2024).
- Wagenaar, J.A.; Hendriksen, R.S.; Carrique-Mas, J. Practical considerations of surveillance of Salmonella serovars other than Enteritidis and Typhimurium. Rev. Sci. Tech. Off. Int. Epiz. 2013, 32, 509–519. [Google Scholar] [CrossRef]
- Foley, S.L.; Nayak, R.; Hanning, I.B.; Johnson, T.J.; Han, J.; Ricke, S.C. Population Dynamics of Salmonella enterica Serotypes in Commercial Egg and Poultry Production. Appl. Environ. Microbiol. 2011, 77, 4273–4279. [Google Scholar] [CrossRef]
- Shah, D.H.; Paul, N.C.; Sischo, W.C.; Crespo, R.; Guard, J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult. Sci. 2017, 96, 687–702. [Google Scholar] [CrossRef]
- Siceloff, A.T.; Waltman, D.; Shariat, N.W. Regional Salmonella differences in United States broiler production from 2016 to 2020 and the contribution of multi-serovar populations to Salmonella surveillance. Appl. Environ. Microbiol. 2022, 88, e00204-22. [Google Scholar] [CrossRef]
- Tack, D.M.; Ray, L.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Rissman, T.; Jervis, R.; Lathrop, S.; Muse, A.; Duwell, M.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016–2019. Morb. Mortal. Wkly. Rep. 2020, 69, 509–514. [Google Scholar] [CrossRef]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. Morb. Mortal. Wkly. Rep. 2019, 68, 369–373. [Google Scholar] [CrossRef]
- Park, S.H.; Aydin, M.; Khatiwara, A.; Dolan, M.C.; Gilmore, D.F.; Bouldin, J.L.; Ahn, S.; Ricke, S.C. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol. 2014, 38, 250–262. [Google Scholar] [CrossRef]
- O’Bryan, C.A.; Ricke, S.C.; Marcy, J.A. Public health impact of Salmonella spp. on raw poultry: Current concepts and future prospects in the United States. Food Control 2022, 132, 108539. [Google Scholar] [CrossRef]
- Dórea, F.C.; Cole, D.J.; Hofacre, C.; Zamperini, K.; Mathis, D.; Doyle, M.P.; Lee, M.D.; Maurer, J.J. Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl. Environ. Microbiol. 2010, 76, 7820–7825. [Google Scholar] [CrossRef]
- Bailey, J.S.; Stern, N.J.; Fedorka-Cray, P.; Craven, S.E.; Cox, N.A.; Cosby, D.E.; Ladely, S.; Musgrove, M.T. Sources and movement of Salmonella through integrated poultry operations: A multistate epidemiological investigation. J. Food Prot. 2001, 64, 1690–1697. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella; Institut Pasteur: Paris, France; Available online: https://www.pasteur.fr/sites/default/files/veng_0.pdf (accessed on 24 July 2024).
- Wang, J.; Vaddu, S.; Bhumanapalli, S.; Mishra, A.; Applegate, T.; Singh, M.; Thippareddi, H. A systematic review and meta-analysis of the sources of Salmonella in poultry production (pre-harvest) and their relative contributions to the microbial risk of poultry meat. Poul. Sci. 2023, 102, 102566. [Google Scholar] [CrossRef]
- Raut, R.; Maharjan, P.; Fouladkhah, A.C. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. Int. J. Environ. Res. Public Health 2023, 20, 6654. [Google Scholar] [CrossRef]
- Wideman, N.; Bailey, M.; Bilgili, S.F.; Thippareddi, H.; Wang, L.; Bratcher, C.; Sanchez-Plata, M.; Singh, M. Evaluating Best Practices for Campylobacter and Salmonella Reduction in Poultry Processing Plants. Poult. Sci. 2016, 95, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, L.J.; Bowers, J.W.J.; Townsend, J.C.; McKee, S.R. The Microbial and Quality Properties of Poultry Carcasses Treated with Peracetic Acid as an Antimicrobial Treatment. Poult. Sci. 2008, 87, 2390–2398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Morey, A.; Bilgili, S.F.; McKee, S.R.; Garner, L.J. Effectiveness of Several Antimicrobials and the Effect of Contact Time in Reducing Salmonella and Campylobacter on Poultry Drumsticks. J. Appl. Poult. Res. 2019, 28, 1143–1149. [Google Scholar] [CrossRef]
- Bourassa, D.V. Antimicrobial Use in Poultry Processing. Available online: https://www.food-safety.com/articles/5581-antimicrobial-use-in-poultry-processing (accessed on 12 August 2024).
- Abdul-Rahiman, U.A.; Nordin, N.; Abdul-Mutalib, N.A.; Sanny, M. Holistic approaches to reducing Salmonella contamination in the poultry industry. Pertanika J. Trop. Agric. Sci. 2021, 44, 1–23. [Google Scholar] [CrossRef]
- Rasamsetti, S.; Shariat, N.W. Biomapping Salmonella serovar complexity in broiler carcasses and parts during processing. Food Microbiol. 2023, 110, 104149. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Guard, J.Y.; Oladeinde, A. Salmonella diversity along the farm-to-fork continuum of pastured poultry flocks in the Southeastern United States. Front. Anim. Sci. 2021, 2, 761930. [Google Scholar] [CrossRef]
- Jesudhasan, P.R.; McReynolds, J.L.; Byrd, A.J.; He, H.; Genovese, K.J.; Droleskey, R.; Swaggerty, C.L.; Kogut, M.H.; Duke, S.; Nisbet, D.J.; et al. Electron-Beam–Inactivated Vaccine Against Salmonella Enteritidis Colonization in Molting Hens. Avian Dis. 2015, 59, 165–170. [Google Scholar] [CrossRef]
- Praveen, C.; Bhatia, S.S.; Alaniz, R.C.; Droleskey, R.E.; Cohen, N.D.; Jesudhasan, P.R.; Pillai, S.D. Assessment of microbiological correlates and immunostimulatory potential of electron beam inactivated metabolically active yet non culturable (MAyNC) Salmonella Typhimurium. PLoS ONE 2021, 16, e0243417. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.L.; Esteban, J.E.; Kissler, B.W.; Freiman, J.L.; Tillman, G.E. Use of Whole-Genome Sequencing at the Food Safety and Inspection Service to Detect and Investigate Foodborne Illness Outbreaks. Food Prot. Trends 2020, 40, 268–269. Available online: https://www.nxtbook.com/nxtbooks/trilix/fpt_20200708/ (accessed on 25 August 2024).
- Didelot, X.; Fraser, C.; Gardy, J.; Colijn, C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 2017, 34, msw275. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture USDA-FSIS. Proposed Regulatory Framework to Reduce Salmonella Illnesses Attributable to Poultry. Available online: https://www.fsis.usda.gov/inspection/inspection-programs/inspection-poultry-products/reducing-salmonella-poultry/proposed (accessed on 12 August 2024).
- Rothrock, M.J.; Al Hakeem, W.G.; Oladeinde, A.; Looft, T.; Li, X.; Guard, J.Y. Salmonella Biomapping of a Commercial Broiler Hatchery. J. Food Prot. 2024, 87, 100347. [Google Scholar] [CrossRef] [PubMed]
- Jones, F.T. A review of practical Salmonella control measures in animal feed. J. Appl. Poult. Res. 2011, 20, 102–113. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Ault, J.; Ritchie, S.; Gay, C.G.; Lillehoj, H.S. Alternatives to Antibiotic Growth Promoters for Poultry: A Bibliometric Analysis of the Research Journals. Poult. Sci. 2024, 103, 103987. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Strategies to Improve Poultry Food Safety, a Landscape Review. Annu. Rev. Anim. Biosci. 2021, 9, 379–400. [Google Scholar] [CrossRef]
- Micciche, A.C.; Foley, S.L.; Pavlidis, H.O.; McIntyre, D.R.; Ricke, S.C. A Review of Prebiotics Against Salmonella in Poultry: Current and Future Potential for Microbiome Research Applications. Front. Vet. Sci. 2018, 5, 191. [Google Scholar] [CrossRef]
- Kimminau, E.A.; Karnezos, T.P.; Berghaus, R.D.; Jones, M.K.; Baxter, J.A.; Hofacre, C.L. Combination of Probiotic and Prebiotic Impacts Salmonella Enteritidis Infection in Layer Hens. J. Appl. Poult. Res. 2021, 30, 100200. [Google Scholar] [CrossRef]
- Juricova, H.; Matiasovicova, J.; Faldynova, M.; Sebkova, A.; Kubasova, T.; Prikrylova, H.; Karasova, D.; Crhanova, M.; Havlickova, H.; Rychlik, I. Probiotic Lactobacilli Do Not Protect Chickens against Salmonella Enteritidis Infection by Competitive Exclusion in the Intestinal Tract but in Feed, Outside the Chicken Host. Microorganisms 2022, 10, 219. [Google Scholar] [CrossRef]
- Fulnechek, D.L. Effective Salmonella Control Requires Involvement of Entire Production Chain. Poult. Health Today. Available online: https://www.thepoultrysite.com/articles/effective-salmonella-control-requires-involvement-of-entire-production-chain-1 (accessed on 12 August 2024).
- Higgins, S.E.; Higgins, J.P.; Wolfenden, A.D.; Henderson, S.N.; Torres-Rodriguez, A.; Tellez, G.; Hargis, B. Evaluation of a Lactobacillus-Based Probiotic Culture for the Reduction of Salmonella Enteritidis in Neonatal Broiler Chicks. Poult. Sci. 2008, 87, 27–31. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotic Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Villanueva, K.Y.; Akerele, G.O.; Al Hakeem, W.G.; Renu, S.; Shanmugasundaram, R.; Selvaraj, R.K. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines 2021, 9, 1041. [Google Scholar] [CrossRef] [PubMed]
- Renu, S.; Han, Y.; Dhakal, S.; Lakshmanappa, Y.S.; Ghimire, S.; Feliciano-Ruiz, N.; Senapati, S.; Narasimhan, B.; Selvaraj, R.; Renukaradhya, G.J. Chitosan-Adjuvanted Salmonella Subunit Nanoparticle Vaccine for Poultry Delivered through Drinking Water and Feed. Carbohydr. Polym. 2020, 243, 116434. [Google Scholar] [CrossRef]
- Rabie, N.S.; Amin Girh, Z.M.S. Bacterial Vaccines in Poultry. Bull. Natl. Res. Centre 2020, 44, 15. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; McWhorter, A.R.; Andrews, D.M.; Underwood, G.J.; Chousalkar, K.K. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines 2020, 8, 696. [Google Scholar] [CrossRef]
- Kogut, M.H.; McReynolds, J.L.; He, H.; Genovese, K.J.; Jesudhasan, P.R.; Davidson, M.A.; Cepeda, M.A.; Pillai, S.D. Electron-beam Irradiation Inactivation of Salmonella: Effects on Innate Immunity and Induction of Protection Against Salmonella enterica serovar Typhimurium Challenge of Chickens. Procedia Vaccinol. 2012, 6, 47–63. [Google Scholar] [CrossRef]
- Maharjan, P.; Clark, T.; Kuenzel, C.; Foy, M.K.; Watkins, S. On farm monitoring of the impact of water system sanitation on microbial levels in broiler house water supplies. J. Appl. Poult. Res. 2016, 25, 266–271. [Google Scholar] [CrossRef]
- Ogundipe, T.T.; Betia, S.; Obe, T. Applied Research Note: Microbial composition of the biofilm of poultry drinking water system. J. Appl. Poult. Res. 2024, 33, 100403. [Google Scholar] [CrossRef]
- Watkins, S. Water: Identifying and Correcting Challenges. The Poultry Site. Available online: https://www.thepoultrysite.com/articles/water-identifying-and-correcting-challenges (accessed on 12 August 2024).
- Maharjan, P.; Huff, G.; Zhang, W.; Watkins, S. Effects of chlorine and hydrogen peroxide sanitation in low bacterial content water on biofilm formation model of poultry brooding house waterlines. Poultr. Sci. 2017, 96, 2145–2150. [Google Scholar] [CrossRef]
- Fraser, R.W.; Williams, N.T.; Powell, L.F.; Cook, A.J.C. Reducing Campylobacter and Salmonella Infection: Two Studies of the Economic Cost and Attitude to Adoption of On-Farm Biosecurity Measures. Zoonoses Public Health 2010, 57, e109–e115. [Google Scholar] [CrossRef]
- Aiyedun, J.O.; Oludairo, O.O.; Olorunsola, I.D.; Daodu, O.B.; Furo, N.A. Effectiveness of Biosecurity Measures in Some Selected Farms in Kwara State, Nigeria. J. Res. For. Wildl. Environ. 2018, 10, 17–23. Available online: https://www.ajol.info/index.php/jrfwe/article/view/174785 (accessed on 25 August 2024).
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef]
- Gosling, R.J.; Martelli, F.; Wintrip, A.; Sayers, A.R.; Wheeler, K.; Davies, R.H. Assessment of Producers’ Response to Salmonella Biosecurity Issues and Uptake of Advice on Laying Hen Farms in England and Wales. Br. Poult. Sci. 2014, 55, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Volkova, V.V.; Wills, R.W.; Hubbard, S.A.; Magee, D.L.; Byrd, J.A.; Bailey, R.H. Risk Factors Associated with Detection of Salmonella in Broiler Litter at the Time of New Flock Placement. Zoonoses Public Health 2011, 58, 158–168. [Google Scholar] [CrossRef]
- Eid, S.; Hassan, H.; Atfeehy, N.; Selim, K.; Oksh, A. Composting: A Biosecurity Measure to Maximize the Benefit of Broilers’ Litter. J. Adv. Vet. Anim. Res. 2023, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity Measures for Backyard Poultry in Developing Countries: A Systematic Review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Fouladkhah, A. The Need for Evidence-Based Outreach in the Current Food Safety Regulatory Landscape. J. Ext. 2017, 55, 20. [Google Scholar] [CrossRef]
- United States Department of Agriculture USDA-FSIS. Performance Standards Salmonella Verification Program for Raw Poultry Products. Available online: https://www.fsis.usda.gov/policy/fsis-directives/10250.2 (accessed on 15 August 2024).
- United states Department of Agriculture USDA-FSIS. Pathogen Reduction; Hazard Analysis and Critical Control Point (HACCP) Systems. Available online: https://www.federalregister.gov/documents/1996/07/25/96-17837/pathogen-reduction-hazard-analysis-and-critical-control-point-haccp-systems (accessed on 25 August 2024).
- De Villena, J.F.; Vargas, D.A.; Bueno López, R.; Chávez-Velado, D.R.; Casas, D.E.; Jiménez, R.L.; Sanchez-Plata, M.X. Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Intervention Levels. Foods 2022, 11, 775. [Google Scholar] [CrossRef]
- Chavez-Velado, D.R.; Vargas, D.A.; Sanchez-Plata, M.X. Bio-Mapping Salmonella and Campylobacter Loads in Three Commercial Broiler Processing Facilities in the United States to Identify Strategic Intervention Points. Foods 2024, 13, 180. [Google Scholar] [CrossRef]
- Rivera-Pérez, W.; Barquero-Calvo, E.; Zamora-Sanabria, R. Salmonella Contamination Risk Points in Broiler Carcasses During Slaughter Line Processing. J. Food Prot. 2014, 77, 2031–2034. [Google Scholar] [CrossRef]
- Boubendir, S.; Arsenault, J.; Quessy, S.; Thibodeau, A.; Fravalo, P.; Thériault, W.P.; Fournaise, S.; Gaucher, M.L. Salmonella Contamination of Broiler Chicken Carcasses at Critical Steps of the Slaughter Process and in the Environment of Two Slaughter Plants: Prevalence, Genetic Profiles, and Association with the Final Carcass Status. J. Food Prot. 2021, 84, 321–332. [Google Scholar] [CrossRef]
- University of Georgia. Customized Biomapping and Data Collection Improve Food Safety in Poultry Processing. The Poultry Site. Available online: https://www.thepoultrysite.com/articles/biomapping-and-data-collection-improve-food-safety-in-poultry-processing (accessed on 25 August 2024).
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; McDaniel, C.; Kiess, A. Prevalence of Salmonella enterica on Poultry Processing Equipment after Completion of Sanitization Procedures. Poult. Sci. 2021, 99, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Mead, G.C.; Adams, B.W.; Parry, R.T. The Effectiveness of In-Plant Chlorination in Poultry Processing. Br. Poult. Sci. 1975, 16, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Thames, H.T.; Sukumaran, A.T. A Review of Salmonella and Campylobacter in Broiler meat: Emerging challenges and food safety measures. Foods 2020, 9, 776. [Google Scholar] [CrossRef]
- Northcutt, J.K.; Jones, D.R. A Survey of Water Uses and Common Industry Practices in Commercial Broiler Processing Facilities. J. Appl. Poult. Res. 2004, 13, 48–54. [Google Scholar] [CrossRef]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; Kiess, A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J. Appl. Poult. Res. 2021, 30, 100195. [Google Scholar] [CrossRef]
- Obe, T.; Richards, A.K.; Shariat, N.W. Differences in Biofilm Formation of Salmonella Serovars on two Surfaces under two Temperature Conditions. J. Appl. Microbiol. 2022, 132, 2410–2420. [Google Scholar] [CrossRef]
- Nagel, G.M.; Bauermeister, L.J.; Bratcher, C.L.; Singh, M.; McKee, S.R. Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. Int. J. Food Microbiol. 2013, 165, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Northcutt, J.K.; Smith, D.P.; Musgrove, M.T.; Ingram, K.D.; Hinton, A., Jr. Processing Products, and Food Safety Microbiological Impact of Spray Washing Broiler Carcasses Using Different Chlorine Concentrations and Water Temperatures. Poult. Sci. 2005, 84, 1648–1652. [Google Scholar] [CrossRef]
- Bartenfeld, L.N.; Fletcher, D.L.; Northcutt, J.K.; Bourassa, D.V.; Cox, N.A.; Buhr, R.J. The Effect of High-level Chlorine Carcass Drench on the Recovery of Salmonella and Enumeration of Bacteria from Broiler Carcasses. Poultr. Sci. 2014, 93, 2893–2899. [Google Scholar] [CrossRef]
- Cano, C.; Meneses, Y.; Chaves, B.D. Application of Peroxyacetic Acid for Decontamination of Raw Poultry Products and Comparison to Other Commonly Used Chemical Antimicrobial Interventions: A review. J. Food Prot. 2021, 84, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Kataria, J.; Morey, A. Antimicrobial Interventions in Poultry Processing to Improve Shelf Life and Safety of Poultry Meat: A Review with Special Attention to Salmonella spp. J. Food Qual. Hazards Control 2020, 7, 52–59. [Google Scholar] [CrossRef]
- Vaddu, S.; Wang, J.; Sidhu, G.; Leone, C.; Singh, M.; Thippareddi, H. Relative resistance of Salmonella Serotypes (Typhimurium, Infantis, and Reading) to Peroxyacetic Acid on Chicken Wings. Poultr. Sci. 2024, 103, 103935. [Google Scholar] [CrossRef]
- Chen, X.; Bauermeister, L.J.; Hill, G.N.; Singh, M.; Bilgili, S.F.; McKee, S.R. Efficacy of Various Antimicrobials on Reduction of Salmonella and Campylobacter and Quality Attributes of Ground Chicken Obtained from Poultry Parts treated in a Post Chill Decontamination Tank. J. Food Prot. 2014, 77, 1882–1888. [Google Scholar] [CrossRef]
- United States Department of Agriculture USDA-FSIS. Safe and Suitable Ingredients Used in the Production of Meat, Poultry, and Egg Products (Last Reviewed 7 August 2024). Available online: https://www.fsis.usda.gov/policy/fsis-directives/7120.1 (accessed on 30 August 2024).
- Waldroup, A.L.; Beers, K.L.; Cook, P.E.; Dell, E.A.; Odglen, R.; Baker, R.A.; Coleman, C.W.; Smith, B.A.; Maingi, B.W. The Effects of Cetylpyridinium Chloride (Cecure CPC Antimicrobial) on ® 1 Campylobacter Spp. on Raw Poultry: A Review. Int. J. Poult. Sci. 2010, 9, 305–308. [Google Scholar] [CrossRef]
- Wilsmann, D.E.; Carvalho, D.; Chitolina, G.Z.; Borges, K.; Furian, T.Q.; Martins, A.C.; Webber, B.; Nascimento, V.P. Electrochemically Activated Water Presents Bactericidal Effect Against Salmonella Heidelberg Isolated from Poultry Origin. Foodborne Pathog. Dis. 2020, 17, 228–233. [Google Scholar] [CrossRef]
- Cano, C.; Sullivan, G.A.; Chaves, B.D. Evaluation of Ozonated Water as a Potential Intervention to Reduce Salmonella and Indicator Organisms on Raw Chicken Wing Sections. IAFP. 2023, 43, 472–478. [Google Scholar] [CrossRef]
- Abd-El Wahab, A.; Basiouni, S.; El-Seedi, H.R.; Ahmed, M.F.E.; Bielke, L.R.; Hargis, B.; Tellez-Isaias, G.; Eisenreich, W.; Lehnherr, H.; Kittler, S.; et al. An overview of the use of Bacteriophages in the Poultry Industry: Successes, Challenges, and Possibilities for Overcoming Breakdowns. Front. Microbiol. 2023, 14, 1136638. [Google Scholar] [CrossRef]
- Obe, T.; Kiess, A.S.; Nannapaneni, R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals 2024, 14, 578. [Google Scholar] [CrossRef]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the Poultry Industry: Detection, control and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef]
- Davidson, P.M.; Harrison, M.A. Resistance and Adaptation to Food Antimicrobials, Sanitizers, and Other Process Controls. IFT 2002, 56, 11. Available online: https://www.researchgate.net/publication/237373178 (accessed on 12 September 2024).
- Paz-Méndez, A.M.; Lamas, A.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses. Foods 2017, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Nannapaneni, R.; Sharma, C.S.; Kiess, A. Homologous Stress Adaptation, Antibiotic Resistance, and Biofilm Forming Ability of Salmonella enterica serovar Heidelberg ATCC8326 on different Food-Contact Surfaces Following Exposure to Sublethal Chlorine Concentrations. Poultr. Sci. 2018, 97, 951–961. [Google Scholar] [CrossRef]
- United States Department of Agriculture USDA. One Health. Available online: https://www.usda.gov/topics/animals/one-health (accessed on 12 September 2024).
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.A.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, J. No Single Solution to Control Salmonella in Poultry Meat, say Experts. Food Safety News. Available online: https://www.foodsafetynews.com/2022/10/no-single-solution-to-control-salmonella-in-poultry-meat-say-experts (accessed on 12 September 2024).
- The National Advisory Committee on Microbiological Criteria in Foods. Response to Questions Posed by the Food Safety and Inspection Service: Enhancing Salmonella Control in Poultry Products. J. Food Prot. 2023, 87, 100168. [Google Scholar] [CrossRef]
- Condell, O.; Iversen, C.; Cooney, S.; Power, K.A.; Walsh, C.; Burgess, C.; Fanning, S. Efficacy of Biocides Used in the Modern Food Industry To Control Salmonella enterica, and Links between Biocide Tolerance and Resistance to Clinically Relevant Antimicrobial Compounds. Appl. Environ. Microbiol. 2012, 78, 3087–3097. [Google Scholar] [CrossRef]
- Molina-González, D.; Alonso-Calleja, C.; Alonso-Hernando, A.; Capita, R. Effect of Sub-lethal Concentrations of Biocides on the Susceptibility to Antibiotics of Multi-Drug-Resistant Salmonella enterica strains. Food Control 2014, 40, 329–334. [Google Scholar] [CrossRef]
- Food Safety Magazine Editorial Team. Multi-Hurdle Approach Crucial to Controlling Salmonella in Poultry, Reports FAO/WHO. Available online: https://www.food-safety.com/articles/9157-multi-hurdle-approach-crucial-to-controlling-salmonella-in-poultry-reports-fao-who (accessed on 12 September 2024).
- Milillo, S.R.; Ricke, S.C. Synergistic Reduction of Salmonella in a Model Raw Chicken Media using a Combined Thermal and Acidified Organic Acid Salt Intervention Treatment. J. Food Sci. 2010, 75, M121–M125. [Google Scholar] [CrossRef]
- Yadav, B.; Roopesh, M.S. Synergistically enhanced Salmonella Typhimurium reduction by sequential treatment of organic acids and atmospheric cold plasma and the mechanism study. Food Microbiol. 2022, 104, 103976. [Google Scholar] [CrossRef]
- Thornton, G. How to Reduce Salmonella on Poultry Parts. WATTPoultry. Available online: https://www.wattagnet.com/broilers-turkeys/processing-slaughter/article/15514337/how-to-reduce-salmonellaon-poultry-part (accessed on 12 September 2024).
- Pelyuntha, W.; Vongkamjan, K. Control of Salmonella in Chicken Meat by a Phage Cocktail in Combination with Propionic Acid and Modified Atmosphere Packaging. Foods 2023, 12, 4181. [Google Scholar] [CrossRef] [PubMed]
- Mogren, L.; Windstam, S.; Boqvist, S.; Vågsholm, I.; Söderqvist, K.; Rosberg, A.K.; Lindén, J.; Mulaosmanovic, E.; Karlsson, M.; Uhlig, E.; et al. The Hurdle Approach–A Holistic Concept for Controlling Food Safety Risks Associated with Pathogenic Bacterial Contamination of Leafy Green Vegetables: A Review. Front. Microbiol. 2018, 9, 1965. [Google Scholar] [CrossRef]
- Ceva Poultry. Autogenous Vaccines. Available online: https://poultry.ceva.com/poultry-vaccines/autogenous-vaccines/ (accessed on 12 December 2024).
- Montoro-Dasi, L.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Vega, S.; Marin, C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.T.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Reduction of Salmonella on Chicken meat and Chicken Skin by Combined or Sequential Application of Lytic Bacteriophage with Chemical Antimicrobials. Int. J. Food Microbiol. 2015, 207, 8–15. [Google Scholar] [CrossRef]
- Manjankattil, S.; Nair, D.V.T.; Peichel, C.; Noll, S.; Johnson, T.J.; Cox, R.B.; Donoghue, A.M.; Kollanoor Johny, A. Effect of caprylic acid alone or in combination with peracetic acid against multidrug-resistant Salmonella Heidelberg on chicken drumsticks in a soft scalding temperature-time setup. Poultr Sci. 2021, 100, 101421. [Google Scholar] [CrossRef]
- United States Department of Agriculture USDA. Multi-Hurdle Approaches for Controlling Foodborne Pathogens in Poultry. Available online: https://www.nal.usda.gov/research-tools/food-safety-research-projects/multi-hurdle-approaches-controlling-foodborne (accessed on 12 December 2024).
- Upadhyaya, I.; Yin, H.-B.; Surendran Nair, M.; Chen, C.-H.; Lang, R.; Darre, M.J.; Venkitanarayanan, K. Inactivation of Salmonella enteritidis on shell eggs by coating with phytochemicals. Poultr. Sci. 2016, 95, 2106–2111. [Google Scholar] [CrossRef]
- Micciche, A.; Rothrock, M.J.; Yang, Y.; Ricke, S.C. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef]
- Almuzaini, A.M. Phytochemicals: Potential alternative strategy to fight Salmonella enterica serovar Typhimurium. Front Vet Sci. 2023, 10, 1188752. [Google Scholar] [CrossRef]
- Allen, J.; Balasubramanian, B.; Rankin, K.; Shah, T.; Donoghue, A.M.; Upadhyaya, I.; Sartini, B.; Luo, Y.; Upadhyay, A. Trans-cinnamaldehyde nanoemulsion wash Inactivates Salmonella Enteritidis on shelled eggs without affecting egg color. Poult. Sci. 2023, 102, 102523. [Google Scholar] [CrossRef]
- Nair, D.V.T.; Manjankattil, S.; Peichel, C.; Martin, W.; Donoghue, A.M.; Venkitanarayanan, K.; Kollanoor Johny, A. Effect of plant-derived antimicrobials, eugenol, carvacrol, and β-resorcylic acid against Salmonella on organic chicken wings and carcasses. Poult. Sci. 2023, 102, 102886. [Google Scholar] [CrossRef] [PubMed]
- Trampel, D.W.; Holder, T.G.; Gast, R.K. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J. Appl. Poult. Res. 2014, 23, 353–365. [Google Scholar] [CrossRef]
- Moon, S.H.; Waite-Cusic, J.; Huang, E. Control of Salmonella in Chicken Meat using a Combination of a Commercial Bacteriophage and Plant-based Essential oils. Food Control 2020, 110, 106984. [Google Scholar] [CrossRef]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture USDA-FSIS. Guideline for Controlling Salmonella in Raw Poultry. Available online: https://www.fsis.usda.gov/policy/federal-register-rulemaking/federal-register-rules/salmonella-framework-raw-poultry-products (accessed on 12 December 2024).
- Thanki, A.M.; Hooton, S.; Whenham, N.; Salter, M.G.; Bedford, M.R.; O’Neill, H.V.M.; Clokie, M.R.J. A Bacteriophage Cocktail Delivered in Feed Significantly Reduced Salmonella Colonization in Challenged Broiler Chickens. Emerg. Microbes Infect. 2023, 12, 2217947. [Google Scholar] [CrossRef]
- Doughman, E. Bacteriophages Could Improve Salmonella Control in Poultry. WATTPoultry. Available online: https://www.wattagnet.com/broilers-turkeys/food-safety/news/15710635/bacteriophages-could-improve-salmonella-control-in-poultry (accessed on 10 January 2025).
- Żbikowska, K.; Michalczuk, M.; Dolka, B. The use of bacteriophages in the poultry industry. Animals 2020, 10, 872. [Google Scholar] [CrossRef]
- Shehata, A.M.; Paswan, V.K.; Attia, Y.A.; Abdel-Moneim, A.M.E.; Abougabal, M.S.; Sharaf, M.; Elmazoudy, R.; Alghafari, W.T.; Osman, M.A.; Farag, M.R.; et al. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. J. Anim. 2021, 11, 3491. [Google Scholar] [CrossRef]
- Wong, C.L.; Sieo, C.C.; Tan, W.S.; Abdullah, N.; Hair-Bejo, M.; Abu, J.; Ho, Y.W. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int. J. Food Microbiol. 2014, 172, 92–101. [Google Scholar] [CrossRef]
- Lorenzo-Rebenaque, L.; Malik, D.J.; Catalá-Gregori, P.; Marin, C.; Sevilla-Navarro, S. In vitro and in vivo gastrointestinal survival of non-encapsulated and microencapsulated salmonella bacteriophages: Implications for bacteriophage therapy in poultry. Pharmaceuticals 2021, 14, 434. [Google Scholar] [CrossRef]
- Lorenzo-Rebenaque, L.; Casto-Rebollo, C.; Diretto, G.; Frusciante, S.; Rodríguez, J.C.; Ventero, M.-P.; Molina-Pardines, C.; Vega, S.; Marin, C.; Marco-Jiménez, F. Examining the effects of salmonella phage on the caecal microbiota and metabolome features in salmonella-free broilers. Front. Genet. 2022, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- Eltholth, M.M.; Mohamed, R.A.; Elgohary, F.A.; Abo Elfadl, E.A. Assessment of Biosecurity Practices in broiler Chicken Farms in Gharbia Governorate, Egypt. Alex. J. Vet. Sci. 2016, 49, 68–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betiku, E.; Ogundipe, T.T.; Kalapala, T.; Obe, T. A Mini-Review on Multi-Hurdle Control of Salmonella Along Poultry Production Continuum. Animals 2025, 15, 875. https://doi.org/10.3390/ani15060875
Betiku E, Ogundipe TT, Kalapala T, Obe T. A Mini-Review on Multi-Hurdle Control of Salmonella Along Poultry Production Continuum. Animals. 2025; 15(6):875. https://doi.org/10.3390/ani15060875
Chicago/Turabian StyleBetiku, Eniola, T. Tiwa Ogundipe, Tanmaie Kalapala, and Tomi Obe. 2025. "A Mini-Review on Multi-Hurdle Control of Salmonella Along Poultry Production Continuum" Animals 15, no. 6: 875. https://doi.org/10.3390/ani15060875
APA StyleBetiku, E., Ogundipe, T. T., Kalapala, T., & Obe, T. (2025). A Mini-Review on Multi-Hurdle Control of Salmonella Along Poultry Production Continuum. Animals, 15(6), 875. https://doi.org/10.3390/ani15060875