Effect of eCG on Terminal Follicular Growth and Corpus Luteum Development and Blood Perfusion in Estrous-Synchronized White Lamphun Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care and Management
2.2. The Experimental Design and Treatment Protocols
2.3. Ultrasound Assessment of Follicular Development and Ovulation
2.4. Ultrasound Assessment of CL Diameter and Luteal Area
2.5. Analysis of Tissue and Colored Areas of the CL
2.6. Assessment of Plasma P4 Levels
2.7. Statistical Analysis
3. Results
3.1. Development and the TFGR
3.2. Development of the CL
3.3. Blood Perfusion Indices and Plasma P4 Levels
3.4. Pearson’s Correlation Coefficients for Various Parameters of the TF, the CL, and P4 Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahlen, C.; Larson, J.; Lamb, G.C. Impacts of reproductive technologies on beef production in the United States. Curr. Future Reprod. Technol. World Food Prod. 2014, 752, 97–114. [Google Scholar]
- Vasconcelos, J.L.M.; de Sá Filho, O.G.; Cooke, R.F. Impacts of reproductive technologies on beef production in South America. Curr. Future Reprod. Technol. World Food Prod. 2014, 752, 161–180. [Google Scholar]
- Ahola, J.; Seidel, G.; Whittier, J. Use of Gonadotropin-Releasing Hormone at Fixed-Time Artificial Insemination at Eighty or Ninety-Seven Hours Post Prostaglandin F2α in Beef Cows Administered the Long-Term Melengestrol Acetate Select Synch. Prof. Anim. Sci. 2009, 25, 256–261. [Google Scholar] [CrossRef]
- Sartori, R.; Bastos, M.; Baruselli, P.S.; Gimenes, L.U.; Ereno, R.L.; Barros, C. Physiological differences and implications to reproductive management of Bos taurus and Bos indicus cattle in a tropical environment. Reprod Domest. Rumin. 2011, 7, 357. [Google Scholar]
- Sartori, R.; Monteiro, P., Jr.; Wiltbank, M. Endocrine and metabolic differences between Bos taurus and Bos indicus cows and implications for reproductive management. Anim. Reprod. 2018, 13, 168–181. [Google Scholar] [CrossRef]
- Colazo, M.; Behrouzi, A.; Ambrose, D.; Mapletoft, R. Diameter of the ovulatory follicle at timed artificial insemination as a predictor of pregnancy status in lactating dairy cows subjected to GnRH-based protocols. Theriogenology 2015, 84, 377–383. [Google Scholar] [CrossRef]
- Bó, G.; Baruselli, P.S.; Martínez, M. Pattern and manipulation of follicular development in Bos indicus cattle. Anim. Reprod. Sci. 2003, 78, 307–326. [Google Scholar] [CrossRef]
- Sá Filho, M.d.; Crespilho, A.; Santos, J.; Perry, G.; Baruselli, P.S. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Anim. Reprod. Sci. 2010, 120, 23–30. [Google Scholar] [CrossRef]
- Sartori, R.; Fricke, P.M.; Ferreira, J.C.; Ginther, O.; Wiltbank, M.C. Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol. Reprod. 2001, 65, 1403–1409. [Google Scholar] [CrossRef]
- Gimenes, L.U.; Sá Filho, M.d.; Carvalho, N.d.; Torres-Júnior, J.; Souza, A.d.; Madureira, E.; Trinca, L.; Sartorelli, E.; Barros, C.; Carvalho, J. Follicle deviation and ovulatory capacity in Bos indicus heifers. Theriogenology 2008, 69, 852–858. [Google Scholar] [CrossRef]
- Lonergan, P. Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology 2011, 76, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W. Contributions of an animal scientist to understanding the biology of the uterus and pregnancy. Reprod. Fertil. Dev. 2012, 25, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.; Lamming, G. Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 2001, 121, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Baruselli, P.S.; Reis, E.; Marques, M.; Nasser, L.; Bó, G. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim. Reprod. Sci. 2004, 82, 479–486. [Google Scholar] [CrossRef]
- Siqueira, L.; Oliveira, J.; Rovani, M.; Ferreira, R.; Borges, L.; Gonçalves, P. Effects of estradiol and progestins on follicular regression before, during, and after follicular deviation in postpartum beef cows. Theriogenology 2009, 71, 614–619. [Google Scholar] [CrossRef]
- Borges, L.F.K.; Ferreira, R.; Siqueira, L.C.; Bohrer, R.C.; Borstmann, J.W.; Oliveira, J.F.C.d.; Gonçalves, P.B.D. Artificial insemination system without estrous observation in suckled beef cows. Ciência Rural 2009, 39, 496–501. [Google Scholar] [CrossRef]
- Ross, P.J.; Aller, J.F.; Callejas, S.S.; Butler, H.; Alberio, R.H. Estradiol benzoate given 0 or 24 h after the end of a progestagen treatment in postpartum suckled beef cows. Theriogenology 2004, 62, 265–273. [Google Scholar] [CrossRef]
- Murphy, B.D.; Martinuk, S.D. Equine chorionic gonadotropin. Endocr. Rev. 1991, 12, 27–44. [Google Scholar] [CrossRef]
- Roche, J.; Crowe, M.; Boland, M. Postpartum anoestrus in dairy and beef cows. Anim. Reprod. Sci. 1992, 28, 371–378. [Google Scholar] [CrossRef]
- Abedel-Majed, M.A.; Romereim, S.M.; Davis, J.S.; Cupp, A.S. Perturbations in lineage specification of granulosa and theca cells may alter corpus luteum formation and function. Front. Endocrinol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Mathew, D.J.; Passaro, C.; Fair, T.; Lonergan, P. Embryonic maternal interaction in cattle and its relationship with fertility. Reprod. Domest. Anim. 2018, 53, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Wiltbank, M.; Souza, A.; Carvalho, P.; Cunha, A.; Giordano, J.; Fricke, P.; Baez, G.; Diskin, M. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 2014, 8, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Moorey, S.E.; Hessock, E.A.; Edwards, J.L. Preovulatory follicle contributions to oocyte competence in cattle: Importance of the ever-evolving intrafollicular environment leading up to the luteinizing hormone surge. J. Anim. Sci. 2022, 100, skac153. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.B.; Fair, T.; Seneda, M.M. Environment of the ovulatory follicle: Modifications and use of biotechnologies to enhance oocyte competence and increase fertility in cattle. Animal 2023, 17, 100866. [Google Scholar] [CrossRef]
- Abdelnaby, E.A.; El-Maaty, A.M.A.; Ragab, R.S.; Seida, A.A. Dynamics of uterine and ovarian arteries flow velocity waveforms and their relation to follicular and luteal growth and blood flow vascularization during the estrous cycle in Friesian cows. Theriogenology 2018, 121, 112–121. [Google Scholar] [CrossRef]
- Nuttinck, F.; Gall, L.; Ruffini, S.; Laffont, L.; Clement, L.; Reinaud, P.; Adenot, P.; Grimard, B.; Charpigny, G.; Marquant-Le Guienne, B. PTGS2-related PGE2 affects oocyte MAPK phosphorylation and meiosis progression in cattle: Late effects on early embryonic development. Biol. Reprod. 2011, 84, 1248–1257. [Google Scholar] [CrossRef]
- Anchordoquy, J.M.; Anchordoquy, J.P.; Testa, J.A.; Sirini, M.Á.; Furnus, C.C. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biol. Int. 2015, 39, 1090–1098. [Google Scholar] [CrossRef]
- Eversole, D.E.; Browne, M.F.; Hall, J.B.; Dietz, R.E. Body Condition Scoring Beef Cows; Tech. Rep. Publication 400–791; Cooperative Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- Hasegawa, H.; Nishimura, R.; Yamashita, M.; Yamaguchi, T.; Hishinuma, M.; Okuda, K. Effect of hypoxia on progesterone production by cultured bovine early and mid luteal cells. J. Reprod. Dev. 2019, 65, 67–72. [Google Scholar] [CrossRef]
- Sales, J.N.d.S.; Crepaldi, G.A.; Girotto, R.; Souza, A.; Baruselli, P.S. Fixed-time AI protocols replacing eCG with a single dose of FSH were less effective in stimulating follicular growth, ovulation, and fertility in suckled-anestrus Nelore beef cows. Anim. Reprod. Sci. 2011, 124, 12–18. [Google Scholar] [CrossRef]
- Sá Filho, M.F.d.; Ayres, H.; Ferreira, R.; Marques, M.; Reis, E.; Silva, R.; Rodrigues, C.; Madureira, E.H.; Bó, G.; Baruselli, P.S. Equine chorionic gonadotropin and gonadotropin-releasing hormone enhance fertility in a norgestomet-based, timed artificial insemination protocol in suckled Nelore (Bos indicus) cows. Theriogenology 2010, 73, 651–658. [Google Scholar] [CrossRef]
- Ginther, O. The theory of follicle selection in cattle. Domest. Anim. Endocrinol. 2016, 57, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Soumano, K.; Lussier, J.; Price, C. Levels of messenger RNA encoding ovarian receptors for FSH and LH in cattle during superovulation with equine chorionic gonadotrophin versus FSH. J. Endocrinol. 1998, 156, 373–378. [Google Scholar] [CrossRef]
- Peres, R.; Júnior, I.C.; Sá Filho, O.; Nogueira, G.d.P.; Vasconcelos, J.L.M. Strategies to improve fertility in Bos indicus postpubertal heifers and nonlactating cows submitted to fixed-time artificial insemination. Theriogenology 2009, 72, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, J.; Sartori, R.; Oliveira, H.; Guenther, J.; Wiltbank, M. Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology 2001, 56, 307–314. [Google Scholar] [CrossRef]
- Baruselli, P.S.; Ferreira, R.M.; Sá Filho, M.F.; Nasser, L.F.; Rodrigues, C.A.; Bó, G.A. Bovine embryo transfer recipient synchronisation and management in tropical environments. Reprod. Fertil. Dev. 2009, 22, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Elizur, S.; Son, W.; Clarke, H.; Morris, D.; Gidoni, Y.; Demirtas, E.; Tan, S. A unique biological in-vivo model to evaluate follicular development during in-vitro maturation treatment. Reprod. BioMed. Online 2011, 22, 257–262. [Google Scholar] [CrossRef]
- Pugliesi, G.; Santos, F.; Lopes, E.; Nogueira, É.; Maio, J.; Binelli, M. Improved fertility in suckled beef cows ovulating large follicles or supplemented with long-acting progesterone after timed-AI. Theriogenology 2016, 85, 1239–1248. [Google Scholar] [CrossRef]
- França, M.; Mesquita, F.; Lopes, E.; Pugliesi, G.; Van Hoeck, V.; Chiaratti, M.; Membrive, C.; Papa, P.d.C.; Binelli, M. Modulation of periovulatory endocrine profiles in beef cows: Consequences for endometrial glucose transporters and uterine fluid glucose levels. Domest. Anim. Endocrinol. 2015, 50, 83–90. [Google Scholar] [CrossRef]
- Tomac, J.; Cekinović, Đ.; Arapović, J. Biology of the corpus luteum. Period. Biol. 2011, 113, 43–49. [Google Scholar]
- De Tarso, S.; Apgar, G.; Gastal, M.; Gastal, E. Relationships between follicle and corpus luteum diameter, blood flow, and progesterone production in beef cows and heifers: Preliminary results. Anim. Reprod. 2018, 13, 81–92. [Google Scholar] [CrossRef]
- Bezerra Moura, C.E.; Rigoglio, N.N.; Braz, J.K.F.S.; Machado, M.; Baruselli, P.S.; De Carvalho Papa, P. Microvascularization of corpus luteum of bovine treated with equine chorionic gonadotropin. Microsc. Res. Tech. 2015, 78, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, R.D.; Ferreira, R.; Dos Santos, J.T.; de Andrade Neto, O.S.; Barreta, M.H.; Oliveira, J.F.; Gonçalves, P.B.; Neves, J.P. The effect of equine chorionic gonadotropin on follicular size, luteal volume, circulating progesterone concentrations, and pregnancy rates in anestrous beef cows treated with a novel fixed-time artificial insemination protocol. Theriogenology 2013, 79, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.P.; Singh, J. Ovarian follicular and luteal dynamics in cattle. In Bovine Reproduction; Hopper, R.M., Ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 292–323. [Google Scholar]
- Rocha, C.C.; Martins, T.; Cardoso, B.O.; Silva, L.A.; Binelli, M.; Pugliesi, G. Ultrasonography-accessed luteal size endpoint that most closely associates with circulating progesterone during the estrous cycle and early pregnancy in beef cows. Anim. Reprod. Sci. 2019, 201, 12–21. [Google Scholar] [CrossRef]
- Jimenez-Krassel, F.; Folger, J.; Ireland, J.; Smith, G.; Hou, X.; Davis, J.; Lonergan, P.; Evans, A.; Ireland, J. Evidence that high variation in ovarian reserves of healthy young adults has a negative impact on the corpus luteum and endometrium during estrous cycles in cattle. Biol. Reprod. 2009, 80, 1272–1281. [Google Scholar] [CrossRef]
- Rhodes, F.; McDougall, S.; Burke, C.; Verkerk, G.; Macmillan, K. Invited review: Treatment of cows with an extended postpartum anestrous interval. J. Dairy Sci. 2003, 86, 1876–1894. [Google Scholar] [CrossRef]
- Kayacik, V.; Salmanoğlu, M.R.; Polat, B.; Özlüer, A. Evaluation of the corpus luteum size throughout the cycle by ultrasonography and progesterone assay in cows. Turk. J. Vet. Anim. Sci. 2005, 29, 1311–1316. [Google Scholar]
- Hart, C.; Voelz, B.; Brockus, K.; Lemley, C. Hepatic steroid inactivating enzymes, hepatic portal blood flow and corpus luteum blood perfusion in cattle. Reprod. Domest. Anim. 2018, 53, 751–758. [Google Scholar] [CrossRef]
- Ishak, G.; Bashir, S.T.; Gastal, M.; Gastal, E. Pre-ovulatory follicle affects corpus luteum diameter, blood flow, and progesterone production in mares. Anim. Reprod. Sci. 2017, 187, 1–12. [Google Scholar] [CrossRef]
- Velho, G.d.S.; Rovani, M.T.; Ferreira, R.; Gasperin, B.G.; Dalto, A.G.C. Blood perfusion and diameter of bovine corpus luteum as predictors of luteal function in early pregnancy. Reprod. Domest. Anim. 2022, 57, 246–252. [Google Scholar] [CrossRef]
- Kaneko, K.; Takagi, N. Accurate ultrasonographic prediction of progesterone concentrations greater than 1 ng/ml in Holstein lactating dairy cows. Reprod. Domest. Anim. 2014, 49, 985–988. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangkate, M.; Yama, P.; Suriard, A.; Butmata, W.; Thammakhantha, S.; Daoloy, N.; Taweechaipaisankul, A.; Lin, C.-J.; Tang, P.-C.; Moonmanee, T.; et al. Effect of eCG on Terminal Follicular Growth and Corpus Luteum Development and Blood Perfusion in Estrous-Synchronized White Lamphun Cattle. Animals 2025, 15, 867. https://doi.org/10.3390/ani15060867
Sangkate M, Yama P, Suriard A, Butmata W, Thammakhantha S, Daoloy N, Taweechaipaisankul A, Lin C-J, Tang P-C, Moonmanee T, et al. Effect of eCG on Terminal Follicular Growth and Corpus Luteum Development and Blood Perfusion in Estrous-Synchronized White Lamphun Cattle. Animals. 2025; 15(6):867. https://doi.org/10.3390/ani15060867
Chicago/Turabian StyleSangkate, Molarat, Punnawut Yama, Atsawadet Suriard, Wichayaporn Butmata, Setthawut Thammakhantha, Noppanit Daoloy, Anukul Taweechaipaisankul, Chih-Jen Lin, Pin-Chi Tang, Tossapol Moonmanee, and et al. 2025. "Effect of eCG on Terminal Follicular Growth and Corpus Luteum Development and Blood Perfusion in Estrous-Synchronized White Lamphun Cattle" Animals 15, no. 6: 867. https://doi.org/10.3390/ani15060867
APA StyleSangkate, M., Yama, P., Suriard, A., Butmata, W., Thammakhantha, S., Daoloy, N., Taweechaipaisankul, A., Lin, C.-J., Tang, P.-C., Moonmanee, T., & Jitjumnong, J. (2025). Effect of eCG on Terminal Follicular Growth and Corpus Luteum Development and Blood Perfusion in Estrous-Synchronized White Lamphun Cattle. Animals, 15(6), 867. https://doi.org/10.3390/ani15060867