Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diet Preparation
2.2. Experimental Fish and Feeding Trial
2.3. Growth Performance
- WG (%) = [(final weight (g) − initial weight (g))/initial weight (g)] × 100
- SGR (%) = [ln (final weight(g)) − ln (initial weight (g))]/days of feeding × 100
- FE (%) = [weight gain/total feed consumed (g)] × 100
- FCR = feed weight as dry (g)/wet weight gain (g)
- SR (%) = [(initial number of fish − number of dead fish)/initial number of fish] ×100
2.4. Temperature Stress Exposure Test
2.4.1. Lethal Temperature Exposure
2.4.2. Acute Temperature Exposure
2.4.3. Temperature Stress Tolerance Assessment
Free Amino Acid Analysis
Plasma Metabolites and Biomarker Analyses
Molecular Response
2.5. Statistical Analysis
3. Results
3.1. Effects of GABA on Growth Performance and Body Composition
3.2. Temperature Stress Tolerance Assessment
3.2.1. Lethal Temperature Exposure
3.2.2. Effects of Temperature on Amino Acid Profile
3.2.3. Effects of Temperature and Dietary GABA on Plasma Metabolites and Biomarkers
(a) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Free Amino Acids (ppm) | Diets | Pr > F | |||||||
GABA70 | GABA174 | GABA275 | GABA396 | GABA476 | GABA516 | ANOVA | Linear | Quadratic | |
Phosphoserine | 14.4 ± 1.7 ns | 20.7 ± 1.9 | 14.4 ± 3.2 | 16.7 ± 0.9 | 18.0 ± 1.3 | 19.7 ± 0.6 | 0.1348 | 0.5838 | 0.8267 |
Taurine | 259 ± 18 ns | 295 ± 10 | 241 ± 36 | 275 ± 5 | 290 ± 1 | 291 ± 5 | 0.2589 | 0.4582 | 0.4938 |
Phosphoethanol amine | 18.1 ± 5.9 ns | 24.6 ± 2.8 | 15.3 ± 5.7 | 18.3 ± 1.3 | 24.4 ± 1.0 | 24.0 ± 3.6 | 0.4193 | 0.621 | 0.4517 |
Aspartic acid | 31.8 ± 7.1 ns | 40.0 ± 3.8 | 26.2 ± 8.7 | 33.3 ± 1.4 | 39.6 ± 1.5 | 39.1 ± 3.3 | 0.3691 | 0.5873 | 0.3881 |
Threonine | 15.7 ± 4.6 ns | 15.7 ± 0.7 | 14.8 ± 6.0 | 17.6 ± 1.2 | 19.4 ± 4.4 | 19.0 ± 0.8 | 0.9142 | 0.4327 | 0.5923 |
Serine | 35.1 ± 8.8 ns | 34.8 ± 1.2 | 32.4 ± 13.3 | 38.6 ± 3.1 | 40.5 ± 6.5 | 41.4 ± 1.3 | 0.9337 | 0.5341 | 0.6336 |
Glutamic acid | 135 ± 32 ns | 191 ± 26 | 110 ± 39 | 147 ± 15 | 181 ± 18 | 174 ± 18 | 0.2783 | 0.5800 | 0.4551 |
Proline | 6.22 ± 3.11 ns | 5.61 ± 0.81 | 7.55 ± 3.80 | 8.38 ± 1.81 | 8.53 ± 3.18 | 7.93 ± 0.81 | 0.9471 | 0.3768 | 0.9667 |
Glycine | 19.3 ± 4.3 ns | 23.1 ± 1.8 | 16.3 ± 6.5 | 21.3 ± 0.4 | 22.5 ± 2.6 | 24.2 ± 0.2 | 0.6256 | 0.6776 | 0.6125 |
Alanine | 39.4 ± 12.8 ns | 38.3 ± 1.3 | 36.6 ± 15.1 | 44.9 ± 5.5 | 54.1 ± 11.0 | 52.2 ± 3.7 | 0.7029 | 0.2602 | 0.4127 |
Valine | 8.65 ± 3.06 ns | 6.72 ± 1.42 | 9.44 ± 4.02 | 10.24 ± 1.69 | 10.61 ± 3.78 | 10.01 ± 1.03 | 0.922 | 0.4105 | 0.7981 |
Cystine | 0.00 ± 0.00 ns | 0.31 ± 0.31 | 0.22 ± 0.22 | 0.59 ± 0.17 | 0.33 ± 0.20 | 0.34 ± 0.18 | 0.5028 | 0.1584 | 0.3882 |
Methionine | 13.6 ± 3.6 ns | 14.3 ± 0.5 | 12.6 ± 5.1 | 14.3 ± 0.7 | 12.1 ± 5.9 | 15.6 ± 0.5 | 0.9822 | 0.8067 | 0.8619 |
Isoleucine | 6.74 ± 2.49 ns | 5.61 ± 0.78 | 7.29 ± 3.08 | 7.94 ± 0.89 | 8.21 ± 2.82 | 7.85 ± 0.66 | 0.9464 | 0.4345 | 0.8221 |
Leucine | 16.7 ± 5.8 ns | 14.4 ± 2.3 | 17.0 ± 7.2 | 18.9 ± 2.1 | 19.4 ± 5.6 | 19.2 ± 1.7 | 0.9652 | 0.5098 | 0.7802 |
Tyrosine | 8.05 ± 2.82 ns | 6.15 ± 1.08 | 8.26 ± 3.50 | 9.14 ± 1.31 | 8.45 ± 2.77 | 8.16 ± 1.01 | 0.9613 | 0.6136 | 0.8909 |
Phenylalanine | 10.6 ± 9.59 ns | 9.59 ± 1.0 | 10.25 ± 4.1 | 12.03 ± 1.0 | 12.54 ± 3.01 | 11.8 ± 0.7 | 0.945 | 0.4247 | 0.6652 |
b-amino isobutyric acid | 0.00 ± 0.00 ns | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.09 ± 0.90 | 1.50 ± 1.50 | 0.00 ± 0.00 | 0.5565 | 0.1099 | 0.4486 |
γ-aminobutyric acid | 62.5 ± 17.2 ns | 80.7 ± 0.5 | 62.3 ± 22.3 | 71.6 ± 3.6 | 84.3 ± 3.9 | 82.9 ± 2.9 | 0.6124 | 0.3713 | 0.709 |
Histidine | 74.6 ± 18.8 ns | 57.8 ± 4.4 | 79.0 ± 32.9 | 85.7 ± 10.7 | 89.9 ± 22.0 | 83.8 ± 2.6 | 0.8528 | 0.3373 | 0.6994 |
Ammonia | 0.00 ± 0.00 ns | 0.15 ± 0.15 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.12 ± 0.12 | 0.5682 | 0.5608 | 0.6223 |
Arginine | 27.7 ± 10.3 ns | 20.6 ± 0.9 | 23.9 ± 9.6 | 28.6 ± 3.2 | 25.6 ± 3.2 | 26.0 ± 2.3 | 0.9461 | 0.8451 | 0.6831 |
(b) | |||||||||
Free Amino Acids (ppm) | Diets | Pr > F | |||||||
Control | GABA174 | GABA275 | GABA396 | GABA476 | GABA516 | ANOVA | Linear | Quadratic | |
Phosphoserine | 4.46 ± 0.32 ns | 4.72 ± 0.82 | 5.17 ± 0.75 | 4.58 ± 0.67 | 4.75 ± 0.77 | 5.51 ± 1.37 | 0.9456 | 0.8683 | 0.7024 |
Taurine | 68.5 ± 7.7 ns | 75.7 ± 9.0 | 83.2 ± 10.0 | 83.6 ± 5.5 | 77.6 ± 11.0 | 89.0 ± 13.0 | 0.7358 | 0.4115 | 0.3758 |
Aspartic acid | 19.8 ± 2.8 ns | 19.4 ± 2.6 | 22.3 ± 4.2 | 22.9 ± 1.0 | 21.2 ± 3.2 | 27.0 ± 4.4 | 0.6156 | 0.5474 | 0.6948 |
Threonine | 23.7 ± 3.5 ns | 24.2 ± 3.8 | 27.3 ± 5.1 | 28.5 ± 1.6 | 26.3 ± 3.9 | 34.2 ± 6.5 | 0.5831 | 0.5084 | 0.6584 |
Serine | 29.5 ± 4.3 ns | 30.6 ± 4.2 | 34.8 ± 6.4 | 35.4 ± 1.7 | 32.0 ± 4.3 | 41.4 ± 7.6 | 0.6304 | 0.5592 | 0.5243 |
Asparagine | 45.7 ± 4.4 ns | 51.1 ± 8.3 | 55.0 ± 8.8 | 58.6 ± 3.3 | 49.8 ± 4.0 | 70.4 ± 15.4 | 0.4295 | 0.5694 | 0.3841 |
Glutamic acid | 53.3 ± 6.7 ns | 53.9 ± 8.4 | 61.1 ± 11.0 | 64.7 ± 3.3 | 56.8 ± 7.3 | 76.6 ± 14.7 | 0.5177 | 0.5559 | 0.5629 |
a-amino adipic acid | 2.89 ± 0.21 ns | 3.18 ± 0.53 | 3.29 ± 0.47 | 3.50 ± 0.21 | 3.00 ± 0.33 | 4.19 ± 0.72 | 0.4145 | 0.7164 | 0.387 |
Proline | 15.0 ± 1.7 ns | 15.9 ± 2.0 | 17.4 ± 2.7 | 17.8 ± 0.9 | 11.7 ± 6.1 | 20.6 ± 3.4 | 0.5361 | 0.6483 | 0.2405 |
Glycine | 17.0 ± 2.4 ns | 17.6 ± 2.2 | 20.2 ± 3.6 | 21.0 ± 0.8 | 18.2 ± 2.1 | 24.1 ± 4.6 | 0.5404 | 0.5256 | 0.4342 |
Alanine | 33.2 ± 4.9 ns | 34.2 ± 4.4 | 39.2 ± 7.5 | 40.8 ± 1.6 | 36.0 ± 4.5 | 46.8 ± 8.6 | 0.5858 | 0.5123 | 0.4995 |
Valine | 20.0 ± 3.3 ns | 20.4 ± 2.9 | 23.1 ± 4.4 | 23.8 ± 2.2 | 23.2 ± 3.4 | 26.9 ± 4.1 | 0.7516 | 0.3898 | 0.7579 |
Cystine | 2.76 ± 0.33 ns | 3.60 ± 0.88 | 3.15 ± 0.84 | 4.95 ± 0.60 | 3.61 ± 0.57 | 6.39 ± 2.44 | 0.3111 | 0.4246 | 0.639 |
Methionine | 21.0 ± 2.6 ns | 22.3 ± 3.4 | 24.7 ± 4.8 | 26.1 ± 1.7 | 23.5 ± 2.9 | 31.0 ± 6.0 | 0.5333 | 0.4740 | 0.5485 |
Isoleucine | 15.4 ± 2.3 ns | 15.8 ± 2.7 | 18.0 ± 4.0 | 18.4 ± 1.8 | 17.0 ± 1.9 | 22.8 ± 5.1 | 0.6319 | 0.5784 | 0.6687 |
Leucine | 49.9 ± 7.1 ns | 52.4 ± 9.1 | 58.4 ± 11.4 | 61.6 ± 4.3 | 54.9 ± 7.0 | 75.5 ± 16.0 | 0.5308 | 0.5497 | 0.5761 |
Tyrosine | 24.5 ± 4.4 ns | 25.0 ± 4.7 | 29.1 ± 6.1 | 30.08 ± 3.1 | 25.2 ± 2.8 | 35.6 ± 7.5 | 0.6145 | 0.6870 | 0.4813 |
Phenylalanine | 22.2 ± 2.4 ns | 23.3 ± 4.2 | 25.3 ± 5.5 | 27.4 ± 0.9 | 24.5 ± b2.6 | 35.6 ± 7.7 | 0.3722 | 0.5540 | 0.6459 |
γ-aminobutyric acid | 7.74 ± 1.20 ns | 8.77 ± 1.13 | 10.7 ± 1.6 | 10.4 ± 1.8 | 9.62 ± 1.63 | 12.0 ± 2.2 | 0.5407 | 0.3160 | 0.3627 |
Histidine | 9.92 ± 1.46 ns | 10.4 ± 1.7 | 11.6 ± 2.2 | 12.1 ± 0.7 | 11.0 ± 1.2 | 14.3 ± 2.8 | 0.599 | 0.5131 | 0.5810 |
Lysine | 19.1 ± 3.0 ns | 19.9 ± 2.8 | 23.1 ± 5.1 | 25.4 ± 0.7 | 22.0 ± 2.4 | 28.3 ± 5.9 | 0.5256 | 0.3471 | 0.5156 |
Ammonia | 9.79 ± 1.00 ns | 8.30 ± 0.85 | 10.8 ± 1.1 | 11.6 ± 0.4 | 10.2 ± 1.8 | 11.2 ± 1.7 | 0.5121 | 0.3063 | 0.7737 |
Arginine | 24.2 ± 2.3 ns | 31.8 ± 6.0 | 34.8 ± 7.2 | 37.1 ± 0.9 | 28.5 ± 3.2 | 42.3 ± 8.1 | 0.2769 | 0.4248 | 0.1222 |
(c) | |||||||||
Free Amino Acids (ppm) | Diets | Pr > F | |||||||
Control | GABA174 | GABA275 | GABA396 | GABA476 | GABA516 | ANOVA | Linear | Quadratic | |
Phosphoserine | 10.3 ± 2.2 ns | 11.3 ± 1.7 | 10.5 ± 1.8 | 12.5 ± 1.3 | 13.6 ± 1.0 | 14.2 ± 0.5 | 0.3834 | 0.1252 | 0.6211 |
Taurine | 5.11 ± 0.89 ns | 5.86 ± 1.86 | 5.39 ± 1.30 | 5.92 ± 0.31 | 6.06 ± 0.33 | 7.22 ± 0.72 | 0.7869 | 0.5659 | 0.9542 |
Aspartic acid | 1.25 ± 0.31 ns | 1.51 ± 0.54 | 1.32 ± 0.31 | 1.34 ± 0.33 | 1.51 ± 0.20 | 1.90 ± 0.09 | 0.7534 | 0.7427 | 0.9900 |
Threonine | 5.74 ± 1.80 ns | 6.80 ± 1.09 | 5.90 ± 0.83 | 6.37 ± 1.30 | 7.62 ± 1.17 | 8.49 ± 0.77 | 0.5866 | 0.4008 | 0.7069 |
Serine | 7.30 ± 2.05 ns | 8.76 ± 1.48 | 7.87 ± 1.40 | 8.91 ± 1.58 | 10.02 ± 1.31 | 10.5 ± 0.7 | 0.6483 | 0.2537 | 0.8289 |
Asparagine | 11.6 ± 3.9 ns | 13.5 ± 0.70 | 11.9 ± 1.8 | 13.7 ± 2.4 | 16.3 ± 3.3 | 16.1 ± 1.9 | 0.6932 | 0.2588 | 0.6321 |
Glutamic acid | 7.88 ± 2.21 ns | 9.02 ± 1.52 | 7.89 ± 1.08 | 8.21 ± 1.57 | 9.79 ± 1.53 | 11.9 ± 1.43 | 0.4958 | 0.5611 | 0.7041 |
Proline | 3.19 ± 1.05 ns | 3.76 ± 0.48 | 3.58 ± 0.96 | 3.72 ± 0.96 | 3.81 ± 1.04 | 4.09 ± 0.35 | 0.9851 | 0.6667 | 0.8465 |
Glycine | 1.97 ± 0.66 ns | 2.25 ± 0.43 | 1.98 ± 0.32 | 2.25 ± 0.56 | 2.56 ± 0.42 | 2.88 ± 0.32 | 0.7168 | 0.4339 | 0.7348 |
Alanine | 8.84 ± 2.16 ns | 10.4 ± 0.9 | 8.93 ± 1.28 | 10.3 ± 1.4 | 11.7 ± 0.9 | 12.01 ± 2.4 | 0.4278 | 0.2031 | 0.6290 |
Valine | 3.23 ± 0.76 ns | 3.46 ± 0.50 | 3.08 ± 0.51 | 4.36 ± 0.72 | 3.68 ± 0.41 | 4.10 ± 0.28 | 0.5674 | 0.3223 | 0.9414 |
Cystine | 3.35 ± 1.40 ns | 3.73 ± 1.26 | 4.38 ± 1.41 | 3.20 ± 1.20 | 2.79 ± 0.82 | 5.30 ± 0.83 | 0.6894 | 0.6598 | 0.4488 |
Methionine | 8.95 ± 3.45 ns | 10.5 ± 1.7 | 9.45 ± 1.52 | 9.10 ± 2.11 | 11.8 ± 2.11 | 14.0 ± 1.8 | 0.5753 | 0.5548 | 0.7290 |
Isoleucine | 2.15 ± 0.38 ns | 3.00 ± 0.30 | 2.44 ± 0.87 | 3.22 ± 0.26 | 3.09 ± 0.16 | 4.09 ± 0.42 | 0.1227 | 0.1711 | 0.7186 |
Leucine | 14.0 ± 5.3 ns | 14.4 ± 2.3 | 13.3 ± 1.4 | 14.8 ± 2.9 | 16.7 ± 1.9 | 20.1 ± 2.3 | 0.6285 | 0.5441 | 0.6209 |
Tyrosine | 9.50 ± 3.92 ns | 10.9 ± 2.0 | 10.3 ± 1.7 | 10.5 ± 2.7 | 13.0 ± 2.6 | 14.0 ± 2.3 | 0.8135 | 0.4445 | 0.7664 |
Phenylalanine | 6.14 ± 2.62 ns | 5.99 ± 1.35 | 5.52 ± 0.68 | 7.68 ± 2.58 | 7.15 ± 1.09 | 11.6 ± 1.3 | 0.2286 | 0.5192 | 0.7831 |
γ-aminobutyric acid | 11.8 ± 2.4 ns | 13.5 ± 1.5 | 13.0 ± 2.1 | 14.8 ± 2.0 | 17.5 ± 1.7 | 16.9 ± 0.3 | 0.2481 | 0.0563 | 0.5308 |
Histidine | 3.79 ± 1.33 ns | 4.41 ± 0.91 | 3.90 ± 0.65 | 4.41 ± 0.86 | 4.91 ± 0.78 | 5.76 ± 0.49 | 0.6436 | 0.4346 | 0.8170 |
Ornithine | 10.6 ± 4.8 ns | 11.7 ± 2.4 | 11.0 ± 1.8 | 10.3 ± 2.9 | 16.6 ± 2.3 | 19.6 ± 2.4 | 0.2016 | 0.2725 | 0.3645 |
Lysine | 36.2 ± 10.1 ns | 40.8 ± 4.6 | 34.6 ± 4.6 | 36.5 ± 4.4 | 48.8 ± 7.7 | 55.2 ± 4.1 | 0.2080 | 0.3157 | 0.3395 |
Ammonia | 9.97 ± 2.37 ns | 8.86 ± 0.74 | 7.07 ± 0.56 | 7.92 ± 0.41 | 10.1 ± 1.5 | 12.3 ± 0.7 | 0.1219 | 0.8760 | 0.0694 |
Arginine | 31.6 ± 7.9 ns | 34.4 ± 1.96 | 33.4 ± 5.0 | 36.6 ± 4.4 | 45.3 ± 4.9 | 46.7 ± 3.2 | 0.2056 | 0.0808 | 0.4015 |
Temperature (°C) | Diet | GOT 2 (U/L) | GPT 3 (U/L) | GLU 4 (mg/dL) | TG 5 (mg/dL) | TP 6 (mg/dL) | TCHO 7 (g/L) |
---|---|---|---|---|---|---|---|
Interactive effects between diet and temperature | |||||||
19.5 | GABA70 | 16.7 ± 1.2 ns | 13.3 ± 0.7 ns | 12.0 ± 1.7 ns | 241 ± 21.9 ns | 3.10 ± 0.10 ns | 161 ± 8 ns |
GABA174 | 15.3 ± 0.3 | 14.0 ± 0.6 | 12.7 ± 0.3 | 194 ± 22.8 | 3.10 ± 0.10 | 161 ± 6 | |
GABA275 | 17.7 ± 2.4 | 16.7 ± 2.3 | 15.0 ± 2.1 | 273 ± 50 | 2.83 ± 0.10 | 159 ± 8 | |
GABA396 | 14.3 ± 0.9 | 13.0 ± 0.6 | 13.0 ± 0.6 | 230 ± 28 | 2.77 ± 0.10 | 137 ± 3 | |
GABA476 | 19.0 ± 2.5 | 14.3 ± 1.2 | 12.7 ± 0.3 | 237 ± 9.7 | 2.87 ± 0.10 | 140 ± 4 | |
GABA516 | 19.7 ± 2.6 | 15.3 ± 2.3 | 14.3 ± 0.3 | 271 ± 35 | 3.00 ± 0.10 | 171 ± 13 | |
29 | GABA70 | 43.7 ± 8.2 | 27.0 ± 2.0 | 50.2 ± 16.8 | 241 ± 26 | 3.10 ± 0.10 | 160 ± 7 |
GABA174 | 50.3 ± 21.1 | 35.0 ± 8.6 | 116 ± 19 | 263 ± 13 | 3.23 ± 0.20 | 154 ± 8 | |
GABA275 | 37.3 ± 7.4 | 28.3 ± 2.3 | 64.3 ± 11.6 | 233 ± 28 | 3.07 ± 0.00 | 155 ± 8 | |
GABA396 | 28.7 ± 7.7 | 26.7 ± 6.7 | 33.0 ± 6.2 | 295 ± 7 | 3.30 ± 0.40 | 160 ± 12 | |
GABA476 | 33.0 ± 3.8 | 32.7 ± 8.2 | 77.0 ± 15.2 | 236 ± 21 | 3.33 ± 0.40 | 156 ± 2 | |
GABA516 | 85.0 ± 16.8 | 31.3 ± 3.3 | 72.2 ± 5.6 | 250 ± 21 | 3.23 ± 0.10 | 168 ± 11 | |
Main effects of temperature | |||||||
19.5 | 17.1 ± 0.8 b | 14.4 ± 0.6 b | 13.3 ± 0.5 b | 241 ± 12 ns | 2.94 ± 0.00 b | 155 ± 4 ns | |
29 | 46.3 ± 6.2 a | 30.2 ± 2.1 a | 68.7 ± 7.7 a | 253 ± 9 | 3.21 ± 0.1 a | 159 ± 3 | |
Main effects of diet | |||||||
GABA70 | 30.2 ± 7.1 ns | 20.2 ± 3.2 ns | 31.1 ± 11 ns | 241 ± 15 ns | 3.10 ± 0.1 ns | 161 ± 5 ns | |
GABA174 | 32.8 ± 12.3 | 24.5 ± 6.1 | 64.2 ± 24.6 | 228 ± 20 | 3.15 ± 0.1 | 158 ± 6 | |
GABA275 | 27.5 ± 5.6 | 22.5 ± 3.0 | 39.7 ± 12.2 | 253 ± 27 | 2.95 ± 0.1 | 157 ± 5 | |
GABA396 | 21.5 ± 4.7 | 19.8 ± 4.0 | 23.0 ± 5.3 | 263 ± 20 | 3.03 ± 0.2 | 148 ± 8 | |
GABA476 | 26.0 ± 3.7 | 23.5 ± 5.5 | 44.8 ± 15.9 | 237 ± 10 | 3.10 ± 0.2 | 148 ± 4 | |
GABA516 | 52.3 ± 16.5 | 23.3 ± 4.0 | 43.3 ± 13.2 | 260 ± 19 | 3.12 ± 0.1 | 170 ± 8 | |
Two-way ANOVA (p-values) | |||||||
Temperature | <0.0001 | <0.0001 | <0.0001 | 0.4336 | 0.0235 | 0.4408 | |
Diet | 0.0517 | 0.8492 | 0.061 | 0.7289 | 0.923 | 0.1455 | |
Temperature × Diet | 0.6700 | 0.8932 | 0.060 | 0.2222 | 0.7647 | 0.4106 |
3.2.4. Effects of Temperature and Dietary GABA on Molecular Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korean Statistical Information Service (KOSIS). Korean Statistical Information Service, Korea. 2023. Available online: https://kosis.kr/eng/ (accessed on 21 October 2024).
- National Institute of Fisheries Science (NIFS). Annual Report for Climate Change Trends in Fisheries; NIFS: Busan, Republic of Korea, 2023. [Google Scholar]
- Korea Meteorological Administration (KMA). 2019 Climate Change Monitoring Comprehensive Analysis Report. Comprehensive Climate Change Monitoring Information. 2020. Available online: www.climate.go.kr/home/09_monitoring/marine/sst_main (accessed on 3 March 2025).
- Choi, H.M.; Kim, M.K.; Yang, H. Deep-learning model for sea surface temperature prediction near the Korean Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 2023, 208, 105262. [Google Scholar] [CrossRef]
- Han, I.S.; Lee, J.S.; Jung, H.K. Long-term pattern changes of sea surface temperature during summer and winter due to climate change in Korea waters. Fish. Aquat. Sci. 2023, 26, 639–648. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Yang, J.; Han, I. Development of a Marine Climate Model for the Waters Surrounding the Korean Peninsula and Its Application in the Fisheries Sector. J. Korean Fish. Soc. 2024, 57, 177–185. [Google Scholar]
- Lee, S.; Moniruzzaman, M.; Farris, N.; Min, T.; Bai, S.C. Interactive effect of dietary gamma-aminobutyric acid (GABA) and water temperature on growth performance, blood plasma indices, heat shock proteins, and GABAergic gene expression in juvenile olive flounder Paralichthys olivaceus. Metabolites 2023, 13, 619. [Google Scholar] [CrossRef]
- Palaksha, K.J.; Shin, G.W.; Kim, Y.R.; Jung, T.S. Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2008, 24, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.W.; Oliveira, A.T.; Carvalho, T.B. Water temperature modulates social behavior of ornamental cichlid (Pterophyllum scalare) in an artificial system. J. Appl. Aquac. 2023, 35, 410–422. [Google Scholar] [CrossRef]
- Karvonen, A.; Rintamäki, P.; Jokela, J.; Valtonen, E.T. Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int. J. Parasitol. 2010, 40, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Van Weerd, J.H.; Komen, J. The effects of chronic stress on growth in fish: A critical appraisal. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 120, 107–112. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.Y.; Kim, K.H. Effect of water temperature on the protective efficacy of single-cycle rVHSV-GΔTM vaccine in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2020, 105, 270–273. [Google Scholar] [CrossRef]
- Shin, H.S.; An, K.W.; Kim, N.N.; Choi, C.Y. Antioxidant defenses and physiological changes in olive flounder (Paralichthys olivaceus) in response to oxidative stress induced by elevated water temperature. Korean J. Ichthyol. 2010, 22, 1–8. [Google Scholar]
- Kim, B.S.; Jung, S.J.; Choi, Y.J.; Kim, N.N.; Choi, C.Y.; Kim, J.W. Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (Paralichthys olivaceus) at high water temperatures. Fish Shellfish Immunol. 2016, 55, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Koakoski, G.; Oliveira, T.A.; da Rosa, J.G.; Fagundes, M.; Kreutz, L.C.; Barcellos, L.J. Divergent time course of cortisol response to stress in fish of different ages. Physiol. Behav. 2012, 106, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, M.M.; Pereira, C.; Grau, E.G.; Iwama, G.K. Metabolic responses associated with confinement stress in tilapia: The role of cortisol. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1997, 116, 89–95. [Google Scholar] [CrossRef]
- Bloecher, N.; Hedger, R.; Finstad, B.; Olsen, R.E.; Økland, F.; Svendsen, E.; Rosten, C.; Føre, M. Assessment of activity and heart rate as indicators for acute stress in Atlantic salmon. Aquac. Int. 2024, 10, 1–21. [Google Scholar] [CrossRef]
- da Cruz Mattos, D.; Cardoso, L.D.; de Oliveira, A.T.; Screnci-Ribeiro, R.; de Mattos, B.O.; Aride, P.H.; Radael, M.C.; de Souza Motta, J.H.; Vidal, M.V. Effect of temperature on the embryonic and larvae development of discus fish, Symphysodon aequifasciatus and time of first feeding. Zygote 2024, 32, 279–284. [Google Scholar] [CrossRef]
- Castro, P.D.; Ladislau, D.S.; Ribeiro, M.W.; Lopes, A.C.; Lavander, H.D.; Bassul, L.A.; Mattos, D.C.; Liebl, A.R.; Aride, P.H.; Oliveira, A.T. Hematological parameters of three species of the peacock bass (Cichla spp.) from Balbina lake, Presidente Figueiredo, Amazonas, Brazil. Braz. J. Biol. 2020, 81, 62–68. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish. Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef]
- Łątka, K.; Jończyk, J.; Bajda, M. γ-Aminobutyric acid transporters as relevant biological targets: Their function, structure, inhibitors, and role in the therapy of different diseases. Int. J. Biol. Macromol. 2020, 158, 750–772. [Google Scholar] [CrossRef]
- da Santa Lopes, T.; Costas, B.; Ramos-Pinto, L.; Reynolds, P.; Imsland, A.K.; Fernandes, J.M. Exploring the effects of acute stress exposure on lumpfish plasma and liver biomarkers. Animals 2023, 13, 3623. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, S.K.; Priyam, M.; Siddik, M.A.; Kumar, N.; Mishra, P.K.; Gupta, K.K.; Sarkar, B.; Sharma, T.R.; Pattanayak, A. Immunomodulation by dietary supplements: A preventive health strategy for sustainable aquaculture of tropical freshwater fish, Labeo rohita (Hamilton, 1822). Rev. Aquac. 2021, 13, 2364–2394. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, D.K.; Bhushan, S.; Jamwal, A. Mitigating multiple stresses in Pangasianodon hypophthalmus with a novel dietary mixture of selenium nanoparticles and Omega-3-fatty acid. Sci. Rep. 2021, 11, 19429. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Teles, A. Nutrition and health of aquaculture fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef]
- Ruenkoed, S.; Nontasan, S.; Phudkliang, J.; Phudinsai, P.; Pongtanalert, P.; Panprommin, D.; Wangkahart, E. Effect of dietary gamma-aminobutyric acid (GABA) modulated the growth performance, immune and antioxidant capacity, digestive enzymes, intestinal histology and gene expression of Nile tilapia (Oreochromis niloticus). Fish. Shellfish Immunol. 2023, 141, 109056. [Google Scholar] [CrossRef]
- Farris, N.W.; Hamidoghli, A.; Bae, J.; Won, S.; Choi, W.; Biró, J.; Bai, S.C. Dietary supplementation with γ-aminobutyric acid improves growth, digestive enzyme activity, non-specific immunity and disease resistance against Streptococcus iniae in juvenile olive flounder, Paralichthys olivaceus. Animals 2022, 12, 248. [Google Scholar] [CrossRef]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review. Front. Neurosci. 2020, 14, 559962. [Google Scholar] [CrossRef]
- Xie, S.W.; Li, Y.T.; Zhou, W.W.; Tian, L.X.; Li, Y.M.; Zeng, S.L.; Liu, Y.J. Effect of γ-Aminobutyric Acid Supplementation on Growth Performance, Endocrine Hormone and Stress Tolerance of Juvenile Pacific White Shrimp, Litopenaeus vannamei, Fed Low Fishmeal Diet. Aquac. Nutr. 2017, 23, 54–62. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, X.; Tu, J.; Shi, X.; Gan, L.; Zhang, M.; Jiang, H.; Zhang, X.; Shao, J. Responses of Micropterus salmoides under ammonia stress and the effects of a potential ammonia antidote. Animals 2023, 13, 397. [Google Scholar] [CrossRef]
- Chebotar, Y.; Handa, A.; Makoviychuk, V.; Macklin, M.; Issac, J.; Ratliff, N.; Fox, D. Closing the sim-to-real loop: Adapting simulation randomization with real world experience. In Proceedings of the IEEE 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20 May 2019; pp. 8973–8979. [Google Scholar]
- Lee, S.; Hung, S.S.; Fangue, N.A.; Haller, L.; Verhille, C.E.; Zhao, J.; Todgham, A.E. Effects of feed restriction on the upper temperature tolerance and heat shock response in juvenile green and white sturgeon. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 198, 87–95. [Google Scholar] [CrossRef]
- Verhille, C.E.; Lee, S.; Todgham, A.E.; Cocherell, D.E.; Hung, S.S.; Fangue, N.A. Effects of nutritional deprivation on juvenile green sturgeon growth and thermal tolerance. Environ. Biol. Fish 2016, 99, 145–159. [Google Scholar] [CrossRef]
- Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Antoine, F.R.; Wei, C.I.; Littell, R.C.; Marshall, M.R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 1999, 47, 5100–5107. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, Z.; Song, Z.; Xiao, P.; Liu, Y.; Zhang, P.; You, F. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. Fish Shellfish Immunol. 2016, 58, 125–135. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Wu, Z.; You, F. Derivation and characterization of a new embryonic cell line from the olive flounder Paralichthys olivaceus. Turk. J. Fish. Aquat. Sci. 2021, 21, 159–167. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Paralichthys olivaceus mRNA for Beta-Actin Gene, Partial cds. Available online: https://www.ncbi.nlm.nih.gov/nucleotide/1143414549 (accessed on 8 October 2023).
- Mori, M.; Shibasaki, Y.; Namba, A.; Yabu, T.; Wada, N.; Shiba, H.; Mano, N. Alteration of hemoglobin ß gene expression in mucosal tissues of Japanese flounder, Paralichthys olivaceus, in response to heat stress, Edwardsiella piscicida infection, and immunostimulants administration. Fish Shellfish Immunol. Rep. 2022, 3, 100049. [Google Scholar] [CrossRef]
- Choi, C.Y. Environmental stress-related gene expression and blood physiological responses in olive flounder (Paralichthys olivaceus) exposed to osmotic and thermal stress. Anim. Cells Syst. 2010, 14, 17–23. [Google Scholar] [CrossRef]
- SAS Institute. SAS Certified Professional Prep Guide: Advanced Programming Using SAS 9.4.; SAS Institute: Cary, NC, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Abdel-Tawwab, M. Effects of dietary protein levels and rearing density on growth performance and stress response of Nile tilapia, Oreochromis niloticus (L.). Int. Aquat. Res. 2012, 4, 3. [Google Scholar] [CrossRef]
- Kim, S.K.; Takeuchi, T.; Yokoyama, M.; Murata, Y. Effect of Dietary Supplementation with Taurine, β-Alanine, and GABA on the Growth of Juvenile and Fingerling Japanese Flounder Paralichthys olivaceus. Fish. Sci. 2003, 69, 242–248. [Google Scholar] [CrossRef]
- Bae, J.; Moniruzzaman, M.; Je, H.W.; Lee, S.; Choi, W.; Min, T.; Bai, S.C. Evaluation of Gamma-Aminobutyric Acid (GABA) as a Functional Feed Ingredient on Growth Improvement, Stress Reduction, Immune Enhancement and Disease Resistance in Olive Flounder (Paralichthys olivaceus) under High Stocking Density. Antioxidants 2024, 13, 647. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Hamidoghli, A.; Farris, N.W.; Olowe, O.S.; Choi, W.; Lee, S.; Bai, S.C. Dietary γ-Aminobutyric Acid (GABA) promotes growth and resistance to Vibrio alginolyticus in Whiteleg Shrimp Litopenaeus vannamei. Aquac. Nutr. 2022, 2022, 9105068. [Google Scholar] [CrossRef]
- Fraser, E.J.; Bosma, P.T.; Trudeau, V.L.; Docherty, K. The effect of water temperature on the GABAergic and reproductive systems in female and male goldfish (Carassius auratus). Gen. Comp. Endocrinol. 2002, 125, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Möhler, H. GABA A receptor diversity and pharmacology. Cell Tissue Res. 2006, 326, 505–516. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Liu, Q.; Ye, H.; Zou, C.; Ye, C.; Lin, H. Effects of Dietary Ginkgo Biloba Leaf Extract on Growth Performance, Plasma Biochemical Parameters, Fish Composition, Immune Responses, Liver Histology, and Immune and Apoptosis-Related Genes Expression of Hybrid Grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) Fed High Lipid Diets. Fish Shellfish Immunol. 2018, 72, 399–409. [Google Scholar]
- Tandon, P.N.; Kushwaha, K. A study of nutritional transport in capillary-tissue exchange system. Int. J. Bio-Med. Comput. 1992, 30, 1–5. [Google Scholar] [CrossRef]
- Zheng, J.; He, Y.; Shi, M.; Jia, L.; Xu, Y.; Tan, Y.; Qi, C.; Ye, J. Effects of Dietary Glutamate on the Growth Performance and Antioxidant Capacity of Juvenile Chinese Mitten Crab (Eriocheir sinensis). Fishes 2024, 9, 306. [Google Scholar] [CrossRef]
- Temu, V.; Kim, H.; Hamidoghli, A.; Park, M.; Won, S.; Oh, M.; Han, J.-K.; Bai, S.C. Effects of Dietary Gamma-Aminobutyric Acid in Juvenile Nile Tilapia, Oreochromis niloticus. Aquaculture 2019, 507, 475–480. [Google Scholar] [CrossRef]
- Wu, F.; Liu, M.; Chen, C.; Chen, J.; Tan, Q. Effects of Dietary Gamma Aminobutyric Acid on Growth Performance, Antioxidant Status, and Feeding-Related Gene Expression of Juvenile Grass Carp, Ctenopharyngodon idellus. J. World Aquac. Soc. 2016, 47, 820–829. [Google Scholar] [CrossRef]
- Vysotskiĭ, V.G.; Vlasova, T.F.; Ushakov, A.S.; Nevolina, T.V. Diagnostic value of the free amino acid content in blood plasma during human dietary protein deificiency. Kosm. Biol. I Aviakosmicheskaia Meditsina 1976, 10, 59–64. [Google Scholar]
- Tantikitti, C.; March, B.E. Dynamics of plasma free amino acids in rainbow trout (Oncorhynchus mykiss) under variety of dietary conditions. Fish. Physiol. Biochem. 1995, 14, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Yu, X.; Hou, W.; Xiao, L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer (Takifugui flavidus) under Transport Stress. Biology 2024, 13, 474. [Google Scholar] [CrossRef]
- Gunn, B.G.; Cunningham, L.; Mitchell, S.G.; Swinny, J.D.; Lambert, J.J.; Belelli, D. GABAA receptor-acting neurosteroids: A role in the development and regulation of the stress response. Front. Neuroendocrinol. 2015, 36, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Trenzado, C.E.; Carrick, T.R.; Pottinger, T.G. Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. Gen. Comp. Endocrinol. 2003, 133, 332–340. [Google Scholar] [CrossRef]
- Dara, M.; Carbonara, P.; La Corte, C.; Parrinello, D.; Cammarata, M.; Parisi, M.G. Fish welfare in aquaculture: Physiological and immunological activities for diets, social and spatial stress on Mediterranean aqua cultured species. Fishes 2023, 8, 414. [Google Scholar] [CrossRef]
- Nannu, M.T.; Mostakim, G.M.; Khatun, M.H.; Rahman, M.K.; Sadiqul, M.I. Hematological and histo-architectural damages in the kidney and liver of Nile tilapia on exposure to kinalux. Progress. Agric. 2015, 26, 173–178. [Google Scholar] [CrossRef]
- Ali, A.; Azom, M.G.; Sarker, B.S.; Rani, H.; Alam, M.S.; Islam, M.S. Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquac. Fish. 2024, 9, 256–264. [Google Scholar] [CrossRef]
- Ndrepepa, G. Aspartate Aminotransferase and Cardiovascular Disease—A Narrative Review. J. Lab. Precis. Med. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Lala, V.; Zubair, M.; Minter, D. Liver Function Tests. StatPearls 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482489/ (accessed on 1 October 2024).
- Kumar, J.B.; Goud, B.M.; Kumar, A. Liver Function Tests: Biochemical Overview for Clinical Correlation. Hormones 2021, 25, 26–35. [Google Scholar] [CrossRef]
- Zare, M.; Esmaeili, N.; Hosseini, H.; Choupani, S.M.; Akhavan, S.; Salini, M.; Rombenso, A.; Stejskal, V. Do optimum dietary protein and early mild stress events prepare oscar (Astronotus ocellatus) for a stressful future? Aquac. Rep. 2024, 34, 101854. [Google Scholar] [CrossRef]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Hull, V.V.; Math, A.A.; Vernekar, S.N.; Kulkarni, S.S. A review on laboratory liver function tests. Pan Afr. Med. J. 2009, 3, 17. [Google Scholar] [PubMed]
- Malarvizhi, A.; Kavitha, C.; Saravanan, M.; Ramesh, M. Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J. King Saud Univ. Sci. 2012, 24, 179–186. [Google Scholar] [CrossRef]
- Dawood, M.A.; Gewaily, M.S.; Monier, M.N.; Younis, E.M.; Van Doan, H.; Sewilam, H. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture 2021, 534, 736287. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Gupta, S.K.; Yousefi, M.; Kulikov, E.V.; Drukovsky, S.G.; Petrov, A.K.; Mirghaed, A.T.; Hoseinifar, S.H.; Van Doan, H. Mitigation of transportation stress in common carp, Cyprinus carpio, by dietary administration of turmeric. Aquaculture 2022, 546, 737380. [Google Scholar] [CrossRef]
- Kumar, V.; Swain, H.S.; Das, B.K.; Roy, S.; Upadhyay, A.; Ramteke, M.H.; Kole, R.K.; Banerjee, H. Assessment of the effect of sub-lethal acute toxicity of Emamectin benzoate in Labeo rohita using multiple biomarker approach. Toxicol. Rep. 2022, 9, 102–110. [Google Scholar] [CrossRef]
- Li, F.; Qiao, Z.; Duan, Q.; Nevo, E. Adaptation of mammals to hypoxia. Anim. Models Exp. Med. 2021, 4, 311–318. [Google Scholar] [CrossRef]
- Fischer, K.; Kreyling, J.; Beaulieu, M.; Beil, I.; Bog, M.; Bonte, D.; Holm, S.; Knoblauch, S.; Koch, D.; Muffler, L.; et al. Species-specific effects of thermal stress on the expression of genetic variation across a diverse group of plant and animal taxa under experimental conditions. Heredity 2021, 126, 23–37. [Google Scholar] [CrossRef]
- Everds, N.E.; Snyder, P.W.; Bailey, K.L.; Bolon, B.; Creasy, D.M.; Foley, G.L.; Rosol, T.J.; Sellers, T. Interpreting stress responses during routine toxicity studies: A review of the biology, impact, and assessment. Toxicol. Pathol. 2013, 41, 560–614. [Google Scholar] [CrossRef]
- van der Kooij, M.A. The Impact of Chronic Stress on Energy Metabolism. Mol. Cell. Neurosci. 2020, 107, 103525. [Google Scholar] [CrossRef] [PubMed]
- Hemre, G.I.; Lambertsen, G.; Lie, Ø. The effect of dietary carbohydrate on the stress response in cod (Gadus morhua). Aquaculture 1991, 95, 319–328. [Google Scholar] [CrossRef]
- Fabbri, E.; Capuzzo, A.; Moon, T.W. The role of circulating catecholamines in the regulation of fish metabolism: An overview. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 120, 177–192. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, C.; Song, Y.; Pan, J.; Shi, Q.; Qin, J.; Chen, L. Gamma-aminobutyric acid regulates glucose homeostasis and enhances the hepatopancreas health of juvenile Chinese mitten crab (Eriocheir sinensis) under fasting stress. Gen. Comp. Endocrinol. 2021, 303, 113704. [Google Scholar] [CrossRef]
- Varghese, T.; Rejish Kumar, V.J.; Anand, G.; Dasgupta, S.; Pal, A.K. Dietary GABA enhances hypoxia tolerance of a bottom-dwelling carp, Cirrhinus mrigala by modulating HIF-1α, thyroid hormones and metabolic responses. Fish Physiol. Biochem. 2020, 46, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xia, S.; Liu, B.; Tian, H.; Liu, F.; Yang, W.; Yu, Y.; Zhao, C.; Dewangan, N.K.; Wang, A.; et al. Effects of Dietary Protein Levels on Growth Performance, Plasma Parameters, and Digestive Enzyme Activities in Different Intestinal Segments of Megalobrama amblycephala at Two Growth Stages. Fishes 2025, 10, 60. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.F.; Li, J.L.; Peng, R.J.; Liang, X.Y.; Chen, X.D.; Jiang, G.H.; Shi, J.F.; Si-Ma, Y.H.; Xu, S.Q. Mechanism of hyperproteinemia-induced blood cell homeostasis imbalance in an animal model. Zool. Res. 2022, 43, 301. [Google Scholar] [CrossRef]
- Murugananthkumar, R.; Sudhakumari, C.C. Understanding the impact of stress on teleostean reproduction. Aquac. Fish. 2022, 7, 553–561. [Google Scholar] [CrossRef]
- Galhardo, L.; Oliveira, R.F. Psychological stress and welfare in fish. Annu. Rev. Biomed. Sci. 2009, 11, 1–20. [Google Scholar]
- Shenton, D.; Smirnova, J.B.; Selley, J.N.; Carroll, K.; Hubbard, S.J.; Pavitt, G.D.; Ashe, M.P.; Grant, C.M. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 2006, 281, 29011–29021. [Google Scholar] [CrossRef]
- Soaudy, M.R.; Mohammady, E.Y.; Elashry, M.A.; Ali, M.M.; Ahmed, N.M.; Hegab, M.H.; El-Garhy, H.A.; El-Haroun, E.R.; Hassaan, M.S. Possibility mitigation of cold stress in Nile tilapia under biofloc system by dietary propylene glycol: Performance feeding status, immune, physiological responses and transcriptional response of delta-9-desaturase gene. Aquaculture 2021, 538, 736519. [Google Scholar] [CrossRef]
- Gunathilaka, B.E.; Jeong, S.M.; Kim, K.W.; Lee, S.; Hur, S.W.; You, S.G.; Lee, S.M. Evaluation of Gamma Aminobutyric Acid and Sodium Butyrate in Juvenile Red Seabream (Pagrus major) Diets Containing Graded Levels of Fish Meal and Soy Protein Concentrate. Animals 2024, 14, 1973. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, D.; Shanmugam, S.A.; Kathirvelpandian, A.; Eswaran, S.; Rather, M.A.; Rakkannan, G. Unraveling the Impact of Climate Change on Fish Physiology: A Focus on Temperature and Salinity Dynamics. J. Appl. Ichthyol. 2024, 2024, 5782274. [Google Scholar] [CrossRef]
- Newson, S.E.; Mendes, S.; Crick, H.Q.; Dulvy, N.K.; Houghton, J.D.; Hays, G.C.; Hutson, A.M.; MacLeod, C.D.; Pierce, G.J.; Robinson, R.A. Indicators of the impact of climate change on migratory species. Endanger. Species Res. 2009, 7, 101–113. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; López-Mejías, R.; Alonso-Castro, S.; Abal, F.; Suárez, A. High Triglycerides and Low High-Density Lipoprotein Cholesterol Lipid Profile in Rheumatoid Arthritis: A Potential Link Among Inflammation, Oxidative Status, and Dysfunctional High-Density Lipoprotein. J. Clin. Lipidol. 2017, 11, 1043–1054. [Google Scholar] [CrossRef]
- Demirci-Cekic, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Lemos, L.S.; Angarica, L.M.; Hauser-Davis, R.A.; Quinete, N. Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. Int. J. Environ. Res. Public Health 2023, 20, 6237. [Google Scholar] [CrossRef]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Lin, X.; Liu, H.C.; Odle, J.; Luo, X. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poult. Sci. 2015, 94, 1635–1644. [Google Scholar] [CrossRef]
- Chidambaram, S.B.; Anand, N.; Varma, S.R.; Ramamurthy, S.; Vichitra, C.; Sharma, A.; Mahalakshmi, A.M.; Essa, M.M. Superoxide dismutase and neurological disorders. IBRO Neurosci. Rep. 2024, 16, 373–394. [Google Scholar] [CrossRef]
- Awang Daud, D.M.; Ahmedy, F.; Baharuddin, D.M.; Zakaria, Z.A. Oxidative stress and antioxidant enzymes activity after cycling at different intensity and duration. Appl. Sci. 2022, 12, 9161. [Google Scholar] [CrossRef]
- Wang, Q.I.; Shen, J.; Yan, Z.; Xiang, X.; Mu, R.; Zhu, P.; Wang, Q. Dietary Glycyrrhiza uralensis Extracts Supplementation Elevated Growth Performance, Immune Responses, and Disease Resistance Against Flavobacterium columnare in Yellow Catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2020, 97, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Schreck, C.B.; Tort, L. The Concept of Stress in Fish. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2016; Volume 35, pp. 1–34. [Google Scholar]
- Barton, B.A.; Schreck, C.B.; Barton, L.D. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Org. 1987, 2, 173–185. [Google Scholar] [CrossRef]
- Martin, I.I.L.B.; Gilliam, J.; Han, P.; Lee, K.; Wikelski, M. Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows, Passer domesticus. General. Comp. Endocrinol. 2005, 140, 126–135. [Google Scholar] [CrossRef]
- Fevolden, S.E.; Røed, K.H. Cortisol and immune characteristics in rainbow trout (Oncorhynchus mykiss) selected for high or low tolerance to stress. J. Fish. Biol. 1993, 43, 919–930. [Google Scholar] [CrossRef]
- Tort, L.; Balasch, J.C. Stress and immunity in fish. In Principles of Fish Immunology: From Cells and Molecules to Host Protection; Springer International Publishing: Cham, Switzerland, 2022; pp. 609–655. [Google Scholar]
- Woo, S.J.; Chung, J.K. Effects of trichlorfon on oxidative stress, neurotoxicity, and cortisol levels in common carp, Cyprinus carpio L.; at different temperatures. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2020, 229, 108698. [Google Scholar] [CrossRef] [PubMed]
- Mridul, M.M.; Zeehad, M.S.; Aziz, D.; Salin, K.R.; Hurwood, D.A.; Rahi, M.L. Temperature-Induced Biological Alterations in the Major Carp, Rohu (Labeo rohita): Assessing Potential Effects of Climate Change on Aquaculture Production. Aquac. Rep. 2024, 35, 101954. [Google Scholar] [CrossRef]
- Das, T.; Pal, A.K.; Chakraborty, S.K.; Manush, S.M.; Dalvi, R.S.; Apte, S.K.; Sau, N.P.; Baruah, K. Biochemical and stress responses of rohu Labeo rohita and mrigal Cirrhinus mrigala in relation to acclimation temperatures. J. Fish Biol. 2009, 74, 1487–1498. [Google Scholar] [CrossRef]
- Delaney, M.A.; Klesius, P.H.; Shelby, R.A. Cortisol response of Nile tilapia, Oreochromis niloticus (L.), to temperature changes. J. Appl. Aquac. 2005, 16, 95–104. [Google Scholar] [CrossRef]
- Belda, X.; Fuentes, S.; Daviu, N.; Nadal, R.; Armario, A. Stress-Induced Sensitization: The Hypothalamic–Pituitary–Adrenal Axis and Beyond. Stress 2015, 18, 269–279. [Google Scholar] [CrossRef]
- Liang, X.W.; Dron, M.; Cramer, C.L.; Dixon, R.A.; Lamb, C.J. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 1989, 264, 14486–14492. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Li, X.N.; Chen, X.M.; Chen, J.M.; Jin, X.Y.; Sun, J.X.; Niu, X.T.; Kong, Y.D.; Li, M.; Wang, G.Q. γ-Aminobutyric Acid Effectively Modulate Growth Performance, Physiological Response of Largemouth Bass (Micropterus salmoides) Under Combined Stress of Flow Velocity and Density. Aquac. Nutr. 2024, 2024, 9180554. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Wang, X.; Li, E.; Song, M.; Yang, Y.; Qin, C.; Qin, J.; Chen, L. Comprehensive transcriptional and metabolomic analysis reveals the neuroprotective mechanism of dietary gamma-aminobutyric acid response to hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol. 2023, 135, 108663. [Google Scholar] [CrossRef]
- Kregel, K.C. Invited review: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef]
- Albers, H.E.; Walton, J.C.; Gamble, K.L.; McNeill, I.V.J.K.; Hummer, D.L. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front. Neuroendocrinol. 2017, 44, 35–82. [Google Scholar] [CrossRef]
- Singh, M.K.; Shin, Y.; Ju, S.; Han, S.; Choe, W.; Yoon, K.S.; Kim, S.S.; Kang, I. Heat shock response and heat shock proteins: Current understanding and future opportunities in human diseases. Int. J. Mol. Sci. 2024, 25, 4209. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, M.; Theodoridi, A.; Tsalafouta, A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 60, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Madaro, A.; Lai, F.; Fjelldal, P.G.; Hansen, T.; Gelebart, V.; Muren, B.; Rønnestad, I.; Olsen, R.E.; Stien, L.H. Comparing physiological responses of acute and chronically stressed diploid and triploid Atlantic salmon (Salmo salar). Aquac. Rep. 2024, 36, 102041. [Google Scholar] [CrossRef]
- Vos, M.; Hering, D.; Gessner, M.O.; Leese, F.; Schäfer, R.B.; Tollrian, R.; Boenigk, J.; Haase, P.; Meckenstock, R.; Baikova, D.; et al. The asymmetric response concept explains ecological consequences of multiple stressor exposure and release. Sci. Total Environ. 2023, 872, 162196. [Google Scholar] [CrossRef]
- United Nations Regional Information Centre for Western Europe. Available online: https://unric.org/en/global-warming-90-of-emissions-heat-absorbed-by-the-ocean/ (accessed on 8 February 2025).
- Lim, H.K.; Han, H.S.; Hur, J.W. Effects of water temperature changes on oxygen consumption and hematological factors in olive flounder Paralichthys olivaceus. Fish. Aquat. Sci. 2021, 24, 99–107. [Google Scholar] [CrossRef]
- Oh, S.; Lee, S. Fish Welfare-Related Issues and Their Relevance in Land-Based Olive Flounder (Paralichthys olivaceus) Farms in Korea. Animals 2024, 14, 1693. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Diets | |||||
---|---|---|---|---|---|---|
GABA70 | GABA174 | GABA275 | GABA396 | GABA476 | GABA516 | |
Anchovy fishmeal 1 | 20 | 20 | 20 | 20 | 20 | 20 |
Starch 1 | 5 | 5 | 5 | 5 | 5 | 5 |
Wheat flour 1 | 13.7 | 13.7 | 13.7 | 13.7 | 13.7 | 13.7 |
Squid liver powder 1 | 5 | 5 | 5 | 5 | 5 | 5 |
Soybean meal 1 | 9 | 9 | 9 | 9 | 9 | 9 |
Poultry by-product 1 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 |
Isolated soybean protein 1 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 | 9.5 |
Tankage meal 1 | 14 | 14 | 14 | 14 | 14 | 14 |
Fish oil 1 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
Lecithin 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Betaine 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Taurine 1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Monocalcium phosphate 2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Methionine 1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Lysine 1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Mineral mix 3 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Vitamin mix 4 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Vitamin C 1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Choline | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Cellulose 1 | 1 | 0.8 | 0.6 | 0.4 | 0.2 | 0 |
GABA premix | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Proximate composition 5 (%) | ||||||
Dry matter | 98.4 ± 0.0 | 98.7 ± 0.0 | 99.2 ± 0.0 | 99.0 ± 0.0 | 98.2 ± 0.0 | 98.4 ± 0.0 |
Crude protein | 53.47 ± 0.28 | 53.2 ± 0.09 | 54.38 ± 0.20 | 53.5 ± 0.20 | 53.05 ± 0.15 | 53.71 ± 0.19 |
Crude lipid | 12.13 ± 0.03 | 12.07 ± 0.12 | 11.88 ± 0.02 | 11.57 ± 0.19 | 11.89 ± 0.15 | 11.92 ± 0.00 |
Crude ash | 10.12 ± 0.07 | 9.87 ± 0.04 | 9.99 ± 0.09 | 9.83 ± 0.04 | 9.88 ± 0.06 | 9.96 ± 0.08 |
Gross energy (kcal/kg) | 5149 ± 6 | 5174 ± 49 | 5097 ± 36 | 5130 ± 12 | 5150 ± 28 | 5135 ± 0 |
Genes | Primer Sequences | Tm (°C) | Accession Number | Product Size (bp) | Efficiency (%) | R2 | Slope | Reference |
---|---|---|---|---|---|---|---|---|
β-actin | F: GGAATCCACGAGACCACCTACA | 62.1 | XM_020109620.1 | 264 | 99.9 | 0.9515 | −3.3250 | [41] |
R: CTGCTTGCTGATCCACATCTGC | 62.1 | |||||||
hsp60 1 | F: TGACTTCGGGAAAGTCGGTG | 59.3 | XM_020105844.1 | 2927 | 100.1 | 0.8904 | −3.3200 | [42] |
R: ACGATCTCCAGTGCACGTTT | 57.3 | |||||||
hsp70 2 | F: TTCAATGATTCTCAGAGGCAAGC | 58.9 | XM_020089177.1 | 113 | 99.4 | 0.9994 | −3.3364 | [43] |
R: TTATCTAAGCCGTAGGCAATCGC | 60.6 | |||||||
hsp90 3 | F: GAGCGAGACAAGGAGGTGAG | 61.4 | XM_020091873.1 | 100 | 96.8 | 0.9944 | −3.4016 | [7] |
R: CTGGCTTGTCTTCGTCCTTC | 59.3 | |||||||
wap65 4 | F: AACCAAGGCTGTGGAGAAGAAAGAG | 63 | XM_020105098.1 | 1727 | 98.6 | 0.9398 | −3.3550 | [44] |
R: GTGTCCGTGGAAGCAGTAGTAGTG | 64.4 |
Parameters 2 | Diets | Pr > F | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | GABA174 | GABA275 | GABA396 | GABA476 | GABA516 | ANOVA | Linear | Quadratic | |
IBW (g) | 13.4 ± 0.2 ns | 12.9 ± 0.1 | 12.9 ± 0.2 | 13.0 ± 0.3 | 13.0 ± 0.3 | 12.7 ± 0.1 | 0.4042 | 0.4253 | 0.1428 |
FBW (g) | 48.6 ± 0.2 ns | 48.2 ± 0.3 | 49.7 ± 0.9 | 48.3 ± 0.8 | 49.2 ± 1.1 | 50.3 ± 0.6 | 0.3184 | 0.5901 | 0.9675 |
WG (%) | 264 ± 7 ns | 275 ± 1 | 286 ± 1 | 273 ± 14 | 278 ± 12 | 296 ± 2 | 0.1629 | 0.3218 | 0.2341 |
SGR (%) | 2.22 ± 0.03 ns | 2.28 ± 0.00 | 2.33 ± 0.00 | 2.27 ± 0.07 | 2.29 ± 0.06 | 2.37 ± 0.01 | 0.1736 | 0.298 | 0.2353 |
FE (%) | 111 ± 17 ns | 129 ± 9 | 97.1 ± 26.4 | 99.2 ± 18.9 | 111 ± 18 | 109 ± 16 | 0.8499 | 0.621 | 0.7643 |
FCR | 2.35 ± 0.07 ns | 2.11 ± 0.06 | 2.17 ± 0.04 | 2.06 ± 0.07 | 2.32 ± 0.12 | 2.16 ± 0.02 | 0.0664 | 0.6061 | 0.0730 |
SR (%) | 100 ± 0 ns | 100 ± 3 | 100 ± 0 | 98.3 ± 1.7 | 102 ± 1.7 | 98.4 ± 1.6 | 0.7291 | 0.7554 | 0.4348 |
Body composition (%; as is) | |||||||||
Moisture | 75.0 ± 0.1 ns | 75.0 ± 0.2 | 75.0 ± 0.0 | 74.8 ± 0.2 | 75.0 ± 0.2 | 75.0 ± 0.2 | 0.9817 | 0.7512 | 0.8403 |
Crude protein | 18.0 ± 0.0 ns | 18.1 ± 0.1 | 18.0 ± 0.1 | 18.2 ± 0.4 | 18.0 ± 0.3 | 17.8 ± 0.3 | 0.8367 | 0.8155 | 0.6211 |
Crude lipid | 3.07 ± 0.14 ns | 3.11 ± 0.02 | 3.04 ± 0.08 | 2.89 ± 0.48 | 3.10 ± 0.09 | 3.15 ± 0.18 | 0.9689 | 0.8313 | 0.7738 |
Crude ash | 3.80 ± 0.20 ns | 3.62 ± 0.10 | 3.62 ± 0.20 | 3.77 ± 0.14 | 3.75 ± 0.06 | 3.77 ± 0.04 | 0.8577 | 0.8949 | 0.3478 |
Temperature (°C) | Diet | GPx 2 (mU/mL) | SOD 3 (µg/mL) | IgM 4 (µg/mL) | LZM 5 (µg/mL) | CORT 6 (ng/mL) |
---|---|---|---|---|---|---|
Interactive effects between diet and temperature | ||||||
19.5 | GABA70 | 21.3 ± 0.8 ns | 3.75 ± 0.29 ns | 4.43 ± 0.43 ns | 1.20 ± 0.22 ns | 4.95 ± 0.30 ns |
GABA174 | 26.8 ± 5.1 | 3.69 ± 0.34 | 4.63 ± 0.42 | 1.08 ± 0.09 | 5.14 ± 0.30 | |
GABA275 | 23.5 ± 2.7 | 3.06 ± 0.25 | 4.61 ± 0.48 | 1.39 ± 0.37 | 4.84 ± 0.36 | |
GABA396 | 22.3 ± 1.7 | 3.22 ± 0.37 | 4.84 ± 0.05 | 1.01 ± 0.18 | 4.40 ± 0.44 | |
GABA476 | 22.4 ± 1.9 | 3.60 ± 0.29 | 5.34 ± 0.16 | 1.11 ± 0.14 | 5.32 ± 0.30 | |
GABA516 | 21.3 ± 3.7 | 2.71 ± 0.81 | 4.82 ± 0.33 | 0.85 ± 0.05 | 5.347 ± 0.445 | |
29 | GABA70 | 24.3 ± 6.4 | 3.55 ± 1.28 | 4.47 ± 0.25 | 1.30 ± 0.40 | 6.46 ± 0.51 |
GABA174 | 18.9 ± 7.4 | 1.78 ± 0.67 | 4.79 ± 0.18 | 1.39 ± 0.36 | 6.61 ± 0.20 | |
GABA275 | 16.5 ± 3.8 | 1.26 ± 0.57 | 4.38 ± 0.49 | 1.34 ± 0.58 | 5.629 ± 0.386 | |
GABA396 | 18.7 ± 1.5 | 2.22 ± 0.28 | 4.91 ± 0.47 | 1.31 ± 0.15 | 6.29 ± 0.25 | |
GABA476 | 22.0 ± 9.4 | 2.36 ± 1.24 | 4.39 ± 0.15 | 1.00 ± 0.01 | 5.94 ± 0.36 | |
GABA516 | 25.8 ± 4.9 | 2.60 ± 1.04 | 4.58 ± 0.28 | 0.98 ± 0.10 | 7.29 ± 0.67 | |
Main effects of temperature | ||||||
19.5 | 22.9 ± 1.1 ns | 3.34 ± 0.17 a | 4.78 ± 0.14 ns | 1.11 ± 0.08 ns | 5.00 ± 0.15 b | |
29 | 21.0 ± 2.1 | 2.29 ± 0.36 b | 4.53 ± 0.12 | 1.22 ± 0.12 | 6.40 ± 0.19 a | |
Main effects of diet | ||||||
GABA70 | 22.8 ± 3.0 ns | 3.65 ± 0.59 ns | 4.45 ± 0.22 ns | 1.25 ± 0.21 ns | 5.71 ± 0.43 ns | |
GABA174 | 22.8 ± 4.4 | 2.73 ± 0.95 | 4.71 ± 0.08 | 1.23 ± 0.15 | 5.87 ± 0.73 | |
GABA275 | 20.0 ± 4.1 | 2.16 ± 0.49 | 4.50 ± 0.31 | 1.36 ± 0.31 | 5.234 ± 0.30 | |
GABA396 | 20.5 ± 3.5 | 2.72 ± 0.31 | 4.69 ± 0.22 | 1.16 ± 0.12 | 5.35 ± 0.48 | |
GABA476 | 22.2 ± 2.8 | 2.98 ± 0.63 | 4.86 ± 0.47 | 1.07 ± 0.07 | 5.63 ± 0.24 | |
GABA516 | 23.6 ± 2.9 | 2.66 ± 0.06 | 4.70 ± 0.12 | 0.92 ± 0.06 | 6.32 ± 0.97 | |
Two-way ANOVA (p-values) | ||||||
Temperature | 0.4819 | 0.0194 | 0.2306 | 0.4766 | <0.0001 | |
Diet | 0.9604 | 0.4822 | 0.8734 | 0.6596 | 0.1291 | |
Temperature × Diet | 0.6727 | 0.7292 | 0.7484 | 0.9653 | 0.4991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogun, A.O.; Kim, H.; Yoon, S.; Lee, S.; Jeon, H.; Aulia, D.; Hur, J.; Lee, S. Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus). Animals 2025, 15, 809. https://doi.org/10.3390/ani15060809
Ogun AO, Kim H, Yoon S, Lee S, Jeon H, Aulia D, Hur J, Lee S. Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus). Animals. 2025; 15(6):809. https://doi.org/10.3390/ani15060809
Chicago/Turabian StyleOgun, Abayomi Oladimeji, Haham Kim, Sooa Yoon, Suhyun Lee, Hyuncheol Jeon, Deni Aulia, Junhyeok Hur, and Seunghyung Lee. 2025. "Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus)" Animals 15, no. 6: 809. https://doi.org/10.3390/ani15060809
APA StyleOgun, A. O., Kim, H., Yoon, S., Lee, S., Jeon, H., Aulia, D., Hur, J., & Lee, S. (2025). Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus). Animals, 15(6), 809. https://doi.org/10.3390/ani15060809