Changes in Ruminal Fermentation and Growth Performance in Calves After Increasing Ruminal Undegradable Protein at Two Different Time Points Pre-Weaning
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Calves, Treatments, and Management
2.2. Feed Intake, Performance, and Skeletal Growth Parameters
2.3. Ruminal Sampling and Chemical Analysis
2.4. Blood Sampling and Biochemical Measurements
2.5. Fecal Consistency Scoring and Sampling
2.6. Feed and Digestibility Analysis
2.7. Statistical Analysis
3. Results
3.1. Starter Intake, Daily Gain, and Gain-to-Feed Ratio
3.2. Skeletal Growth
3.3. Ruminal Fermentation Profile
3.4. Fecal Consistency and Total Tract Nutrient Digestibility
3.5. Plasma Metabolites
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warner, R.; Flatt, W.; Loosli, J. Ruminant nutrition, dietary factors influencing development of ruminant stomach. J. Agric. Food Chem. 1956, 4, 788–792. [Google Scholar] [CrossRef]
- Drackley, J.K. Calf nutrition from birth to breeding. Veter Clin. N. Am. Food Anim. Pract. 2008, 24, 55–86. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Weary, D.; Von Keyserlingk, M. Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J. Dairy Sci. 2011, 94, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Vi, R.B.; McLeod, K.; Klotz, J.; Heitmann, R. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar]
- Quigley, J.D. Symposium review: Re-evaluation of National Research Council energy estimates in calf starters. J. Dairy Sci. 2019, 102, 3674–3683. [Google Scholar] [CrossRef]
- Castro, J.; Gomez, A.; White, B.; Loften, J.; Drackley, J. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 2. Effects of gastrointestinal site and age. J. Dairy Sci. 2016, 99, 9703–9715. [Google Scholar] [CrossRef]
- Davis, C.L.; Drackley, J.K. The Development, Nutrition, and Management of the Young Calf; Iowa State University Press: Ames, IA, USA, 1998. [Google Scholar]
- Van Amburgh, M.; Drackley, J. Current perspectives on the energy and protein requirements of the pre-weaned calf. In Calf and Heifer Rearing: Principles of Rearing The Modern Dairy Heifer from Calf to Calving; 60th University of Nottingham Easter School in Agricultural Science: Nottingham, UK, 2005; pp. 67–82. [Google Scholar]
- Kertz, A.F.; Hill, T.M.; Quigley, J.D., III; Heinrichs, A.J.; Linn, J.D.; Drackley, J.K. A 100-Year Review: Calf nutrition and management. J. Dairy Sci. 2017, 100, 10151–10172. [Google Scholar] [CrossRef]
- Baker, D.H. Nutritional constraints to use of soy products by animal. In Soy in Animal Nutrition; Drackley, J.K., Ed.; Federation Animal Science Society: Savoy, IL, USA, 2000; pp. 1–12. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Windschitl, P.M.; Stern, M.D. Evaluation of calcium lignosulfonate-treated soybean meal as a source of rumen protected protein for dairy cows. J. Dairy Sci. 1988, 71, 3310–3322. [Google Scholar] [CrossRef]
- Wright, C.F.; Von Keyserlingk, M.A.G.; Swift, M.L.; Fisher, L.J.; Shelford, J.A.; Dinn, N.E. Heat-and lignosulfonate-treated canola meal as a source of ruminal undegradable protein for lactating dairy cows. J. Dairy Sci. 2005, 88, 238–243. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.; Cabaraux, J.; Chentouf, M. Growth performance, carcass characteristics, fatty acid profile, and meat quality of male goat kids supplemented by alternative feed resources: Bitter vetch and sorghum grains. Arch. Anim. Breed. 2024, 67, 481–492. [Google Scholar] [CrossRef]
- Razavi, S.A.; Pourjafar, M.; Hajimohammadi, A.; Valizadeh, R.; Naserian, A.A.; Laven, R.; Mueller, K.R. Effects of dietary supplementation with bentonite and yeast cell wall on serum blood urea nitrogen, triglyceride, alkaline phosphatase, and calcium in high-producing dairy cattle during the transition period. Comp. Clin. Pathol. 2019, 28, 419–425. [Google Scholar] [CrossRef]
- Waltz, D.M.; Stern, M.D. Evaluation of various methods for protecting soya-bean protein from degradation by rumen bacteria. Anim. Feed Sci. Technol. 1989, 25, 111–121. [Google Scholar] [CrossRef]
- Brand, T.S.; van Zyl, J.H.C.; Dreyer, O. The effect of formaldehyde treatment of canola oilcake meal and sweet lupins on the in situ dry matter and crude protein digestibility. S. Afr. J. Anim. Sci. 2023, 53, 91–100. [Google Scholar] [CrossRef]
- Cleale, R.M., IV; Britton, R.A.; Klopfenstein, T.J.; Bauer, M.L.; Harmon, D.L.; Satter, L.D. Induced non-enzymatically browning of soybean meal. II. Ruminal escape and net portal absorption of soybean protein treated with xylose. J. Anim. Sci. 1987, 65, 1319–1326. [Google Scholar] [CrossRef]
- Harstad, O.M.; Prestlokken, E. Effective rumen degradability and intestinal indigestibility of individual amino acids in solvent-extracted soybean meal (SBM) and xylose-treated SBM (SoyPass®) determined in situ. Anim. Feed. Sci. Technol. 2000, 83, 31–47. [Google Scholar] [CrossRef]
- Tuncer, S.D.; Sacakli, P. Rumen degradability characteristics of xylose treated canola and soybean meals. Anim. Feed. Sci. Technol. 2003, 107, 211–218. [Google Scholar] [CrossRef]
- Stock, R.; Merchen, N.; Klopfenstein, T.; Poos, M. Feeding value of slowly degraded proteins. J. Anim. Sci. 1981, 53, 1109–1119. [Google Scholar] [CrossRef]
- Titgemeyer, E.C.; Merchen, N.R.; Berger, L.L. Evaluation of soybean meal, corn gluten meal, blood meal and fish meal as sources of nitrogen and amino acids disappearing from the small intestine of steers. J. Anim. Sci. 1989, 67, 262–275. [Google Scholar] [CrossRef]
- Pazoki, A.; Ghorbani, G.R.; Kargar, S.; Sadeghi-Sefidmazgi, A.; Drackley, J.K.; Ghaffari, M.H. Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical forms of starter feed and forage provision. Anim. Feed. Sci. Technol. 2017, 234, 173–185. [Google Scholar] [CrossRef]
- Yousefinejad, S.; Fattahnia, F.; Kazemi-Bonchenari, M.; Nobari, B.; Ghaffari, M.H. Effects of protein content and rumen-undegradable to rumen-degradable protein ratio in finely ground calf starters on growth performance, ruminal and blood parameters, and urinary purine derivatives. J. Dairy Sci. 2021, 104, 8798–8813. [Google Scholar] [CrossRef]
- Kim, M.H.; Yun, C.H.; Kim, H.S.; Kim, J.H.; Kang, S.J.; Lee, C.H.; Ko, J.Y.; Ha, J.K. Effects of fermented soybean meal on growth performance, diarrheal incidence and immune-response of neonatal calves. Anim. Sci. J. 2010, 81, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Bonchenari, M.; Alizadeh, A.R.; Tahriri, A.R.; Karkoodi, K.; Jalali, S.; Sadri, H. The effects of partial replacement of soybean meal by xylose-treated soybean meal in the starter concentrate on performance, health status, and blood metabolites of Holstein calves. Ital. J. Anim. Sci. 2015, 14, 3680. [Google Scholar] [CrossRef]
- Boorboor, M.; Alamouti, A.A.; Karimi, N.; Belverdy, M.S. Effects of reducing crude protein concentration in starter feed containing constant rumen undegradable protein on dairy calves performance. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Maiga, H.A.; Schingoethe, D.J.; Ludens, F.C.; Tucker, W.L.; Casper, D.P. Response of calves to diets that varied in amounts of ruminally degradable carbohydrate and protein. J. Dairy Sci. 1994, 77, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Swartz, L.; Heinrichs, A.; Varga, G.; Muller, L. Effects of varying dietary undegradable protein on dry matter intake, growth, and carcass composition of Holstein calves. J. Dairy Sci. 1991, 74, 3884–3890. [Google Scholar] [CrossRef]
- Tahmasbi, A.M.; Abadi, S.H.J.; Naserian, A.A. The effect of 2 liquid feeds and 2 sources of proStein in starter on performance and blood metabolites in Holstein neonatal calves. J. Dairy Sci. 2014, 97, 363–371. [Google Scholar] [CrossRef]
- NASEM (National Academies of Science, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle; National Academy of Sciences: Washington, DC, USA, 2021. [Google Scholar]
- Mirzaei-Alamouti, H.; Moradi, S.; Shahalizadeh, Z.; Razavian, M.; Amanlou, H.; Harkinezhad, T.; Jafari-Anarkooli, I.; Deiner, C.; Aschenbach, J.R. Both monensin and plant extract alter ruminal fermentation in sheep but only monensin affects the expression of genes involved in acid-base transport of the ruminal epithelium. Anim. Feed. Sci. Technol. 2016, 219, 132–143. [Google Scholar] [CrossRef]
- Broderick, G.; Kang, J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 17th ed.; International: Arlington, VA, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber nonstarch polysaccharide in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Acid insoluble ash as a natural marker for digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Mackie, R.I.; Sghir, A.; Gaskins, H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999, 69, 1035s–1045s. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef]
- Richardson, C.; Hatfield, E. The limiting amino acids in growing cattle. J. Anim. Sci. 1978, 46, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Cleale, R.; Klopfenstein, T.; Britton, R.; Satterlee, L. Induced non-enzymatic browning of soybean meal for enhancing efficiency of protein utilization by ruminants. J. Anim. Sci. 1986, 63, 139. [Google Scholar]
- ZeidAli-Nejad, A.; Ghorbani, G.; Kargar, S.; Sadeghi-Sefidmazgi, A.; Pezeshki, A.; Ghaffari, M. Nutrient intake, rumen fermentation and growth performance of dairy calves fed extruded full-fat soybean as a replacement for soybean meal. Animal 2018, 12, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Moallem, U.; Dahl, G.; Duffey, E.; Capuco, A.; Erdman, R. Bovine somatotropin and rumen-undegradable protein effects on skeletal growth in prepubertal dairy heifers. J. Dairy Sci. 2004, 87, 3881–3888. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Dehghan-Banadaky, M.; Fattahnia, F.; Saleh-Bahmanpour, A.; Jahani-Moghadam, M.; Mirzaei, M. Effects of linseed oil and rumen undegradable protein: Rumen degradable protein ratio on performance of Holstein dairy calves. Br. J. Nutr. 2020, 123, 1247–1257. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Penner, G.B.; Stumpff, F.; Gäbel, G. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 2011, 89, 1092–1107. [Google Scholar] [CrossRef]
- Bryant, M.P. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc. 1973, 32, 1809–1813. [Google Scholar]
- Liu, Q.; Wang, C.; Huang, Y.; Dong, K.; Wang, H.; Yang, W. Effects of isobutyrate on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers. Arch. Anim. Nutr. 2008, 62, 377–388. [Google Scholar] [CrossRef]
- Firkins, J.L.; Mitchell, K.E.; White, A.F. Invited review: Role for isoacids in dairy nutrition. Appl. Anim. Sci. 2024, 40, 466–477. [Google Scholar] [CrossRef]
- Rastgoo, M.; Kazemi-Bonchenari, M.; HosseinYazdi, M.; Mirzaei, M. Effects of corn grain processing method (ground versus steam-flaked) with rumen undegradable to degradable protein ratio on growth performance, ruminal fermentation, and microbial protein yield in Holstein dairy calves. Anim. Feed. Sci. Technol. 2020, 269, 114646. [Google Scholar] [CrossRef]
- Bunting, L.; Fernandez, J.; Fornea, R.; White, T.; Froetschel, M.; Stone, J.; Ingawa, K. Seasonal effects of supplemental fat or undegradable protein on the growth and metabolism of Holstein calves. J. Dairy Sci. 1996, 79, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.; Aldrich, J.; Schlotterbeck, R.; Bateman II, H. Protein concentrations for starters fed to transported neonatal calves. Prof. Anim. Sci. 2007, 23, 123–134. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Atkinson, R.; Toone, C.; Robinson, T.; Harmon, D.; Ludden, P. Effects of ruminal protein degradability and frequency of supplementation on nitrogen retention, apparent digestibility, and nutrient flux across visceral tissues in lambs fed low-quality forage. J. Anim. Sci. 2010, 88, 727–736. [Google Scholar] [CrossRef]
- Huntington, G.B. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 1997, 75, 852–867. [Google Scholar] [CrossRef]
- Khan, M.; Lee, H.; Lee, W.; Kim, H.; Ki, K.; Hur, T.; Suh, G.; Kang, S.; Choi, Y. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. J. Dairy Sci. 2007, 90, 3376–3387. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Falahati, R.; Poorhamdollah, M.; Heidari, S.; Pezeshki, A. Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. J. Anim. Physiol. Anim. Nutr. 2018, 102, 652–661. [Google Scholar] [CrossRef]
- Eghtedari, M.; Khezri, A.; Kazemi-Bonchenari, M.; Mohammadabadi, M.; Esmaeili-Mahani, S.; Aschenbach, J.R. Phosphorus Has a Crucial Role in Growth Performance of Calves Fed Starters with Incorporated Forage. Anim. Nutr. 2025, in press. [Google Scholar]
Items | Diet 1 | |
---|---|---|
SBM | XSBM | |
Ingredients, % of DM | ||
Alfalfa hay | 9.25 | 9.25 |
Ground barely grain | 10.19 | 10.19 |
Ground corn grain | 39.82 | 39.82 |
Xylose-treated soybean meal | - | 31.48 |
Soybean meal | 31.48 | - |
Roasted soybean meal | 1.85 | 1.85 |
Corn germ | 2.41 | 2.41 |
Calcium carbonate | 0.46 | 0.46 |
Sodium bicarbonate | 0.93 | 0.93 |
Salt | 0.46 | 0.46 |
Vitamin and mineral mix 2 | 2.78 | 2.78 |
Chemical composition, % of DM | ||
Dry matter | 94.6 | 94.4 |
Crude protein | 22.2 | 22.1 |
Rumen-degradable protein | 63.0 | 51.9 |
Rumen-undegradable protein | 37.1 | 48.1 |
Neutral detergent fiber | 19.8 | 19.0 |
Non-fiber carbohydrate 3 | 50.2 | 50.5 |
Ether extract | 2.2 | 2.2 |
Calcium | 0.85 | 0.87 |
Phosphorous | 0.45 | 0.37 |
ME (Mcal/kg) 3 | 2.75 | 2.75 |
Items | Diet 1 | SEM | p-Value | ||
---|---|---|---|---|---|
XSBM42 | XSBM28 | SBM | |||
Period 28–42 days | - | ||||
Starter intake (g/d) | - | 707 | 732 | 60.4 | 0.77 |
Body weight at d 28 (kg) | - | 44.9 | 44.2 | 0.94 | 0.58 |
Body weight at d 42 (kg) | - | 54.9 | 52.6 | 1.46 | 0.27 |
Average daily gain (g/d) | - | 818 | 724 | 58.1 | 0.26 |
Gain-to-feed ratio | - | 1.2 | 1.02 | 0.15 | 0.3 |
Period 43–60 days | |||||
Starter intake (g/d) | 1122 | 1104 | 1109 | 75.4 | 0.81 |
Body weight at d 42 (kg) | 54.2 | 54.9 | 52.6 | 1.15 | 0.11 |
Body weight at d 60 (kg) | 70.3 | 70.9 | 67.5 | 2.31 | 0.15 |
Average daily gain (g/d) | 891 | 880 | 820 | 68.1 | 0.27 |
Gain-to-feed ratio | 0.79 | 0.81 | 0.73 | 0.07 | 0.14 |
Period 61–70 days | |||||
Starter intake (g/d) | 1850 | 1852 | 1878 | 106.9 | 0.98 |
Final body weight at d 70 (kg) | 81 | 80.8 | 77.2 | 2.42 | 0.21 |
Average daily gain (g/d) | 1001 a | 1004 a | 958 b | 46.2 | 0.03 |
Gain-to-feed ratio | 0.57 a | 0.54 a | 0.51 b | 0.041 | 0.04 |
Items | Diet 1 | SEM | p-Value | ||
---|---|---|---|---|---|
XSBM42 | XSBM28 | SBM | |||
42 days | |||||
Body length (cm) | - | 77.1 | 77.1 | 0.54 | 0.98 |
Hip height (cm) | - | 65 | 61.8 | 0.85 | 0.01 |
Wither height (cm) | - | 83.2 | 82 | 0.55 | 0.13 |
Hip width (cm) | - | 24.9 | 25.5 | 0.21 | 0.18 |
60 days | |||||
Body length (cm) | 79.8 a | 79.1 a | 78.1 b | 1.64 | 0.003 |
Hip height (cm) | 67.2 a | 67.9 a | 62.1 b | 0.95 | 0.002 |
Wither height (cm) | 91.3 a | 87.7 a | 82.2 b | 0.91 | 0.001 |
Hip width (cm) | 26.3 | 26 | 26 | 0.22 | 0.61 |
70 days | |||||
Body length (cm) | 83 | 81.8 | 82.4 | 1.11 | 0.71 |
Hip height (cm) | 69.6 | 69.5 | 67.3 | 0.86 | 0.11 |
Wither height (cm) | 93.0 a | 91.8 a | 88.5 b | 0.61 | 0.001 |
Hip width (cm) | 26.5 | 26.1 | 26.3 | 0.22 | 0.42 |
Items | Diet 1 | SEM | p-Value | ||
---|---|---|---|---|---|
XSBM42 | XSBM28 | SBM | |||
60 days | |||||
pH | 6.35 b | 6.58 ab | 6.96 a | 0.072 | 0.001 |
NH3-N (mg/dL) | 18.5 | 16.9 | 17.3 | 1.08 | 0.51 |
Total SCFA (mmol/L) | 71.3 | 71.4 | 79.6 | 6.15 | 0.09 |
Acetate (mol/100 mol) | 43.8 | 44.5 | 45 | 1.34 | 0.21 |
Propionate (mol/100 mol) | 39.6 | 36.5 | 39.6 | 1.26 | 0.45 |
Butyrate (mol/100 mol) | 11.1 a | 11.4 a | 8.7 b | 0.85 | 0.049 |
iso-Butyrate (mol/100 mol) | 0.51 a | 0.51 a | 0.37 b | 0.021 | 0.021 |
Valerate (mol/100 mol) | 5.23 | 5.62 | 5.53 | 0.631 | 0.14 |
iso-Valerate (mol/100 mol) | 0.63 b | 0.68 b | 0.73 a | 0.072 | 0.046 |
Acetate-to-propionate ratio | 1.11 | 1.23 | 1.35 | 0.13 | 0.14 |
70 days | |||||
pH | 6.32 | 6.91 | 6.43 | 0.08 | 0.14 |
NH3-N (mg/dL) | 13.4 b | 15.3 ab | 18.4 a | 1 | 0.009 |
Total SCFA (mmol/L) | 68.7 b | 68.8 b | 82.7 a | 0.73 | 0.022 |
Acetate (mol/100 mol) | 44.6 | 48.2 | 50.3 | 1.8 | 0.11 |
Propionate (mol/100 mol) | 38.2 | 35.2 | 36.8 | 1.81 | 0.52 |
Butyrate (mol/100 mol) | 5.95 | 6.6 | 6.03 | 0.512 | 0.64 |
iso-Butyrate (mol/100 mol) | 0.41 | 0.53 | 0.36 | 0.022 | 0.22 |
Valerate (mol/100 mol) | 8.05 | 7.18 | 5.82 | 1.421 | 0.13 |
iso-Valerate (mol/100 mol) | 0.86 | 0.66 | 0.71 | 0.071 | 0.14 |
Acetate-to-propionate ratio | 1.17 | 1.38 | 1.37 | 0.12 | 0.15 |
Items | Diet 1 | SEM | p-Value | ||
---|---|---|---|---|---|
XSBM42 | XSBM28 | SBM | |||
42 days | |||||
Dry matter digestibility | - | 77.1 | 77.3 | 1.47 | 0.92 |
Organic matter digestibility | - | 78.6 | 78.9 | 1.49 | 0.81 |
Crude protein digestibility | - | 77.8 | 75.7 | 1.76 | 0.41 |
Neutral detergent fiber digestibility | - | 41.2 | 40.7 | 3.95 | 0.91 |
Fecal score | - | 1 | 1.05 | 0.01 | 0.17 |
60 days | |||||
Dry matter digestibility | 74.9 | 76.3 | 79 | 4.09 | 0.37 |
Organic matter digestibility | 77.4 | 78 | 80.1 | 4.02 | 0.52 |
Crude protein digestibility | 75.2 | 78 | 80 | 4.26 | 0.28 |
Neutral detergent fiber digestibility | 43.6 | 50 | 55.2 | 9.92 | 0.61 |
Fecal score | 1.52 | 1.04 | 1.02 | 0.18 | 0.12 |
70 days | |||||
Dry matter digestibility | 73.3 | 77.9 | 80.7 | 3.58 | 0.12 |
Organic matter digestibility | 75.5 | 78.7 | 82.2 | 3.52 | 0.15 |
Crude protein digestibility | 75.8 | 80.7 | 81.6 | 3.41 | 0.22 |
Neutral detergent fiber digestibility | 46.0 c | 51.1 b | 61.8 a | 7.95 | 0.04 |
Fecal score | 1.5 | 1.03 | 1.02 | 0.211 | 0.21 |
Items | Diet 1 | SEM | p-Value | ||
---|---|---|---|---|---|
XSBM42 | XSBM28 | SBM | |||
42 days | |||||
Glucose (mg/dL) | - | 98.6 | 97 | 2.49 | 0.66 |
Albumin (g/dL) | - | 4.08 | 4.06 | 0.034 | 0.72 |
Calcium (mg/dL) | - | 8.71 | 8.59 | 0.051 | 0.13 |
Total protein (g/dL) | - | 6.05 | 6.08 | 0.038 | 0.68 |
Plasma urea nitrogen (mg/dL) | - | 18.8 | 18.5 | 0.14 | 0.17 |
Globulin (g/dL) | - | 1.97 | 2.01 | 0.058 | 0.65 |
60 days | |||||
Glucose (mg/dL) | 88.3 | 93.9 | 94.3 | 2.02 | 0.88 |
Albumin (g/dL) | 4.22 | 4.07 | 4.09 | 0.101 | 0.15 |
Calcium (mg/dL) | 8.54 | 8.71 | 8.69 | 0.043 | 0.99 |
Total protein (g/dL) | 6.21 | 6.22 | 6.12 | 0.072 | 0.081 |
Plasma urea nitrogen (mg/dL) | 18.6 | 19.3 | 18.8 | 0.37 | 0.12 |
Globulin (g/dL) | 1.84 | 2.14 | 2.01 | 0.137 | 0.32 |
70 days | |||||
Glucose (mg/dL) | 75.8 | 73.8 | 76.1 | 0.83 | 0.71 |
Albumin (g/dL) | 4.24 | 4.22 | 4.21 | 0.094 | 0.58 |
Calcium (mg/dL) | 8.77 | 8.45 | 8.39 | 0.158 | 0.43 |
Total protein (g/dL) | 6.18 | 6.26 | 6.21 | 0.062 | 0.48 |
Plasma urea nitrogen (mg/dL) | 19.8 | 19.6 | 19.5 | 0.55 | 0.91 |
Globulin (g/dL) | 1.78 | 2.04 | 2.01 | 0.101 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei-Alamouti, H.; Salehi, S.; Khani, M.; Vazirigohar, M.; Aschenbach, J.R. Changes in Ruminal Fermentation and Growth Performance in Calves After Increasing Ruminal Undegradable Protein at Two Different Time Points Pre-Weaning. Animals 2025, 15, 804. https://doi.org/10.3390/ani15060804
Mirzaei-Alamouti H, Salehi S, Khani M, Vazirigohar M, Aschenbach JR. Changes in Ruminal Fermentation and Growth Performance in Calves After Increasing Ruminal Undegradable Protein at Two Different Time Points Pre-Weaning. Animals. 2025; 15(6):804. https://doi.org/10.3390/ani15060804
Chicago/Turabian StyleMirzaei-Alamouti, Hamidreza, Sahar Salehi, Mehdi Khani, Mina Vazirigohar, and Jörg R. Aschenbach. 2025. "Changes in Ruminal Fermentation and Growth Performance in Calves After Increasing Ruminal Undegradable Protein at Two Different Time Points Pre-Weaning" Animals 15, no. 6: 804. https://doi.org/10.3390/ani15060804
APA StyleMirzaei-Alamouti, H., Salehi, S., Khani, M., Vazirigohar, M., & Aschenbach, J. R. (2025). Changes in Ruminal Fermentation and Growth Performance in Calves After Increasing Ruminal Undegradable Protein at Two Different Time Points Pre-Weaning. Animals, 15(6), 804. https://doi.org/10.3390/ani15060804