Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Grain Management and Quality
2.2. Experimental Design and Diets
2.3. Animal Management
2.4. Sample Collection
2.5. Feed and Faecal Analysis
2.6. Gut Morphological Analysis
2.7. Gene Expression in the Small Intestine
2.7.1. RNA Extraction and cDNA Synthesis
2.7.2. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.8. Microbiological Analysis
2.8.1. Microbial DNA Extraction
2.8.2. Illumina Sequencing
2.8.3. Bioinformatics
2.9. Volatile Fatty Acid Analysis
2.10. Statistical Analysis
3. Results
3.1. Grain Quality
3.2. Growth Performance and Faecal Scores
3.3. Coefficient of Apparent Total Tract Digestibility
3.4. Small Intestinal Morphology
3.5. Gene Expression Analysis
3.6. Differential Bacterial Abundance Analysis
3.6.1. Bacterial Richness and Diversity
3.6.2. Differently Abundant Phlya
3.6.3. Differently Abundant Families
3.6.4. Differently Abundant Genera
3.7. Volatile Fatty Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pluske, J.R.; Miller, D.W.; Sterndale, S.O.; Turpin, D.L. Associations between gastrointestinal-tract function and the stress response after weaning in pigs. Anim. Prod. Sci. 2019, 59, 2015. [Google Scholar] [CrossRef]
- Lallès, J.-P.; Boudry, G.; Favier, C.; Le Floc’h, N.; Luron, I.; Montagne, L.; Oswald, I.P.; Pié, S.; Piel, C.; Sève, B. Gut function and dysfunction in young pigs: Physiology. Anim. Res. 2004, 53, 301–316. [Google Scholar] [CrossRef]
- Pluske, J.R.; Turpin, D.L.; Kim, J.-C. Gastrointestinal tract (gut) health in the young pig. Anim. Nutr. 2018, 4, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, R.B.; Hong, S.H.; Cho, J.H.; Kim, B.-R.; Shin, J.; Lee, J.H.; Kang, B.N.; Kim, Y.H.; Wattanaphansak, S.; Isaacson, R.E.; et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J. Anim. Sci. Biotechnol. 2018, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Hu, X.; Jin, W.; Liu, G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim. Nutr. 2024, 17, 188–207. [Google Scholar] [CrossRef]
- Pejsak, Z.; Kaźmierczak, P.; Butkiewicz, A.F.; Wojciechowski, J.; Woźniakowski, G. Alternatives to zinc oxide in pig production. Pol. J. Vet. Sci. 2023, 26, 319–330. [Google Scholar] [CrossRef]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- NRC. Nutritional Requirements of Swine; National Academcic Press: Washington, DC, USA, 2012. [Google Scholar]
- Suiryanrayna, M.V.A.N.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef]
- O’Doherty, J.V.; Bouwhuis, M.A.; Sweeney, T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. Anim. Prod. Sci. 2017, 57, 2376. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds: Feeding strategies without using in-feed antibiotics. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, E.Ø.; Kudirkiene, E.; Christensen, A.E.; Agerlin, M.V.; Weber, N.R.; Nødtvedt, A.; Nielsen, J.P.; Hartmann, K.T.; Skade, L.; Larsen, L.E.; et al. Post-weaning diarrhea in pigs weaned without medicinal zinc: Risk factors, pathogen dynamics, and association to growth rate. Porc. Health Manag. 2021, 7, 54. [Google Scholar] [CrossRef]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli1. J. Anim. Sci. 2009, 87, 2833–2843. [Google Scholar] [CrossRef]
- Gao, J.; Yin, J.; Xu, K.; Han, H.; Liu, Z.; Wang, C.; Li, T.; Yin, Y. Protein Level and Infantile Diarrhea in a Postweaning Piglet Model. Mediators Inflamm. 2020, 2020, 1937387. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.M.; Lei, X.J.; Cheong, J.Y.; Kang, J.S.; Kim, I.H. Effect of different levels of fiber and protein on growth performance and fecal characteristics in weaning pigs. Korean J. Agric. Sci. 2017, 44, 366–374. [Google Scholar] [CrossRef]
- Lynegaard, J.C.; Kjeldsen, N.J.; Hansen, C.F.; Williams, A.R.; Nielsen, J.P.; Amdi, C. Reduction in Diarrhoea and Modulation of Intestinal Gene Expression in Pigs Allocated a Low Protein Diet without Medicinal Zinc Oxide Post-Weaning. Animals 2022, 12, 989. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Jokiniemi, T.; Jaakkola, S.; Turunen, M.; Ahokas, J. Energy consumption in different grain preservation methods. Agron. Res. 2014, 12, 81–94. [Google Scholar]
- Burke, J.; Spink, J.; Hackett, R. Wheat in the Republic of Ireland. In The World Wheat Book: A History of Wheat Breeding; Lavoisier Publishing: Paris, France, 2011; Volume 2, pp. 107–118. [Google Scholar]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Matumba, L.; Namaumbo, S.; Ngoma, T.; Meleke, N.; De Boevre, M.; Logrieco, A.F.; De Saeger, S. Five keys to prevention and control of mycotoxins in grains: A proposal. Glob. Food Secur. 2021, 30, 100562. [Google Scholar] [CrossRef]
- Coradi, P.C.; Fernandes, C.H.P.; Helmich, J.C.; Goneli, A.L.D. Effects of drying air temperature and grain initial moisture content on soybean quality (Glycine Max (L.) Merrill). Eng. Agríc. 2016, 36, 866–876. [Google Scholar] [CrossRef]
- Jimoh, K.A.; Hashim, N.; Shamsudin, R.; Man, H.C.; Jahari, M.; Onwude, D.I. Recent Advances in the Drying Process of Grains. Food Eng. Rev. 2023, 15, 548–576. [Google Scholar] [CrossRef]
- Menon, A.; Stojceska, V.; Tassou, S.A. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci. Technol. 2020, 100, 67–76. [Google Scholar] [CrossRef]
- Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 1999, 12, 117–145. [Google Scholar] [CrossRef]
- Maher, S.; Sweeney, T.; Kiernan, D.P.; Ryan, M.; Gath, V.; Vigors, S.; Connolly, K.R.; O’Doherty, J.V. Organic acid preservation of cereal grains improves grain quality, growth performance, and intestinal health of post-weaned pigs. Anim. Feed Sci. Technol. 2024, 316, 116078. [Google Scholar] [CrossRef]
- Laca, A.; Mousia, Z.; Díaz, M.; Webb, C.; Pandiella, S.S. Distribution of microbial contamination within cereal grains. J. Food Eng. 2006, 72, 332–338. [Google Scholar] [CrossRef]
- Soleimany, F.; Jinap, S.; Abas, F. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 130, 1055–1060. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Bowland, J.P.; Aherne, F.X. Influence of method upon the determination of apparent digestibility in the pig. Can. J. Anim. Sci. 1977, 57, 131–135. [Google Scholar] [CrossRef]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr. 2013, 110, 1630–1638. [Google Scholar] [CrossRef]
- Dowley, A.; Sweeney, T.; Conway, E.; Vigors, S.; Yadav, S.; Wilson, J.; Gabrielli, W.; O’Doherty, J.V. Effects of Dietary Supplementation with Mushroom or Vitamin D2-Enriched Mushroom Powders on Gastrointestinal Health Parameters in the Weaned Pig. Animals 2021, 11, 3603. [Google Scholar] [CrossRef]
- Clarke, L.C.; Sweeney, T.; Curley, E.; Gath, V.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J.V. Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim. Feed Sci. Technol. 2018, 238, 98–110. [Google Scholar] [CrossRef]
- Iwaki, K.; Nimura, N.; Hiraga, Y.; Kinoshita, T.; Takeda, K.; Ogura, H. Amino acid analysis by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1987, 407, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, R.; Sweeney, T.; Maher, S.; Thornton, K.; Rajauria, G.; O’Doherty, J.V. Laminarin-rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters and the large intestinal microbial composition of piglets during the critical post-weaning period. Br. J. Nutr. 2020, 123, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef]
- Angly, F.E.; Dennis, P.G.; Skarshewski, A.; Vanwonterghem, I.; Hugenholtz, P.; Tyson, G.W. CopyRighter: A rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2014, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Wagner, B.D.; Grunwald, G.K.; Zerbe, G.O.; Mikulich-Gilbertson, S.K.; Robertson, C.E.; Zemanick, E.T.; Harris, J.K. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Front. Microbiol. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.L.; Pluske, J.R.; Morrison, R.S.; McDonald, T.N.; Smits, R.J.; Henman, D.J.; Stensland, I.; Dunshea, F.R. Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Anim. Nutr. 2017, 3, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Jeaurond, E.A.; Rademacher, M.; Pluske, J.R.; Zhu, C.H.; De Lange, C.F.M. Impact of feeding fermentable proteins and carbohydrates on growth performance, gut health and gastrointestinal function of newly weaned pigs. Can. J. Anim. Sci. 2008, 88, 271–281. [Google Scholar] [CrossRef]
- Pluske, J.R.; Pethick, D.W.; Hopwood, D.E.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pig. Nutr. Res. Rev. 2002, 15, 333–371. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Lan, T.; Zhou, C.; Gao, J.; Wu, L.; Wei, H.; Li, W.; Tang, Z.; Tang, W.; Diao, H.; et al. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. Anim. Nutr. 2024, 17, 297–311. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H.; Kim, Y.Y. Effects of different levels of dietary crude protein on growth performance, blood profiles, diarrhea incidence, nutrient digestibility, and odor emission in weaning pigs. Anim. Biosci. 2023, 36, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Lynegaard, J.C.; Kjeldsen, N.J.; Bache, J.K.; Weber, N.R.; Hansen, C.F.; Nielsen, J.P.; Amdi, C. Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhea treatments and average daily gain. Animal 2021, 15, 100075. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, R.; Faeti, V.; Gallo, M.; Pindo, M.; Bochicchio, D.; Buttazzoni, L.; Della Casa, G. Protein Content in the Diet Influences Growth and Diarrhea in Weaning Piglets. Animals 2023, 13, 795. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef]
- Holmes, A.J.; Chew, Y.V.; Colakoglu, F.; Cliff, J.B.; Klaassens, E.; Read, M.N.; Solon-Biet, S.M.; McMahon, A.C.; Cogger, V.C.; Ruohonen, K.; et al. Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metab. 2017, 25, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Uriot, O.; Denis, S.; Junjua, M.; Roussel, Y.; Dary-Mourot, A.; Blanquet-Diot, S. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? J. Funct. Foods 2017, 37, 74–89. [Google Scholar] [CrossRef]
- Obradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet. Res. 2021, 52, 49. [Google Scholar] [CrossRef]
- He, X.; Zhao, S.; Li, Y. Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6666114. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 121, pp. 91–119. ISBN 978-0-12-800100-4. [Google Scholar]
- Bai, Y.; Zhou, X.; Zhao, J.; Wang, Z.; Ye, H.; Pi, Y.; Che, D.; Han, D.; Zhang, S.; Wang, J. Sources of Dietary Fiber Affect the SCFA Production and Absorption in the Hindgut of Growing Pigs. Front. Nutr. 2022, 8, 719935. [Google Scholar] [CrossRef] [PubMed]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Vitetta, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020, 20, e15. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, R.; Sweeney, T.; Maher, S.; Ryan, M.T.; Thornton, K.; O’Doherty, J.V. Effects of reducing dietary crude protein concentration and supplementation with either laminarin or zinc oxide on the growth performance and intestinal health of newly weaned pigs. Anim. Feed Sci. Technol. 2020, 270, 114693. [Google Scholar] [CrossRef]
- Lallès, J.P.; Sève, B.; Pié, S.; Blazy, F.; Laffitte, J.; Oswald, I.P. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.G.; Cox, L.M.; Da Silva, P.; Mangani, D.; De Oliveira, M.G.; Escobar, G.; Lanser, T.B.; Murphy, L.; Lobo Eduardo, L.C.; Milstein, O.; et al. Dietary protein modulates intestinal dendritic cells to establish mucosal homeostasis. Mucosal Immunol. 2024, 17, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Dugan, M.E.R.; Aalhus, J.L.; Uttaro, B. Nutritional Manipulation of Pork Quality: Current Opportunities. Adv. Pork Prod. 2004, 15, 237–243. [Google Scholar]
- Connolly, R.; Sweeney, T.; Maher, S. Organic acid and salt treatment of cereal at harvest improves growth performance in the post weaned pig. Anim.-Sci. Proc. 2022, 13, 204. [Google Scholar] [CrossRef]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhou, Q.; Guan, W.; Lin, X.; Wang, Y.; Song, H.; Zhang, Y. Immune Response of Piglets Receiving Mixture of Formic and Propionic Acid Alone or with Either Capric Acid or Bacillus Licheniformis after Escherichia coli Challenge. BioMed Res. Int. 2019, 2019, 6416187. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Wojtacha, P.; Trybowski, W.; Podlasz, P.; Żmigrodzka, M.; Tyburski, J.; Polak-Śliwińska, M.; Jakimiuk, E.; Bakuła, T.; Baranowski, M.; Żuk-Gołaszewska, K.; et al. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins 2021, 13, 277. [Google Scholar] [CrossRef]
- Guerre, P. Mycotoxin and Gut Microbiota Interactions. Toxins 2020, 12, 769. [Google Scholar] [CrossRef]
- Dempsey, E.; Corr, S.C. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front. Immunol. 2022, 13, 840245. [Google Scholar] [CrossRef]
- Cao, G.; Yang, S.; Wang, H.; Zhang, R.; Wu, Y.; Liu, J.; Qiu, K.; Dong, Y.; Yue, M. Effects of Bacillus licheniformis on the Growth Performance, Antioxidant Capacity, Ileal Morphology, Intestinal Short Chain Fatty Acids, and Colonic Microflora in Piglets Challenged with Lipopolysaccharide. Animals 2023, 13, 2172. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Ma, Q.; Liu, Y.; Khan, M.Z.; Wu, B.; Chen, W.; Liu, X.; Wang, C.; Li, Y. Exploring the Effect of Gastrointestinal Prevotella on Growth Performance Traits in Livestock Animals. Animals 2024, 14, 1965. [Google Scholar] [CrossRef] [PubMed]
- Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S.B.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Roseburia Spp.: A Marker of Health? Future Microbiol. 2017, 12, 157–170. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, S.; Yang, H.; Chen, C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J. Anim. Sci. 2021, 99, skab045. [Google Scholar] [CrossRef] [PubMed]
- Amat, S.; Lantz, H.; Munyaka, P.M.; Willing, B.P. Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020, 8, 1584. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Tiezzi, F.; Howard, J.; Huang, Y.J.; Gray, K.A.; Schillebeeckx, C.; McNulty, N.P.; Maltecca, C. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome 2020, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Beringer, A.; Noack, M.; Miossec, P. IL-17 in Chronic Inflammation: From Discovery to Targeting. Trends Mol. Med. 2016, 22, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, N.C.; Shayakhmetov, D.M. Interleukin 1α and the inflammatory process. Nat. Immunol. 2016, 17, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Rauw, W.M. Immune response from a resource allocation perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, Y.; Bazer, F.W.; He, W.; Posey, E.A.; Wu, G. Amino Acids in Swine Nutrition and Production. In Amino Acids in Nutrition and Health; Wu, G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1285, pp. 81–107. ISBN 978-3-030-54461-4. [Google Scholar]
- Luise, D.; Chalvon-Demersay, T.; Lambert, W.; Bosi, P.; Trevisi, P. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. Ital. J. Anim. Sci. 2021, 20, 1386–1397. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
Cereal Crop Type | Wheat | Barley | ||
---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved |
Analysis post storage (g/kg) | ||||
DM | 873.5 | 840.5 | 873.5 | 848.5 |
Ash | 16.2 | 15.8 | 19.5 | 19.0 |
GE (MJ/kg) | 15.9 | 15.2 | 16.1 | 15.6 |
Crude protein | 89.0 | 84.5 | 103.5 | 87.5 |
Crude fibre | 25.5 | 23.5 | 57.5 | 52.0 |
Starch | 626.5 | 608.5 | 530.0 | 504.0 |
Fat | 14.5 | 14.0 | 15.5 | 14.0 |
TMC (cfu/g) | 37,000 | 3800 | 27,000 | 2400 |
Mycotoxin levels (μg/kg) a | ||||
Deoxynivalenol | <75 | <75 | <75 | <75 |
T-2 toxin | <4.00 | <4.00 | 6.96 | <4.00 |
HT-2 toxin | <4.00 | <4.00 | 30.1 | 8.66 |
Zearalenone | <10 | <10 | <10 | <10 |
Ochratoxin A | 3.2 | <1.00 | 1.8 | <1.0 |
Dietary Treatments * | ||||||||
---|---|---|---|---|---|---|---|---|
Stage 1 Diets | Stage 2 Diets | |||||||
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved |
Crude Protein Level | Standard | Standard | Low | Low | Standard | Standard | Low | Low |
Ingredients (g/kg) | ||||||||
Wheat | 328 | 328 | 328 | 328 | 403 | 403 | 403 | 403 |
Barley | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Maize | 95 | 95 | 170 | 170 | 81 | 81 | 145 | 145 |
Full fat soya | 170 | 170 | 140 | 140 | 145 | 145 | 119 | 119 |
Soya bean meal | 95 | 95 | 70 | 70 | 82 | 81 | 60 | 60 |
Soya bean concentrate | 40 | 40 | 60 | 60 | 34 | 34 | 51 | 51 |
Whey powder | 50 | 50 | 50 | 50 | 43 | 43 | 43 | 43 |
Soya oil | 30 | 30 | 30 | 30 | 26 | 26 | 26 | 26 |
Starch | 5 | 5 | - | - | 5 | 5 | - | - |
Salt | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Mono calcium Phosphate | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 |
Calcium carbonate | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Lysine HCl | 2.5 | 2.5 | 4.9 | 4.9 | 2.5 | 2.5 | 4.9 | 4.9 |
DL-Methionine | 2 | 2 | 2.5 | 2.5 | 2 | 2 | 2.5 | 2.5 |
L-Threonine | 1.8 | 1.8 | 2.7 | 2.7 | 1.8 | 1.8 | 2.7 | 2.7 |
Tryptophan | 0.3 | 0.3 | 0.7 | 0.7 | 0.3 | 0.3 | 0.7 | 0.7 |
Valine | - | - | 0.5 | 0.5 | - | - | 0.5 | 0.5 |
Dietary Treatments * | ||||||||
---|---|---|---|---|---|---|---|---|
Stage 1 Diets | Stage 2 Diets | |||||||
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved | Dried | OA-Preserved |
Crude Protein Level | Standard | Standard | Low | Low | Standard | Standard | Low | Low |
DM | 895.0 | 886.0 | 896.0 | 882.5 | 894.0 | 878.5 | 892.5 | 888.0 |
Ash | 45.5 | 44.5 | 39.5 | 36.5 | 43.0 | 39.5 | 33.5 | 32.0 |
GE (MJ/kg) | 17.1 | 16.7 | 16.7 | 16.7 | 16.9 | 16.6 | 16.7 | 16.5 |
Crude fat | 63.0 | 61.0 | 58.5 | 57.0 | 57.0 | 56.0 | 54.0 | 53.0 |
Crude protein | 197.5 | 191.5 | 185.0 | 182.5 | 188.5 | 187.5 | 172.5 | 175.0 |
Crude fibre | 28.5 | 25.5 | 25.0 | 23.5 | 28.5 | 23.5 | 25.5 | 22.0 |
NDF | 111.5 | 100.5 | 107.0 | 98.0 | 112.5 | 98.0 | 106.5 | 95.0 |
ADF | 33.5 | 28.5 | 31.0 | 28.5 | 34.0 | 28.5 | 30.5 | 27.0 |
Starch | 319.0 | 299.0 | 354.0 | 350.0 | 340.0 | 336.5 | 383.5 | 375.5 |
Amino Acids | ||||||||
Lysine | 15.67 | 15.65 | 15.57 | 15.55 | 14.07 | 14.06 | 14.24 | 14.25 |
Threonine | 11.01 | 11.04 | 10.71 | 10.70 | 10.98 | 10.10 | 9.99 | 9.96 |
Methionine and cysteine | 10.29 | 10.31 | 10.03 | 10.01 | 9.67 | 9.70 | 9.55 | 9.53 |
Leucine | 19.37 | 19.35 | 17.49 | 17.45 | 14.04 | 14.06 | 14.27 | 14.30 |
Iso-Leucine | 10.88 | 10.86 | 9.53 | 9.56 | 9.87 | 9.84 | 8.72 | 8.76 |
Arginine | 14.34 | 14.37 | 12.05 | 12.06 | 13.05 | 13.08 | 11.10 | 11.07 |
Histidine | 5.92 | 5.95 | 5.18 | 5.20 | 5.45 | 5.44 | 4.79 | 4.78 |
Phenylalanine | 11.24 | 11.27 | 9.73 | 9.76 | 10.30 | 10.33 | 9.02 | 9.04 |
Tyrosine | 7.51 | 7.53 | 6.56 | 6.54 | 6.87 | 6.90 | 6.09 | 6.07 |
Alanine | 10.37 | 10.35 | 9.33 | 9.36 | 9.40 | 9.44 | 8.53 | 8.55 |
Aspartic | 22.48 | 22.45 | 19.75 | 19.78 | 19.97 | 19.95 | 17.74 | 17.77 |
Glutaminc | 46.99 | 47.1 | 41.92 | 41.90 | 44.2 | 44.6 | 40.05 | 40.01 |
Glycine | 9.00 | 9.03 | 7.81 | 7.78 | 8.35 | 8.36 | 7.33 | 7.30 |
Serine | 11.41 | 11.40 | 9.93 | 9.96 | 10.51 | 10.50 | 9.23 | 9.23 |
Proline | 15.63 | 15.60 | 14.32 | 14.34 | 14.88 | 14.86 | 13.75 | 13.78 |
Tryptophan | 2.72 | 2.74 | 2.73 | 2.74 | 2.56 | 2.55 | 2.62 | 2.60 |
Valine | 12.02 | 12.04 | 10.62 | 10.66 | 8.62 | 8.63 | 7.83 | 7.80 |
TMC (cfu/g) | 6200 | 3700 | 4800 | 3300 | 4300 | 3700 | 5600 | 4000 |
Mycotoxin levels (mg/kg) a | ||||||||
Deoxynivalenol | <75 | <75 | <75 | <75 | <75 | <75 | <75 | <75 |
T-2 toxin | 5.62 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 | <4.00 |
HT-2 toxin | 23.1 | 13.3 | 14.1 | 11.3 | <15.7 | <10.8 | <10.7 | <10.6 |
Zearalenone | 35 | 37 | 30 | 27 | 39 | 31 | 23 | 25 |
Ochratoxin | 1.09 | <1.0 | 2.39 | <1.00 | <1.65 | <1.00 | <1.60 | <1.00 |
Target Gene | Gene Name | Accession no. | Forward Primer (5′-3′) Reverse Primer (5′-3′) |
---|---|---|---|
Nutrient transporters | |||
FABP2 | Fatty Acid Binding Protein 2 | NM_001031780.1 | F: CAGCCTCGCAGACGGAACTGAA R: GTGTTCTGGGCTGTGCTCCAAGA |
SLC2A1 | Solute Carrier Family 2 Member 1 | XM_003482115.1 | F: TGCTCATCAACCGCAATGA R: GTTCCGCGCAGCTTCTTC |
SLC15A1 | Solute Carrier Family 15 Member 1 | NM_214347.1 | F: GGATAGCCTGTACCCCAAGCT R: CATCCTCCACGTGCTTCTTGA |
Inflammatory markers | |||
IL1A | Interleukin 1A | NM_214029.1 | F: CAGCCAACGGGAAGATTCTG R: ATGGCTTCCAGGTCGTCAT |
IL1B | Interleukin 1B | NM_001005149.1 | F: TTGAATTCGAGTCTGCCCTGT R: CCCAGGAAGACGGGCTTT |
IL6 | Interleukin 6 | NM_214399.1 | F: GACAAAGCCACCACCCCTAA R:CTCGTTCTGTGACTGCAGCTTATC |
CXCL8 | C-X-C Motif Chemokine Ligand 8 | NM_213867.1 | F: TGCACTTACTCTTGCCAGAACTG R: CAAACTGGCTGTTGCCTTCTT |
IL10 | Interleukin 10 | NM_214041.1 | F: GCCTTCGGCCCAGTGAA R: AGAGACCCGGTCAGCAACAA |
IL17 | Interleukin 17 | NM_001005729.1 | F: CCCTGTCACTGCTGCTTCTG R: TCATGATTCCCGCCTTCAC |
IL22 | Interleukin 22 | XM_001926156.1 | F: GATGAGAGAGCGCTGCTACCTGG R: GAAGGACGCCACCTCCTGCATGT |
TNF | Tumour Necrosis Factor | NM_214022.1 | F: TGGCCCCTTGAGCATCA R: CGGGCTTATCTGAGGTTTGAGA |
FOXP3 | Forkhead Box P3 | NM_001128438.1 | F: GTGGTGCAGTCTCTGGAACAAC R: AGGTGGGCCTGCATAGCA |
Tight junctions | |||
TJP1 | Tight Junction Protein 1 | XM_021098827.1 | F: TGAGAGCCAACCATGTCTTGAA R: CTCAGACCCGGCTCTCTGTCT |
CLDN1 | Claudin 1 | NM_001244539.1 | F: CTGGGAGGTGCCCTACTTTG R: TGGATAGGGCCTTGGTGTTG |
Toll like receptors | |||
TLR4 | Toll-Like Receptor 4 | NM_001293317.1 | F: TGCATGGAGCTGAATTTCTACAA R: GATAAATCCAGCACCTGCAGTTC |
Mucins | |||
MUC2 | Mucin 2 | AK231524 | F: CAACGGCCTCTCCTTCTCTGT R: GCCACACTGGCCCTTTGT |
Reference genes | |||
H3F3A | Histone H3.3 | NM_213930.1 | F: CATGGCTCGTACAAAGCAGA R: ACCAGGCCTGTAACGATGAG |
YWHAZ | Tyrosine 3-Monooxygenase/Tyrtophan 5-Monooxygenase Activation Protein Zeta | NM_001315726.1 | F: GGACATCGGATACCCAAGGA R: AAGTTGGAAGGCCGGTTAATTT |
ACTB | Actin Beta | XM_001927228.1 | F:GGACATCGGATACCCAAGGA R:AAGTTGGAAGGCCGGTTAATTT |
Treatments * | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dried Standard CP | OA-Preserved Standard CP | Dried Low CP | OA-Preserved Low CP | SEM | Grain | Protein | Grain × Protein | Time × Grain × Protein | |||||
D0–15 | D15–35 | D0–15 | D15–35 | D0–15 | D15–35 | D0–15 | D15–35 | ||||||
ADFI (g/DM/day) | 397 | 853 | 401 | 877 | 413 | 780 | 403 | 844 | 19.32 | 0.214 | 0.196 | 0.700 | 0.162 |
ADG (g/d) | 325 | 657 | 396 | 649 | 362 | 560 | 366 | 630 | 22.10 | 0.055 | 0.127 | 0.888 | 0.009 |
FCR ** | 1.29 | 1.30 | 1.04 | 1.38 | 1.20 | 1.42 | 1.12 | 1.36 | 0.053 | 0.049 | 0.591 | 0.841 | 0.032 |
BW (kg) | 12.27 | 23.59 | 13.13 | 24.83 | 12.82 | 22.65 | 12.90 | 24.23 | 0.538 | 0.048 | 0.513 | 0.812 | 0.304 |
FS | 2.24 | - | 2.23 | - | 2.18 | - | 2.19 | - | 0.027 | 0.967 | 0.050 | 0.582 | 0.929 |
Treatment * | p Values | |||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Protein | Grain × Protein |
Dietary Crude Protein Level | Standard | Standard | Low | Low | ||||
DM | 0.851 ab | 0.843 a | 0.845 ab | 0.853 b | 0.0035 | 0.953 | 0.464 | 0.023 |
OM | 86.81 ab | 85.97 a | 86.30 ab | 87.08 b | 0.3409 | 0.920 | 0.371 | 0.019 |
Ash | 59.47 | 60.00 | 57.70 | 60.18 | 0.6719 | 0.026 | 0.223 | 0.141 |
N | 81.10 a | 80.50 ab | 78.81 b | 80.84 a | 0.6764 | 0.275 | 0.142 | 0.049 |
GE | 84.24 ab | 83.45 a | 83.68 ab | 84.72 b | 0.3920 | 0.740 | 0.353 | 0.021 |
Grain Preservation Method | Crude Protein Level | p Values | |||||||
---|---|---|---|---|---|---|---|---|---|
Dried | OA-Preserved | SEM | Standard | Low | SEM | Grain | Protein | Grain × Protein | |
Duodenum | |||||||||
VH μm | 288.82 | 307.62 | 16.567 | 309.76 | 286.68 | 16.297 | 0.440 | 0.329 | 0.810 |
CD μm | 127.41 | 134.54 | 6.600 | 131.90 | 130.04 | 6.551 | 0.466 | 0.843 | 0.595 |
VH:CD | 2.38 | 2.31 | 0.147 | 2.41 | 2.28 | 0.144 | 0.755 | 0.532 | 0.577 |
Jejunum | |||||||||
VH μm | 304.50 | 299.40 | 18.641 | 302.81 | 301.10 | 18.337 | 0.852 | 0.948 | 0.507 |
CD μm | 124.27 | 107.77 | 9.696 | 111.02 | 121.03 | 9.538 | 0.250 | 0.468 | 0.585 |
VH:CD | 2.60 | 2.85 | 0.199 | 2.84 | 2.61 | 0.196 | 0.389 | 0.430 | 0.387 |
Ileum | |||||||||
VH μm | 315.95 | 295.16 | 12.932 | 312.51 | 298.60 | 12.722 | 0.276 | 0.450 | 0.157 |
CD μm | 99.16 | 92.52 | 4.117 | 93.42 | 98.26 | 4.050 | 0.275 | 0.409 | 0.805 |
VH:CD | 3.24 | 3.34 | 0.206 | 3.44 | 3.13 | 0.202 | 0.746 | 0.292 | 0.541 |
Grain Preservation Method | Crude Protein Level | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
Dried | OA-Preserved | SEM | Standard | Low | SEM | Grain | Protein | Grain × Protein | |
Duodenum | |||||||||
IL1A | 1.35 | 0.89 | 0.152 | 0.98 | 1.26 | 0.152 | 0.037 | 0.205 | 0.375 |
IL1B | 1.38 | 1.36 | 0.287 | 0.95 | 1.80 | 0.287 | 0.955 | 0.046 | 0.492 |
Jejunum | |||||||||
IL17 | 2.13 | 0.88 | 0.405 | 1.45 | 1.56 | 0.405 | 0.036 | 0.847 | 0.520 |
Ileum | |||||||||
IL17 | 1.45 | 0.82 | 0.167 | 1.10 | 1.17 | 0.167 | 0.013 | 0.773 | 0.891 |
Phylum | Treatments * | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Protein | Grain × Protein |
Crude Protein Levels | Standard | Standard | Low | Low | ||||
Ileum | ||||||||
Firmicutes | 92.68 | 94.57 | 99.56 | 91.20 | 4.989 | 0.460 | 0.698 | 0.244 |
Colon | ||||||||
Firmicutes | 79.46 | 77.58 | 76.98 | 70.84 | 3.152 | 0.197 | 0.142 | 0.471 |
Bacteroidetes | 7.46 | 12.36 | 8.53 | 17.63 | 1.484 | <0.001 | 0.035 | 0.325 |
Actinobacteria | 3.59 | 3.73 | 4.65 | 3.65 | 0.815 | 0.581 | 0.516 | 0.450 |
Tenericutes | 0.50 a | 0.17 a | 0.48 a | 1.71 b | 0.462 | 0.864 | 0.069 | 0.049 |
Spirochaetes | 0.26 | 0.11 | 1.59 | 0.49 | 0.446 | 0.179 | 0.031 | 0.801 |
Family | Treatments * | p Values | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Protein | Grain × Protein |
Crude Protein Content | Standard | Standard | Low | Low | ||||
Ileum | ||||||||
Lactobacillaceae | 69.95 | 87.69 | 64.15 | 77.07 | 3.926 | <0.001 | 0.041 | 0.670 |
Clostridiaceae | 17.17 b | 6.15 a | 4.77 a | 6.15 a | 1.566 | 0.031 | 0.001 | 0.001 |
Streptocaccaeceae | 5.11 a | 0.61 b | 0.39 b | 4.43 a | 1.052 | 0.743 | 0.531 | <0.001 |
Colon | ||||||||
Lactobacillaceae | 19.96 | 11.19 | 8.46 | 6.94 | 1.689 | 0.002 | <0.001 | 0.104 |
Lachnospiraceae | 11.92 ab | 13.19 ab | 16.11 a | 10.76 b | 1.419 | 0.355 | 0.624 | 0.017 |
Erysipelotrichaceae | 0.83 | 0.70 | 0.35 | 0.66 | 0.344 | 0.621 | 0.330 | 0.399 |
Eubacteriaceae | 1.22 | 2.31 | 3.07 | 4.29 | 0.733 | 0.049 | 0.003 | 0.532 |
Ruminococcaceae | 28.73 | 36.17 | 37.23 | 34.12 | 2.157 | 0.249 | 0.111 | 0.014 |
Clostridiaceae | 3.83 | 2.62 | 2.59 | 3.59 | 0.692 | 0.894 | 0.856 | 0.091 |
Propionibacteriaceae | 1.52 a | 3.50 ab | 4.32 b | 3.36 ab | 0.786 | 0.190 | 0.028 | 0.019 |
Streptococcaceae | 0.57 | 0.37 | 0.14 | 0.67 | 0.288 | 0.382 | 0.520 | 0.137 |
Oscillospiraceae | 1.95 | 1.56 | 2.06 | 2.15 | 0.519 | 0.719 | 0.466 | 0.603 |
Spiroplasmataceae | 0.54 a | 0.18 a | 0.45 a | 1.70 b | 0.460 | 0.846 | 0.090 | 0.049 |
Rikenellaceae | 1.57 a | 0.68 a | 1.22 a | 4.51 b | 0.751 | 0.455 | 0.014 | 0.002 |
Hungateiclostridiaceae | 2.75 | 2.30 | 1.53 | 3.22 | 0.630 | 0.250 | 0.608 | 0.066 |
Muribaculaceae | 0.51 | 0.26 | 0.32 | 0.45 | 0.253 | 0.775 | 0.951 | 0.388 |
Acidaminococcaceae | 0.55 | 0.97 | 0.59 | 1.01 | 0.355 | 0.198 | 0.902 | 0.974 |
Veillonellaceae | 0.08 | 0.62 | 0.19 | 0.78 | 0.313 | 0.042 | 0.490 | 0.682 |
Prevotellaceae | 5.92 | 11.63 | 7.11 | 13.40 | 1.294 | <0.001 | 0.192 | 0.863 |
Christensenellaceae | 1.69 ab | 2.78 ab | 3.65 a | 1.09 b | 0.675 | 0.184 | 0.757 | 0.003 |
Spirochaetaceae | 0.27 | 0.12 | 1.66 | 0.50 | 0.456 | 0.161 | 0.029 | 0.810 |
Genus | Treatments * | p Values | ||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Protein | Grain × Protein |
Crude Protein Content | Standard | Standard | Low | Low | ||||
Ileum | ||||||||
Lactobacillus | 70.56 | 87.69 | 66.01 | 77.75 | 3.943 | <0.001 | 0.071 | 0.589 |
Clostridium | 17.80 b | 6.15 a | 4.82 a | 6.24 a | 1.595 | 0.025 | <0.001 | <0.001 |
Streptococcus | 2.09 a | 0.61 a | 0.39 a | 8.51 b | 1.305 | 0.064 | 0.326 | <0.001 |
Colon | ||||||||
Lactobacillus | 20.20 | 11.22 | 8.75 | 7.01 | 1.699 | <0.001 | <0.001 | 0.114 |
Collinsella | 1.96 | 0.20 | 0.46 | 0.16 | 0.529 | 0.018 | 0.216 | 0.359 |
Anaerobutyricum | 0.08 | 0.53 | 0.20 | 0.06 | 0.256 | 0.741 | 0.584 | 0.152 |
Catenibacterium | 0.26 | 0.04 | 0.15 | 0.13 | 0.182 | 0.401 | 0.813 | 0.469 |
Gemmiger | 8.87 | 5.80 | 7.09 | 5.27 | 1.053 | 0.015 | 0.261 | 0.649 |
Ruminococcus | 2.41 | 0.76 | 2.14 | 1.21 | 0.517 | 0.009 | 0.574 | 0.347 |
Faecalibacterium | 15.26 a | 24.88 b | 24.44 b | 24.63 b | 1.755 | 0.003 | 0.006 | 0.004 |
Butyricicoccus | 1.89 | 1.33 | 1.03 | 0.81 | 0.486 | 0.375 | 0.103 | 0.868 |
Holdemanella | 1.16 | 0.19 | 0.20 | 0.25 | 0.381 | 0.254 | 0.289 | 0.151 |
Clostridium | 1.97 ab | 1.28 ab | 0.85 a | 2.69 b | 0.580 | 0.248 | 0.879 | 0.016 |
Streptococcus | 0.57 | 0.37 | 0.14 | 0.66 | 0.288 | 0.390 | 0.519 | 0.136 |
Oscillibacter | 1.95 | 1.55 | 2.13 | 2.16 | 0.519 | 0.678 | 0.417 | 0.647 |
Spiroplasma | 0.54 a | 0.18 a | 0.46 a | 1.71 b | 0.462 | 0.853 | 0.087 | 0.049 |
Anaerocella | 1.56 ab | 0.69 a | 1.22 ab | 3.19 b | 0.631 | 0.827 | 0.052 | 0.009 |
Pseudobutyrivibrio | 0.14 | 0.48 | 0.46 | 0.71 | 0.297 | 0.207 | 0.240 | 0.550 |
Eubacterium | 1.22 | 2.31 | 3.16 | 3.45 | 0.702 | 0.149 | 0.001 | 0.270 |
Dorea | 1.26 a | 2.71 ab | 4.14 b | 1.10 a | 0.720 | 0.306 | 0.598 | <0.001 |
Prevotella | 4.63 a | 10.71 b | 6.30 a | 7.70 ab | 1.157 | <0.001 | 0.933 | 0.027 |
Phascolarctobacterium | 0.55 | 0.91 | 0.58 | 0.65 | 0.338 | 0.497 | 0.753 | 0.662 |
Roseburia | 1.64 | 4.08 | 1.72 | 2.68 | 0.715 | 0.009 | 0.448 | 0.335 |
Fournierella | 0.48 | 0.71 | 0.58 | 0.96 | 0.369 | 0.327 | 0.591 | 0.910 |
Megasphaera | 0.02 | 0.07 | 0.13 | 0.49 | 0.247 | 0.422 | 0.230 | 0.951 |
Agathobacter | 0.81 | 1.61 | 1.11 | 1.34 | 0.448 | 0.198 | 0.832 | 0.459 |
Blautia | 2.31 | 1.04 | 3.13 | 1.09 | 0.626 | 0.003 | 0.541 | 0.659 |
Christensenella | 1.48 ab | 2.78 a | 2.14 ab | 1.09 b | 0.589 | 0.932 | 0.319 | 0.027 |
Pseudoflavonifractor | 1.25 | 0.54 | 1.77 | 0.68 | 0.503 | 0.028 | 0.465 | 0.880 |
Hungateiclostridium | 0.31 | 0.18 | 0.14 | 0.07 | 0.197 | 0.563 | 0.385 | 0.938 |
Treponema | 0.17 | 0.11 | 1.48 | 0.46 | 0.430 | 0.306 | 0.029 | 0.622 |
Dialister | 0.05 | 0.02 | 0.06 | 0.11 | 0.127 | 0.949 | 0.616 | 0.664 |
Treatment * | p Values | |||||||
---|---|---|---|---|---|---|---|---|
Grain Preservation Method | Dried | OA-Preserved | Dried | OA-Preserved | SEM | Grain | Protein | Grain × Protein |
Crude Protein Level | Standard | Standard | Low | Low | ||||
Colon | ||||||||
Acetate | 0.499 | 0.512 | 0.422 | 0.423 | 0.0161 | 0.667 | <0.001 | 0.735 |
Propionate | 0.281 | 0.281 | 0.332 | 0.339 | 0.0079 | 0.643 | <0.001 | 0.666 |
Butyrate | 0.161 | 0.145 | 0.190 | 0.184 | 0.0120 | 0.358 | 0.008 | 0.689 |
Valerate | 0.038 | 0.032 | 0.033 | 0.026 | 0.0044 | 0.145 | 0.235 | 0.944 |
Isobutyrate | 0.011 | 0.015 | 0.012 | 0.015 | 0.0021 | 0.103 | 0.703 | 0.977 |
Isovalerate | 0.011 | 0.017 | 0.012 | 0.013 | 0.0024 | 0.126 | 0.568 | 0.352 |
BCFA | 0.059 | 0.054 | 0.063 | 0.052 | 0.0057 | 0.168 | 0.846 | 0.666 |
Total | 220.05 a | 207.18 a | 162.47 b | 196.79 a | 10.5124 | 0.316 | 0.003 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connolly, K.R.; Sweeney, T.; Ryan, M.T.; Vigors, S.; O’Doherty, J.V. Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs. Animals 2025, 15, 702. https://doi.org/10.3390/ani15050702
Connolly KR, Sweeney T, Ryan MT, Vigors S, O’Doherty JV. Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs. Animals. 2025; 15(5):702. https://doi.org/10.3390/ani15050702
Chicago/Turabian StyleConnolly, Kathryn Ruth, Torres Sweeney, Marion T. Ryan, Stafford Vigors, and John V. O’Doherty. 2025. "Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs" Animals 15, no. 5: 702. https://doi.org/10.3390/ani15050702
APA StyleConnolly, K. R., Sweeney, T., Ryan, M. T., Vigors, S., & O’Doherty, J. V. (2025). Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs. Animals, 15(5), 702. https://doi.org/10.3390/ani15050702