Effects of Temperature on the Thermal Biology and Locomotor Performance of Two Sympatric Extreme Desert Lizards
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Animals
2.2. Measurement of Morphological Indexes of Lizards
2.3. Measurement of Lizard Temperature
2.4. Measurement of Locomotor Activity of Lizards
2.5. Data Analysis
3. Results
3.1. Differences in Morphological Characteristics of Two Sympatric Lizards
3.2. Correlation Analysis of Te and Tsel of Two Sympatric Lizards
3.3. Effect of Temperature on Locomotor Performance in Two Sympatric Lizards
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Traits | Principle Component (%) | ||
---|---|---|---|
PCA1 | PCA2 | PCA3 | |
SVL | 0.3848 | −0.15558 | −0.00741 |
MASS | 0.37755 | −0.11543 | 0.24607 |
HL | 0.33407 | 0.19777 | −0.14273 |
HW | 0.1158 | 0.41504 | 0.38578 |
HD | 0.08057 | 0.36855 | 0.07836 |
MB | −0.16801 | 0.38534 | 0.05891 |
AW | −0.09639 | 0.40818 | 0.50187 |
AG | 0.40484 | −0.01377 | 0.09502 |
TL | 0.40568 | −0.15894 | 0.0431 |
TBW | 0.37395 | 0.0222 | 0.17196 |
FLL | 0.09315 | 0.38367 | −0.54329 |
HLL | 0.25175 | 0.35641 | −0.41604 |
Variance | 45.6 | 21.7 | 11.6 |
Species | Te-Max (°C) | Tb-Max (°C) | Te-Min (°C) | Tb-Min (°C) |
---|---|---|---|---|
E. roborowskii | 47 | 41.57 ± 1.30 | −20 | 6.67 ± 0.68 |
P. axillaris | 51 | 43.68 ± 1.65 | 7.00 ± 1.31 |
Species | Serial Number | Tb (°C) | Average | Te (°C) |
---|---|---|---|---|
E. roborowskii | E-1 | 43.37 | 40.25 | 54.18 |
E-2 | 40.71 | |||
E-3 | 39.01 | |||
E-4 | 38.30 | |||
E-5 | 42.09 | |||
E-6 | 40.40 | |||
E-7 | 39.15 | |||
E-8 | 40.16 | |||
E-9 | 39.29 | |||
E-10 | 39.97 | |||
E-11 | 39.15 | |||
E-12 | 40.16 | |||
E-13 | 40.25 | 40.48 | 47.70 | |
E-14 | 40.30 | |||
E-15 | 40.90 | |||
E-16 | 39.72 | 40.92 | 44.12 | |
E-17 | 42.11 | |||
P. axillaris | P-1 | 43.37 | 43.59 | 53.43 |
P-2 | 43.77 | |||
P-3 | 43.73 | |||
P-4 | 41.62 | |||
P-5 | 45.00 | |||
P-6 | 44.04 | |||
P-7 | 42.09 | 40.92 | 54.18 | |
P-8 | 39.74 | |||
P-9 | 41.48 | 41.01 | 44.12 | |
P-10 | 43.14 | |||
P-11 | 38.42 |
References
- Moritz, C.; Agudo, R. The future of species under climate change: Resilience or decline? Science 2013, 341, 504–508. [Google Scholar] [CrossRef]
- Kosanic, A.; Kavcic, I.; Kleunen, M.v.; Harrison, S. Climate change and climate change velocity analysis across Germany. Sci. Rep. 2019, 9, 2196. [Google Scholar] [CrossRef] [PubMed]
- Nimbs, M.J.; Wernberg, T.; Davis, T.R.; Champion, C.; Coleman, M.A. Climate change threatens unique evolutionary diversity in Australian kelp refugia. Sci. Rep. 2023, 13, 1248. [Google Scholar] [CrossRef]
- Ghazi, B.; Przybylak, R.; Pospieszyńska, A. Projection of climate change impacts on extreme temperature and precipitation in Central Poland. Sci. Rep. 2023, 13, 18772. [Google Scholar] [CrossRef] [PubMed]
- Kingsolver, J.G.; Arthur Woods, H.; Buckley, L.B.; Potter, K.A.; MacLean, H.J.; Higgins, J.K. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 2011, 51, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Guerrero, S.F.; Bodensteiner, B.L.; Pardo-Ramírez, A.; Aguillón-Gutierrez, D.R.; Méndez-de la Cruz, F.R.; Muñoz, M.M. Thermal physiology responds to interannual temperature shifts in a montane horned lizard, Phrynosoma orbiculare. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 335, 136–145. [Google Scholar] [CrossRef]
- Kubisch, E.L.; Fernández, J.B.; Ibargüengoytía, N.R. Thermophysiological plasticity could buffer the effects of global warming on a Patagonian lizard. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2023, 339, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Han, X.Z.; Burraco, P.; Wang, X.F.; Teng, L.W.; Liu, Z.S.; Du, W.G. Oxidative stress mediates the impact of heatwaves on survival, growth, and immune status in a lizard. Proc. R. Soc. B 2023, 290, 20231768. [Google Scholar] [CrossRef] [PubMed]
- Dayananda, B.; Jeffree, R.A.; Webb, J.K. Body temperature and time of day both affect nocturnal lizard performance: An experimental investigation. J. Therm. Biol. 2020, 93, 102728. [Google Scholar] [CrossRef] [PubMed]
- Nye, J.A.; Link, J.S.; Hare, J.A.; Overholtz, W.J. Changing spatial distribution of fish stocks in relation to climate and population size on the northeast United States continental shelf. Mar. Ecol. Prog. Ser. 2009, 393, 111–129. [Google Scholar] [CrossRef]
- Bestion, E.; Teyssier, A.; Richard, M.; Clobert, J.; Cote, J. Live Fast, Die Young: Experimental evidence of population extinction risk due to climate change. PLoS Biol. 2015, 13, e1002281. [Google Scholar] [CrossRef]
- Dzialowski, E.M.; O’Connor, M.P. Physiological control of warming and cooling during simulated shuttling and basking in lizards. Physiol. Biochem. Zool. PBZ 2001, 74, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Parlin, A.F.; Schaeffer, P.J.; Jezkova, T. Modelling the effect of environmental temperatures, microhabitat, and behavioural thermoregulation on predicted activity patterns in a desert lizard across its thermally diverse distribution. J. Biogeogr. 2020, 47, 2315–2327. [Google Scholar] [CrossRef]
- Huey, R.B.; Kearney, M.R.; Krockenberger, A.; Holtum, J.A.; Jess, M.; Williams, S.E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2012, 367, 1665–1679. [Google Scholar] [CrossRef]
- Kearney, M.; Shine, R.; Porter, W.P. The potential for behavioral thermoregulation to buffer “Cold-Blooded” animals against climate warming. Proc. Natl. Acad. Sci. USA 2009, 106, 3835–3840. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.M.; Bodensteiner, B.L. Janzen’s hypothesis meets the Bogert Effect: Connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 2019, 1, oby002. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.M.; Losos, J.B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 2018, 191, E15–E26. [Google Scholar] [CrossRef] [PubMed]
- Angilletta, M.J.; Niewiarowski, P.H.; Navas, C.A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Alford, J.G.; Lutterschmidt, W.I. From conceptual to computational: Cost and benefits of lizard thermoregulation revisited. J. Therm. Biol. 2018, 78, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Besson, A.A.; Cree, A. A cold-adapted reptile becomes a more effective thermoregulator in a thermally challenging environment. Oecologia 2010, 163, 571–581. [Google Scholar] [CrossRef]
- Herczeg, G.; Kovacs, T.; Hettyey, A.; Merilä, J. To thermoconform or thermoregulate? An assessment of thermoregulation opportunities for the lizard Zootoca vivipara in the Subarctic. Polar Biol. 2003, 26, 486–490. [Google Scholar] [CrossRef]
- Tan, W.C.; Schwanz, L.E. Thermoregulation across thermal environments in a nocturnal gecko. J. Zool. 2015, 296, 208–216. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Shi, L. Scalation variation and subspecies classification status of the rapid racerunner (Eremias velox) in Xinjiang. Sichuan J. Zool. 2014, 33, 13–18. (In Chinese) [Google Scholar]
- Jiang, L.; Li, Z.; Chen, T.; Duan, J.; Zhao, W.; Qi, Y.; Chen, W.; Li, Y. Habitat suitability evaluation and corridor construction for Phrynocephalus axillaris in Xinjiang. Chin. J. Wildl. 2024, 45, 354–366. (In Chinese) [Google Scholar]
- Ran, J.; Li, Y.; Yuan, C.; Shi, L. Age and growth of Phrynocephalus axillaris (Agamidae) by skeletochronology. Chin. J. Ecol. 2025, 44, 146–154. (In Chinese) [Google Scholar] [CrossRef]
- Zhong, W.; Zhao, W.; Qi, Y.; Chen, W.; Li, Y. Comparison of nest-site characteristics between two sand lizard species in Yuli County of Xinjiang. Chin. J. Wildl. 2023, 44, 374–382. (In Chinese) [Google Scholar]
- Lisičić, D.; Drakulić, S.; Herrel, A.; Đikić, D.; Benković, V.; Tadić, Z. Effect of competition on habitat utilization in two temperate climate gecko species. Ecol. Res. 2012, 27, 551–560. [Google Scholar] [CrossRef]
- Sears, M.W.; Angilletta, M.J., Jr. Costs and benefits of thermoregulation revisited: Both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 2015, 185, E94–E102. [Google Scholar] [CrossRef]
- Black, I.R.; Berman, J.M.; Cadena, V.; Tattersall, G.J. Behavioral thermoregulation in lizards: Strategies for achieving preferred temperature. In Behavior of Lizards; CRC Press: Boca Raton, FL, USA, 2019; pp. 13–46. [Google Scholar]
- Sinervo, B.; Méndez-de-la-Cruz, F.; Miles, D.B.; Heulin, B.; Bastiaans, E.; Cruz, M.V.-S.; Lara-Resendiz, R.; Martínez-Méndez, N.; Calderón-Espinosa, M.L.; Meza-Lázaro, R.N.; et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 2010, 328, 894–899. [Google Scholar] [CrossRef]
- Gunderson, A.R.; Leal, M. Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Funct. Ecol. 2012, 26, 783–793. [Google Scholar] [CrossRef]
- Zhao, E.; Zhao, K.; Zhou, K. Reptilia of China: Volume II, Squamata, Lizards. In Reptilia of China; Science Press: Beijing, China, 1999; pp. 287–291. (In Chinese) [Google Scholar]
- Du, W.G.; Lin, C.X.; Shou, L.; Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 2005, 1, 41–46. [Google Scholar]
- Leticia, K.E.; Beatriz, F.J.; Ruth, I.N. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2016, 186, 243–253. [Google Scholar]
- Cabezas-Cartes, F.; Fernández, J.B.; Duran, F.; Kubisch, E.L. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 2019, 7, e7437. [Google Scholar] [CrossRef] [PubMed]
- Vicenzi, N.; Kubisch, E.; Ibargüengoytía, N.; Corbalán, V. Thermal sensitivity of performance of Phymaturus palluma (Liolaemidae) in the highlands of Aconcagua: Vulnerability to global warming in the Andes. Amphib.-Reptil. 2019, 40, 207–218. [Google Scholar] [CrossRef]
- Ellis, D.J.; Firth, B.T.; Belan, I. Interseasonal variation in the circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 2008, 194, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Gorgon, C.E.; Dickman, C.R.; Thompson, M.B. Partitioning of temporal activity among desert lizards in relation to prey availability and temperature. Austral Ecol. 2010, 35, 41–52. [Google Scholar] [CrossRef]
- McElroy, E.J.; McBrayer, L.D.; Williams, S.C.; Anderson, R.A.; Reilly, S.M. Sequential analyses of foraging behavior and attack speed in ambush and widely foraging lizards. Adapt. Behav. 2012, 20, 16–31. [Google Scholar] [CrossRef]
- Cooper, W.E., Jr. Correlated evolution of herbivory and food chemical discrimination in iguanian and ambush foraging lizards. Behav. Ecol. 2003, 14, 409–416. [Google Scholar] [CrossRef]
- Husak, J.F. Does survival depend on how fast you can run or how fast you do run? Funct. Ecol. 2006, 20, 1080–1086. [Google Scholar] [CrossRef]
- Higham, T.E. The integration of locomotion and prey capture in vertebrates: Morphology, behavior, and performance. Integr. Comp. Biol. 2007, 47, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.B.; Hertz, P.E. Effects of body size and slope on sprint speed of a lizard (Stellio (Agama) stellio). J. Exp. Biol. 1982, 97, 401–409. [Google Scholar] [CrossRef]
- Losos, J.B. The evolution of form and function: Morphology and locomotor performance in west indian anolis lizards. Evolution 1990, 44, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Ekner-Grzyb, A.; Sajkowska, Z.; Dudek, K.; Gawalek, M.; Skórka, P.; Tryjanowski, P. Locomotor performance of sand lizards (Lacerta agilis): Effects of predatory pressure and parasite load. Acta Ethologica 2013, 16, 173–179. [Google Scholar] [CrossRef]
- Huey, R.B.; Bennett, A.F.; John-Alder, H.; Nagy, K.A. Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 1984, 32, 41–50. [Google Scholar] [CrossRef]
- Christian, K.A.; Tracy, C.R. The effects of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 1981, 49, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.P.; Bels, V. Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comp. Biochem. Physiol. Part A 2001, 131, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Vanhooydonck, B.; Damme, R.V.; Aerts, P. Speed and stamina trade-off in lacertid lizards. Evolution 2001, 55, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Borges-Landáez, P.A.; Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian Scincid Lizard. J. Herpetol. 2003, 37, 592–595. [Google Scholar] [CrossRef]
- Nain, Z.; Islam, M.A.; Chowdhury, S.H.; Afroza, S.; Hussain, I. Current understanding on tail regeneration in Green Anoles (Anolis carolinensis). Cell Biol. 2016, 4, 9–17. [Google Scholar] [CrossRef]
- Berkum, F.H.V.; Tsuji, J.S. Inter-familiar differences in sprint speed of hatchling Sceloporus occidentalis (Reptilia: Iguanidae). J. Zool. 1987, 212, 511–519. [Google Scholar] [CrossRef]
- Rangel-Patiño, C.A.; Mastachi-Loza, C.A.; Eifler, D.; García-Morales, C.; de Lourdes Ruiz-Gómez, M. When things get hot: Thermoregulation behavior in the lizard Sceloporus aeneus at different thermal conditions. J. Therm. Biol. 2020, 89, 102572. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Zhang, X.; Que, Q.; Chen, Z.; Wu, Z. Physiological thermoregulation of the Chinese crocodile lizard (Shinisaurus crocodilurus) in the Luokeng nature reserve, Guangdong. Chin. J. Wildl. 2022, 43, 139–144. (In Chinese) [Google Scholar]
- Huey, R.B.; Kingsolver, J.G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 1898, 4, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, R.; Wijnrocx, K.; Boeye, J.; Huyghe, K.; Van Dongen, S. Digit ratios in two lacertid lizards: Sexual dimorphism and morphological and physiological correlates. Zoomorphology 2015, 134, 565–575. [Google Scholar] [CrossRef]
- de Albuquerque, R.L.; Bonine, K.E.; Garland, T., Jr. Speed and endurance do not trade off in phrynosomatid lizards. Physiol. Biochem. Zool. PBZ 2015, 88, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Clobert, J.; Oppliger, A.; Sorci, G.; Ernande, B.; Swallow, J.G.; Garland, T. Trade-offs in phenotypic traits: Endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, Lacerta vivipara. Funct. Ecol. 2000, 14, 675–684. [Google Scholar] [CrossRef]
- Vanhooydonck, B.; James, R.S.; Tallis, J.; Aerts, P.; Tadic, Z.; Tolley, K.A.; Measey, G.; Herrel, A. Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132677. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.J. Morphology, performance and fitness. Am. Zool. 1983, 23, 347–361. [Google Scholar] [CrossRef]
- Irschick, D.J.; Garland, T. Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 2001, 32, 367–396. [Google Scholar] [CrossRef]
- Vanhooydonck, B.; Herrel, A.; Irschick, D.J. Out on a limb: The differential effect of substrate diameter on acceleration capacity in Anolis Lizards. J. Exp. Biol. 2006, 209, 4515–4523. [Google Scholar] [CrossRef]
- Buckley, L.B.; Huey, R.B. Temperature extremes: Geographic variation, trade-offs, and evolutionary impacts. Integr. Comp. Biol. 2016, 56, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Higham, T.E.; Irschick, D.J. Springs, steroids, and slingshots: The roles of enhancers and constraints in animal movement. Integr. Comp. Biol. 2013, 53, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Abdusalam, S.; Keranmu, A. Comparative analysis of temperature and air humidity variations at different layers of sand during summer sand therapy in Turpan. J. Med. Pharm. Chin. Minor. 2016, 22, 36–37. (In Chinese) [Google Scholar]
- Duran, F.; Kubisch, E.L.; Boretto, J.M. Thermal physiology of three sympatric and syntopic Liolaemidae lizards in cold and arid environments of Patagonia (Argentina). J. Comp. Physiol. B. Biochem. Syst. Environ. Physiol. 2018, 188, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, S. Desert reptiles: A case of adaptation or pre-adaptation? J. Arid Environ. 1988, 14, 155–174. [Google Scholar] [CrossRef]
- Vicenzi, N.; Corbalán, V.; Miles, D.; Sinervo, B.; Ibargüengoytía, N. Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 2017, 206, 151–160. [Google Scholar] [CrossRef]
- Diele-Viegas, L.M.; Vitt, L.J.; Sinervo, B.; Colli, G.R.; Werneck, F.P.; Miles, D.B.; Magnusson, W.E.; Santos, J.C.; Sette, C.M.; Caetano, G.H.O.; et al. Thermal physiology of Amazonian lizards (Reptilia: Squamata). J. Land Use Sci. 2018, 13, 18772. [Google Scholar] [CrossRef]
Traits (mm/g) | E. roborowskii | P. axillaris | t-Level | p-Value |
---|---|---|---|---|
SVL | 65.53 ± 2.86 a | 44.83 ± 4.53 b | 10.719 | <0.00 |
MASS | 8.61 ± 1.18 a | 4.42 ± 0.90 b | 7.445 | <0.00 |
HL | 16.59 ± 1.48 a | 13.92 ± 2.99 a | 2.117 | 0.056 |
HW | 11.90 ± 1.12 a | 11.73 ± 1.11 a | 0.281 | 0.784 |
HD | 8.60 ± 1.61 a | 8.70 ± 1.22 a | −0.125 | 0.902 |
MB | 9.39 ± 0.72 a | 10.08 ± 0.65 a | −1.883 | 0.084 |
AW | 13.42 ± 0.70 a | 14.93 ± 2.58 a | −1.499 | 0.160 |
AG | 33.06 ± 2.76 a | 23.38 ± 2.46 b | 6.931 | <0.00 |
TL | 128.56 ± 2.96 a | 68.59 ± 8.17 b | 18.450 | <0.00 |
TBW | 8.31 ± 0.30 a | 6.41 ± 1.09 b | 4.458 | 0.001 |
FLL | 22.75 ± 1.76 a | 23.45 ± 4.11 a | −0.415 | 0.685 |
HLL | 37.32 ± 1.68 a | 35.06 ± 6.39 a | 0.905 | 0.383 |
D1 | 3.59 ± 0.51 a | 2.21 ± 0.42 b | 5.603 | <0.00 |
D2 | 5.38 ± 0.47 a | 3.57 ± 0.54 b | 6.707 | <0.00 |
D3 | 5.51 ± 0.74 a | 5.01 ± 0.38 a | 1.597 | 0.136 |
D4 | 6.40 ± 1.20 a | 6.53 ± 0.57 a | −0.258 | 0.800 |
D5 | 4.48 ± 0.48 a | 4.00 ± 1.37 a | 0.867 | 0.403 |
T1 | 3.62 ± 0.99 a | 2.27 ± 0.72 b | 2.921 | 0.013 |
T2 | 4.84 ± 0.88 a | 3.90 ± 0.97 a | 1.894 | 0.083 |
T3 | 7.25 ± 0.65 a | 6.03 ± 0.82 b | 3.096 | 0.009 |
T4 | 11.00 ± 0.62 a | 8.99 ± 1.17 b | 4.024 | 0.002 |
T5 | 7.45 ± 0.77 a | 5.55 ± 0.74 b | 4.680 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wu, R.; Wang, Z.; Wu, X.; Feng, H.; Yang, Y. Effects of Temperature on the Thermal Biology and Locomotor Performance of Two Sympatric Extreme Desert Lizards. Animals 2025, 15, 572. https://doi.org/10.3390/ani15040572
Zheng Y, Wu R, Wang Z, Wu X, Feng H, Yang Y. Effects of Temperature on the Thermal Biology and Locomotor Performance of Two Sympatric Extreme Desert Lizards. Animals. 2025; 15(4):572. https://doi.org/10.3390/ani15040572
Chicago/Turabian StyleZheng, Yuhan, Ruichen Wu, Ziyi Wang, Xunheng Wu, Huawei Feng, and Yi Yang. 2025. "Effects of Temperature on the Thermal Biology and Locomotor Performance of Two Sympatric Extreme Desert Lizards" Animals 15, no. 4: 572. https://doi.org/10.3390/ani15040572
APA StyleZheng, Y., Wu, R., Wang, Z., Wu, X., Feng, H., & Yang, Y. (2025). Effects of Temperature on the Thermal Biology and Locomotor Performance of Two Sympatric Extreme Desert Lizards. Animals, 15(4), 572. https://doi.org/10.3390/ani15040572