The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Feeding Management
2.3. Diets Samples and Analysis
2.4. Milk Sampling and Analysis
2.5. Blood Sampling and Analysis
2.6. Statistical Analysis
3. Results
3.1. Production Performance and Fatty Acid Intake
3.2. Fatty Acid Profiles of Plasma and Milk
3.3. Biochemical Parameters in the Serum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Kopecky, J.; Rossmeisl, M.; Flachs, P.; Kuda, O.; Brauner, P.; Jilkova, Z.; Stankova, B.; Tvrzicka, E.; Bryhn, M. N-3 PUFA: Bioavailability and modulation of adipose tissue function. Proc. Nutr. Soc. 2009, 68, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Burden, M.J.; Muckle, G.; Saint-Amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am. J. Clin. Nutr. 2011, 93, 1025–1037. [Google Scholar] [CrossRef]
- Teague, H.; Fhaner, C.J.; Harris, M.; Duriancik, D.M.; Reid, G.E.; Shaikh, S.R. N-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J. Lipid Res. 2013, 54, 3130–3138. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Hamazaki, K.; Fujioka, S.; Terao, K.; Yamamoto, J.; Kobayashi, S. The effect of n–3 PUFA/gamma-cyclodextrin complex on serum lipids in healthy volunteers—A randomized, placebo-controlled, double-blind trial. Asia Pac. J. Clin. Nutr. 2007, 16, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Bagge, C.N.; Strandhave, C.; Skov, C.M.; Svensson, M.; Schmidt, E.B.; Christensen, J.H. Marine n-3 polyunsaturated fatty acids affect the blood pressure control in patients with newly diagnosed hypertension—A 1-year follow-up study. Nutr. Res. 2017, 38, 71–78. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Kuipers, R.S.; Luxwolda, M.F.; De Graaf, D.J.; Breeuwsma, B.B.; Dijck-Brouwer, D.A.; Muskiet, F.A. Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol: A mechanistic explanation centered around lifestyle-induced low-grade inflammation. J. Nutr. Biochem. 2014, 25, 304–312. [Google Scholar] [CrossRef]
- Raes, K.; Smet, S.D.; Demeyer, D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim. Fed. Sci. Tech. 2004, 113, 199–221. [Google Scholar] [CrossRef]
- Harnack, K.; Andersen, G.; Somoza, V. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutr. Metab. 2009, 19, 6–8. [Google Scholar] [CrossRef]
- Aroua, M.; Jemmali, B.; Said, S.B.; Touati, I.; Mahouachi, M. Milk composition Comparison between donkey, goat and cow breeds. J. New Sci. 2018, 9, 202–206. [Google Scholar]
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Conti, A. Donkey’s milk detailed lipid composition. Front. Biosci. (Elite Ed.) 2010, 2, 537–546. [Google Scholar] [CrossRef]
- World Health Organization. Recommendations for the Promotion of Specific Alpha-Linolenic Acid Supplementation of Diets; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Nudda, A.; Battacone, G.; Boaventura, N.O.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.S.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. De Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef]
- Chiofalo, B.; Polidori, M.; Costa, R.; Salimei, E. Fresh forage in dairy ass’s ration: Effect on milk fatty acid composition and flavours. Ital. J. Anim. Sci. 2016, 4, 433–435. [Google Scholar] [CrossRef]
- Valle, E.; Pozzo, L.; Giribaldi, M.; Bergero, D.; Gennero, M.S.; Dezzutto, D.; McLean, A.; Borreani, G.; Coppa, M.; Cavallarin, L. Effect of farming system on donkey milk composition. J. Sci. Food Agric. 2018, 98, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Li, L.; Tong, M.; Li, S.; Zhao, Y.; Guo, X.; Guo, Y.; Shi, B.; Yan, S. Effect of varying dietary crude protein level on milk production, nutrient digestibility, and serum metabolites by lactating donkeys. Animals 2022, 12, 2066. [Google Scholar] [CrossRef]
- Liang, X.S.; Yue, Y.X.; Zhao, Y.L.; Guo, Y.M.; Guo, X.Y.; Shi, B.L.; Yan, S.M. Effects of dietary concentrate to forage ratio on milk performance, milk amino acid composition and milk protein synthesis of lactating donkeys. Anim. Feed Sci. Technol. 2022, 292, 115444. [Google Scholar] [CrossRef]
- INRA. Equine Nutrition—INRA Nutrient Re-Quirements, Recommended Allowances and Feed Tables; Martin-Rosset, W., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Nayak, C.M.; Ramachandra, C.T.; Nidoni, U.; Hiregoudar, S.; Ram, J.; Naik, N. Physico-chemical composition, minerals, vitamins, amino acids, fatty acid profile and sensory evaluation of donkey milk from Indian small grey breed. J. Food Sci. Technol. 2020, 57, 2967–2974. [Google Scholar] [CrossRef]
- Henno, M.; Ling, K.; Kaart, T.; Ariko, T.; Karis, P.; Jaakson, H.; Kuusik, S.; Ots, M. Effect of monensin on milk fatty acid profile in dairy cows and on the use of fatty acids for early diagnosis of elevated blood plasma concentrations of nonesterified fatty acids and hyperketonemia. J. Dairy Sci. 2021, 104, 10355–10362. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Mapato, C.; Wanapat, M.; Cherdthong, A. Effects of urea treatment of straw and dietary level of vegetable oil on lactating dairy cows. Trop. Anim. Health Pro. 2010, 42, 1635–1642. [Google Scholar] [CrossRef]
- Zhao, F.Q. Biology of glucose transport in the mammary gland. J Mammary Gland Biol. Neoplasia 2014, 19, 3–17. [Google Scholar] [CrossRef]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L.; Jenkins, T.C. Fat in lactation rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef]
- Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences. Chinese Feed Composition and Nutritional Value Table; China Agriculture Press Co., Ltd.: Beijing, China, 2019. [Google Scholar]
- Liu, C.; Zhao, Y.L.; Guo, X.Y.; Guo, Y.M.; Zheng, Y.G.; Yan, S.M. Evaluation on nutrient degradation rate and combination effects of different roughage combinations of donkey by in vitro pepsin-trypsin-cecal fluid method. J. Anim. Nutr. 2024, 36, 3183–3191. [Google Scholar] [CrossRef]
- Guo, M.X.; Liu, C.; Shi, B.L.; Guo, X.Y.; Zhao, Y.L.; Guo, Y.M.; Zhang, Q.Y. Evaluation on nutrient degradation rate of donkey by in vitro three-step method. Feed Res. 2023, 46, 99–103. [Google Scholar] [CrossRef]
- Ralston, S.L. Controls of feeding in horses. J. Anim. Sci. 1984, 59, 1354–1361. [Google Scholar] [CrossRef]
- Garber, A.; Hastie, P.; Murray, J.A. Factors influencing equine gut microbiota: Current knowledge. J. Equine Vet. Sci. 2020, 88, 102943. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Pei, D.; Hao, K.B.; Liu, J.Y.; Wang, X.X.; Xu, X.K.; Zhang, H.B.; Guo, G. Effect of dietary supplementation with different categories fatty acids on production performance and serum indexes in early-lactating cows. Feed Res. 2022, 45, 12–17. [Google Scholar] [CrossRef]
- Laws, J.; Juniper, D.T.; Lean, I.J.; Amusquivar, E.; Herrera, E.; Dodds, P.F.; Clarke, L. Supplementing sow diets with palm oil during late gestation and lactation: Effects on milk production, sow hormonal profiles and growth and development of her offspring. Animal 2018, 12, 2578–2586. [Google Scholar] [CrossRef]
- Kouba, J.M.; Burns, T.A.; Webel, S.K. Effect of dietary supplementation with long-chain n-3 fatty acids during late gestation and early lactation on mare and foal plasma fatty acid composition, milk fatty acid composition, and mare reproductive variables. Anim. Reprod. Sci. 2019, 203, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.H.; Hesselholt, M.; Jarløv, N. Endotoxin and arachidonic acid metabolites in portal, hepatic and arterial blood of cattle with acute ruminal acidosis. Acta. Vet. Scand. 1994, 35, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.L.; Guo, Y.F.; Tan, G.L. Preparation and purification of fish oil fatty acid ethyl esters and their effects on blood lipid reduction. J. Anhui Agri. Sci. 2016, 44, 80–83. [Google Scholar] [CrossRef]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of conventional and grass-feeding systems on the nutrient composition of beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- An, J.; Qin, Y.; Li, W.; Liu, Y. Fatty acid composition analysis and nutrition evaluation of milk and dairy products sold in Yinchuan City. Wei Sheng Yan Jiu 2023, 52, 900–906. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Czyżak-Runowska, G.; Wójtowski, J.A.; Danków, R.; Stanisławski, D. Mare’s Milk from a Small Polish Specialized Farm-Basic Chemical Composition, Fatty Acid Profile, and Healthy Lipid Indices. Animals 2021, 11, 1590. [Google Scholar] [CrossRef]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef]
- Brossillon, V.; Reis, S.F.; Moura, D.C.; Galvão, J.G.B., Jr.; Oliveira, A.S.; Côrtes, C.; Brito, A.F. Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. J. Dairy Sci. 2018, 101, 2127–2143. [Google Scholar] [CrossRef] [PubMed]
- Bodkowski, R.; Czyż, K.; Kupczyński, R.; Patkowska-Sokoła, B.; Nowakowski, P.; Wiliczkiewicz, A. Lipid complex effect on fatty acid profile and chemical composition of cow milk and cheese. J. Dairy Sci. 2016, 99, 57–67. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.G.; Vizzarri, F.; Palazzo, M.; Martemucci, G. Dietary verbascoside supplementation in donkeys: Effects on milk fatty acid profile during lactation, and serum biochemical parameters and oxidative markers. Animal 2017, 11, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; D’Alessandro, A.G. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition. Lipids Health Dis. 2012, 11, 113. [Google Scholar] [CrossRef] [PubMed]
Items | Treatment | |
---|---|---|
LG | HG | |
Feed ingredients, g/kg DM | concentrate/roughage ratio | |
40:60 | 30:70 | |
Roughage | ||
Alfalfa hay 1 | 44.85 | 179.48 |
Millet straw 2 | 437.10 | 384.60 |
Corn silage 3 | 111.93 | 130.87 |
Concentrate | ||
Corn | 183.46 | 159.67 |
Soybean meal | 91.77 | 71.91 |
Corn gluten meal | 17.94 | 18.60 |
Distillers dried grains with solubles | 9.26 | 4.63 |
Wheat bran | 37.38 | 14.96 |
Corn germ meal | 43.21 | 15.48 |
NaHCO3 | 3.27 | 0.00 |
NaCl | 4.03 | 4.03 |
CaCO3 | 3.59 | 3.59 |
CaHPO4 | 7.18 | 7.19 |
Premix 4 | 5.00 | 5.00 |
Nutrient composition, g/kg DM | ||
Energy content 5, MJ/kg | 12.46 | 12.43 |
Dry matter, DM, g/kg | 872.10 | 872.20 |
Crude protein | 140.32 | 140.81 |
Ether extract | 24.70 | 24.30 |
aNDFom | 530.50 | 548.90 |
ADFom | 324.50 | 345.30 |
Fatty acid content 6, g/kg DM | ||
Saturated fatty acids | ||
C4:0 | 0.007 | 0.007 |
C 6:0 | 0.010 | 0.010 |
C8:0 | 0.010 | 0.007 |
C10:0 | 0.025 | 0.022 |
C11:0 | 0.022 | 0.022 |
C12:0 | 0.195 | 0.179 |
C13:0 | 0.010 | 0.010 |
C14:0 | 0.190 | 0.192 |
C15:0 | 0.077 | 0.097 |
C16:0 | 5.636 | 5.822 |
C17:0 | 0.158 | 0.165 |
C18:0 | 1.067 | 1.018 |
C20:0 | 0.348 | 0.328 |
C21:0 | 0.047 | 0.040 |
C22:0 | 0. 232 | 0.245 |
C23:0 | 0.161 | 0.214 |
C24:0 | 0.291 | 0.306 |
Monounsaturated fatty acids | ||
C14:1 | 0.015 | 0.015 |
C15:1 | 0.007 | 0.007 |
C16:1 | 0.023 | 0.022 |
C17:1 | 0.014 | 0.014 |
C18:1nt9 | 0.047 | 0.049 |
C18:1nc9 | 4.016 | 4.041 |
C20:1 | 0.062 | 0.051 |
C22:1 | 0.042 | 0.046 |
C24:1 | 0.015 | 0.017 |
n-6 Polyunsaturated fatty acids | ||
C18:2nt6 | 0.007 | 0.010 |
C18:2nc6 | 8.852 | 8.160 |
C18:3n6 | 0.032 | 0.034 |
C20:2n6 | 0.025 | 0.041 |
C20:3n6 | 0.005 | 0.007 |
C20:4n6 | 0.124 | 0.148 |
C22:2n6 | 0.015 | 0.019 |
n-3 Polyunsaturated fatty acids | ||
C18:3n3 | 2.979 | 3.222 |
C20:3n3 | 0.025 | 0.044 |
C20:5n3 | 0.094 | 0.117 |
C22:6n3 | 0.032 | 0.034 |
Sum and Ratio | ||
SCFA | 0.007 | 0.005 |
MCFA | 0.245 | 0.202 |
LCFA | 24.448 | 24.093 |
SFA | 8.593 | 7.776 |
UFA | 16.107 | 16.524 |
MUFA | 4.076 | 4.532 |
PUFA | 12.031 | 11.994 |
n-3 PUFA | 3.132 | 3.417 |
n-6 PUFA | 8.899 | 8.578 |
n-3 LCPUFA | 0.151 | 0.192 |
n-6 LCPUFA | 0.17 | 0.216 |
n-6/n-3 | 0.003 | 0.003 |
U/S | 1.874 | 2.125 |
P/S | 1.400 | 1.542 |
Treatment | ||||
---|---|---|---|---|
Items | LG | HG | SEM | p-Value |
Production performance 1 | ||||
Body weight loss, % | 6.43 | 6.19 | 0.649 | 0.789 |
Dry matter intake, kg/day | 7.02 | 7.05 | 0.031 | 0.757 |
Milking yield, kg/day | 0.78 | 0.97 | 0.001 | <0.001 |
Milk fat, g/kg | 3.45 | 3.21 | 0.016 | 0.175 |
Saturated fatty acids 2, mg/kg W0.75 × day | ||||
C4:0 | 0.61 | 0.55 | 0.015 | 0.021 |
C6:0 | 0.84 | 0.79 | 0.030 | 0.153 |
C8:0 | 0.78 | 0.66 | 0.017 | <0.001 |
C10:0 | 2.15 | 2.19 | 0.061 | 0.869 |
C11:0 | 1.98 | 1.62 | 0.122 | 0.144 |
C12:0 | 16.62 | 15.32 | 0.369 | 0.039 |
C13:0 | 0.74 | 0.94 | 0.021 | 0.006 |
C14:0 | 16.00 | 16.30 | 0.381 | 0.609 |
C15:0 | 6.49 | 8.22 | 0.199 | <0.001 |
C16:0 | 476.94 | 487.32 | 12.457 | 0.601 |
C17:0 | 13.33 | 13.89 | 0.353 | 0.326 |
C18:0 | 90.32 | 85.22 | 2.231 | 0.164 |
C20:0 | 29.39 | 27.43 | 0.720 | 0.103 |
C21:0 | 4.05 | 4.06 | 0.105 | 0.972 |
C22:0 | 19.65 | 20.46 | 0.520 | 0.336 |
C23:0 | 13.54 | 18.12 | 0.425 | <0.001 |
C24:0 | 24.69 | 25.54 | 0.646 | 0.417 |
Monounsaturated fatty acids, mg/kg W0.75 × day | ||||
C14:1 | 1.22 | 1.29 | 0.032 | 0.219 |
C15:1 | 0.60 | 0.62 | 0.023 | 0.410 |
C16:1 | 19.87 | 18.17 | 0.478 | 0.042 |
C17:1 | 1.20 | 1.30 | 0.034 | 0.086 |
C18:1nt9 | 4.03 | 4.00 | 0.102 | 0.858 |
C18:1nc9 | 339.76 | 343.80 | 8.873 | 0.774 |
C20:1 | 5.21 | 4.36 | 0.123 | <0.001 |
C22:1 | 3.60 | 3.80 | 0.104 | 0.202 |
C24:1 | 1.22 | 1.42 | 0.038 | 0.006 |
n-6 Polyunsaturated fatty acids, mg/kg W0.75 × day | ||||
C18:2nt6 | 0.71 | 0.83 | 0.020 | 0.012 |
C18:2nc6 | 749.02 | 683.03 | 18.073 | 0.037 |
C18:3n6 | 2.65 | 3.00 | 0.780 | 0.019 |
C20:2n6 | 2.18 | 3.48 | 0.080 | <0.001 |
C20:3n6 | 0.47 | 0.53 | 0.013 | 0.013 |
C20:4n6 | 10.38 | 12.37 | 0.303 | 0.003 |
C22:2n6 | 1.29 | 1.63 | 0.227 | 0.001 |
n-3 Polyunsaturated fatty acids, mg/kg W0.75 × day | ||||
C18:3n3 | 174.98 | 210.13 | 5.063 | 0.010 |
C20:3n3 | 2.02 | 3.65 | 0.082 | <0.001 |
C20:5n3 | 8.02 | 9.71 | 0.237 | 0.002 |
C22:6n3 | 2.81 | 2.80 | 0.072 | 0.907 |
Sum and Ratio, mg/kg W0.75 × day | ||||
SCFA | 0.46 | 0.49 | 0.001 | 0.002 |
MCFA | 16.40 | 20.11 | 0.489 | 0.001 |
LCFA | 2026.70 | 2190.70 | 45.883 | 0.037 |
SFA | 664.40 | 719.41 | 18.441 | 0.089 |
UFA | 1421.40 | 1348.20 | 35.455 | 0.211 |
MUFA | 389.75 | 335.51 | 9.039 | 0.003 |
PUFA | 1031.60 | 1007.10 | 26.257 | 0.557 |
n-3 PUFA | 264.95 | 290.66 | 7.331 | 0.034 |
n-6 PUFA | 766.69 | 704.66 | 18.597 | 0.053 |
n-3 LCPUFA | 12.85 | 16.16 | 0.391 | <0.001 |
n-6 LCPUFA | 14.33 | 18.02 | 0.436 | <0.001 |
n-6/n-3 | 16.44 | 12.79 | 0.356 | <0.001 |
U/S | 5.64 | 4.84 | 0.131 | 0.002 |
P/S | 4.00 | 3.57 | 0.096 | 0.016 |
IA | 0.87 | 0.79 | 0.021 | 0.024 |
IT | 0.18 | 0.15 | 0.011 | 0.104 |
Treatment | ||||
---|---|---|---|---|
FAME (g/100 g) 1 | LG | HG | SEM | p-Value |
Saturated fatty acids | ||||
C4:0 | 0.16 | 0.10 | 0.011 | 0.005 |
C 6:0 | 0.08 | 0.06 | 0.005 | 0.028 |
C8:0 | 0.03 | 0.04 | 0.003 | 0.338 |
C10:0 | 0.08 | 0.08 | 0.008 | 0.953 |
C11:0 | 0.11 | 0.07 | 0.009 | 0.018 |
C12:0 | 0.13 | 0.11 | 0.01 | 0.165 |
C13:0 | 0.12 | 0.11 | 0.012 | 0.914 |
C14:0 | 0.58 | 0.44 | 0.045 | 0.104 |
C15:0 | 0.16 | 0.15 | 0.01 | 0.399 |
C16:0 | 16.72 | 15.95 | 0.342 | 0.115 |
C17:0 | 0.57 | 0.59 | 0.048 | 0.819 |
C18:0 | 18.23 | 18.66 | 0.419 | 0.468 |
C20:0 | 0.59 | 0.59 | 0.019 | 0.893 |
C21:0 | 0.05 | 0.06 | 0.004 | 0.347 |
C22:0 | 0.03 | 0.26 | 0.014 | <0.001 |
C23:0 | 0.06 | 0.05 | 0.007 | 0.235 |
C24:0 | 0.04 | 0.06 | 0.004 | 0.014 |
Monounsaturated fatty acids | ||||
C14:1 | 0.12 | 0.08 | 0.011 | 0.025 |
C15:1 | 0.16 | 0.16 | 0.010 | 0.804 |
C16:1 | 0.98 | 0.89 | 0.068 | 0.406 |
C17:1 | 0.03 | 0.03 | 0.003 | 0.841 |
C18:1t9 | 0.14 | 0.12 | 0.016 | 0.391 |
C18:1c9 | 13.49 | 12.77 | 0.552 | 0.446 |
C20:1 | 0.32 | 0.35 | 0.024 | 0.509 |
C22:1 | 4.56 | 5.49 | 0.307 | 0.052 |
C24:1 | 0.40 | 0.40 | 0.045 | 0.939 |
n-6 Polyunsaturated fatty acids | ||||
C18:2nt6 | 0.23 | 0.29 | 0.021 | 0.058 |
C18:2nc6 | 37.36 | 38.32 | 0.953 | 0.564 |
C18:3n6 | 0.92 | 0.89 | 0.074 | 0.749 |
C20:2n6 | 0.45 | 0.58 | 0.033 | 0.019 |
C20:3n6 | 0.22 | 0.22 | 0.014 | 0.947 |
C20:4n6 | 0.63 | 0.70 | 0.027 | 0.168 |
C22:2n6 | 0.17 | 0.17 | 0.013 | 0.966 |
n-3 Polyunsaturated fatty acids | ||||
C18:3n3 | 0.73 | 0.89 | 0.042 | 0.026 |
C20:3n3 | 0.13 | 0.17 | 0.016 | 0.108 |
C20:5n3 | 0.08 | 0.08 | 0.012 | 0.983 |
C22:6n3 | 0.20 | 0.22 | 0.043 | 0.787 |
Sum and Ratio | ||||
SCFA | 0.13 | 0.11 | 0.012 | 0.508 |
MCFA | 0.36 | 0.29 | 0.02 | 0.051 |
LCFA | 99.45 | 99.61 | 0.065 | 0.002 |
SFA | 37.34 | 37.36 | 0.413 | 0.966 |
UFA | 62.66 | 62.68 | 0.414 | 0.976 |
MUFA | 21.42 | 21.11 | 0.832 | 0.824 |
PUFA | 41.21 | 42.37 | 0.682 | 0.296 |
n-3 PUFA | 1.13 | 1.34 | 0.019 | 0.012 |
n-6 PUFA | 40.5 | 40.31 | 0.628 | 0.825 |
n-3 LCPUFA | 0.41 | 0.48 | 0.044 | 0.364 |
n-6 LCPUFA | 1.50 | 1.63 | 0.051 | 0.097 |
n-6/n-3 | 33.85 | 30.08 | 1.367 | 0.073 |
U/S | 1.64 | 1.68 | 0.017 | 0.22 |
P/S | 1.09 | 1.11 | 0.015 | 0.372 |
IA | 0.29 | 0.27 | 0.007 | 0.092 |
IT | 0.46 | 0.45 | 0.008 | 0.793 |
Treatment | ||||
---|---|---|---|---|
FAME (g/100 g) 1 | LG | HG | SEM | p-Value |
Saturated fatty acids | ||||
C4:0 | 0.02 | 0.01 | 0.003 | 0.744 |
C 6:0 | 0.05 | 0.05 | 0.012 | 0.913 |
C8:0 | 4.13 | 3.86 | 0.241 | 0.446 |
C10:0 | 11.69 | 11.24 | 0.552 | 0.574 |
C11:0 | 0.03 | 0.03 | 0.003 | 1.000 |
C12:0 | 11.19 | 10.55 | 0.864 | 0.611 |
C13:0 | 0.04 | 0.03 | 0.004 | 0.555 |
C14:0 | 8.57 | 8.35 | 0.872 | 0.869 |
C15:0 | 0.43 | 0.38 | 0.035 | 0.319 |
C16:0 | 23.64 | 22.18 | 1.440 | 0.483 |
C17:0 | 1.18 | 1.28 | 0.059 | 0.336 |
C18:0 | 1.92 | 2.08 | 0.093 | 0.308 |
C20:0 | 0.06 | 0.07 | 0.003 | 0.087 |
C21:0 | 0.12 | 0.12 | 0.011 | 1.000 |
C22:0 | 0.03 | 0.04 | 0.004 | 0.192 |
C23:0 | 0.01 | 0.01 | 0.002 | 0.363 |
C24:0 | 0.01 | 0.02 | 0.003 | 0.798 |
Monounsaturated fatty acids | ||||
C14:1 | 0.36 | 0.33 | 0.036 | 0.499 |
C15:1 | 0.01 | 0.01 | 0.001 | 0.391 |
C16:1 | 2.86 | 2.69 | 0.248 | 0.636 |
C17:1 | 0.39 | 0.38 | 0.043 | 0.846 |
C18:1t9 | 0.08 | 0.17 | 0.013 | <0.001 |
C18:1c9 | 20.10 | 18.70 | 0.777 | 0.286 |
C20:1 | 0.32 | 0.20 | 0.032 | 0.024 |
C22:1 | 0.07 | 0.10 | 0.010 | 0.042 |
C24:1 | 0.02 | 0.02 | 0.003 | 0.398 |
n-6 Polyunsaturated fatty acids | ||||
C18:2nt6 | 0.03 | 0.04 | 0.003 | 0.231 |
C18:2nc6 | 15.87 | 18.14 | 1.010 | 0.153 |
C18:3n6 | 0.02 | 0.02 | 0.002 | 0.800 |
C20:2n6 | 0.48 | 0.52 | 0.061 | 0.678 |
C20:3n6 | 0.06 | 0.06 | 0.004 | 0.959 |
C20:4n6 | 0.09 | 0.10 | 0.009 | 0.614 |
C22:2n6 | 0.03 | 0.03 | 0.003 | 0.302 |
n-3 Polyunsaturated fatty acids | ||||
C18:3n3 | 2.54 | 3.71 | 0.361 | 0.048 |
C20:3n3 | 0.08 | 0.10 | 0.015 | 0.195 |
C20:5n3 | 0.01 | 0.02 | 0.003 | 0.694 |
C22:6n3 | 0.02 | 0.02 | 0.002 | 0.959 |
Sum and Ratio | ||||
SCFA | 0.02 | 0.01 | 0.001 | 0.684 |
MCFA | 24.13 | 23.06 | 1.053 | 0.979 |
LCFA | 71. 54 | 77.13 | 1.482 | 0.057 |
SFA | 58.16 | 55.47 | 1.868 | 0.333 |
UFA | 41.84 | 44.53 | 1.687 | 0.333 |
MUFA | 23.56 | 21.95 | 0.593 | 0.135 |
PUFA | 18.82 | 24.21 | 1.640 | 0.085 |
n-3 PUFA | 2.65 | 3.85 | 0.371 | 0.058 |
n-6 PUFA | 16.46 | 18.80 | 1.044 | 0.417 |
n-3 LCPUFA | 0.11 | 0.14 | 0.009 | 0.088 |
n-6 LCPUFA | 0.73 | 0.74 | 0.072 | 0.909 |
n-6/n-3 | 6.27 | 5.19 | 0.352 | 0.019 |
U/S | 0.80 | 0.81 | 0.083 | 0.950 |
P/S | 0.35 | 0.42 | 0.036 | 0.275 |
IA | 1.47 | 1.32 | 0.064 | 0.173 |
IT | 1.55 | 1.26 | 0.035 | 0.002 |
Treatment | ||||
---|---|---|---|---|
Items | LG | HG | SEM | p-Value |
CHO (mmol/L) | 2.02 | 1.66 | 0.101 | 0.031 |
D3HB (mmol/L) | 0.26 | 0.23 | 0.012 | 0.078 |
TG (mmol/L) | 0.62 | 0.58 | 0.033 | 0.461 |
HDL-C (mmol/L) | 0.64 | 0.62 | 0.058 | 0.812 |
LDL-C (mmoL/L) | 0.14 | 0.07 | 0.009 | <0.01 |
NEFA (umol/L) | 126.42 | 128.31 | 3.782 | 0.753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Guo, X.; Yue, Y.; Hui, F.; Tong, M.; Guo, Y.; Zheng, Y.; Shi, B.; Yan, S. The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk. Animals 2025, 15, 423. https://doi.org/10.3390/ani15030423
Liang X, Guo X, Yue Y, Hui F, Tong M, Guo Y, Zheng Y, Shi B, Yan S. The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk. Animals. 2025; 15(3):423. https://doi.org/10.3390/ani15030423
Chicago/Turabian StyleLiang, Xiaoshuai, Xiaoyu Guo, Yuanxi Yue, Fang Hui, Manman Tong, Yongmei Guo, Yaguang Zheng, Binlin Shi, and Sumei Yan. 2025. "The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk" Animals 15, no. 3: 423. https://doi.org/10.3390/ani15030423
APA StyleLiang, X., Guo, X., Yue, Y., Hui, F., Tong, M., Guo, Y., Zheng, Y., Shi, B., & Yan, S. (2025). The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk. Animals, 15(3), 423. https://doi.org/10.3390/ani15030423