Effects of Different Forms of Milk Thistle Supplementation in Rabbit Diets on Stress-Induced Physiological Responses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Sampling
2.3. Production Parameters
2.4. Blood Samples
2.5. Chemicals
2.6. Extraction of Flavonolignans from Diet and Feces Samples
2.7. Antioxidant Capacity
2.8. Glutathione Peroxidase (GPx) Activity Assay
2.9. Heat Stress
2.10. Noise Stress
2.11. Statistical Analysis
3. Results
3.1. Biochemical Blood Indicators
3.2. Production Analysis
3.3. Carcass Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frunză, G.; Murariu, O.C.; Ciobanu, M.-M.; Radu-Rusu, R.-M.; Simeanu, D.; Boișteanu, P.-C. Meat quality in rabbit (Oryctolagus cuniculus) and hare (Lepus europaeus Pallas)—A nutritional and technological perspective. Agriculture 2023, 13, 126. [Google Scholar] [CrossRef]
- Liang, Z.-L.; Chen, F.; Park, S.; Balasubramanian, B.; Liu, W.-C. Impacts of heat stress on rabbit immune Function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention. Front. Vet. Sci. 2022, 9, 906084. [Google Scholar] [CrossRef]
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef]
- Mancini, S.; Paci, G. Probiotics in rabbit farming: Growth performance, health status, and meat quality. Animals 2021, 11, 3388. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of garlic powder and salt additions on fatty acids profile, oxidative status, antioxidant potential and sensory properties of raw and cooked rabbit meat burgers. Meat Sci. 2020, 169, 108226. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Yan, Y.; Li, M. Feeding Management Technology of breeding rabbit in hot climate. In Proceedings of the MEKARN Workshop 2008: Organic Rabbit Production from Forages, Can Tho City, Vietnam, 25–27 November 2008; Available online: http://hostcambodia.com/mekarn/prorab/yan.htm (accessed on 26 November 2025).
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Jimoh, O.A.; Ewuola, E.O. Thermophysiological traits in four exotic breeds of rabbit at least temperature-humidity index in humid tropics. J. Basic Appl. Zool. 2018, 79, 18. [Google Scholar] [CrossRef]
- Bodnar, K.; Makra, L.; Bodnar, G.; Privoczki, Z.I. A review on environmental management of rabbit production. Lucr. Ştiinţifice 2019, 21, 5–12. [Google Scholar]
- Saxmose Nielsen, S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; Michel, V.; et al. Stunning methods and slaughter of rabbits for human consumption. EFSA J. 2020, 18, e05927. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.A.; Kishik, W.H.; Tharwat, R.A.; Yaseen, M.A.; Ayoub, M.A.A. Physiological body reactions and semen characters of rabbit bucks as affected by breed and vitamin C supplementation under Egyptian summer conditions. J. Anim. Poult. Fish Prod. 2015, 4, 17–23. [Google Scholar] [CrossRef][Green Version]
- Szendrő, Z.; Papp, Z.; Kustos, K. Effect of ambient temperature and restricted feeding on the production of rabbit does and their kits. Acta Agrar. Kaposváriensis 2018, 22, 1–17. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Haeeb, A.A.M.; Gad, A.E. Biological functions in young pregnant rabbit does as affected by heat stress and lighting regime under subtropical conditions of Egypt. Trop. Subtrop. Agroecosyst. 2007, 7, 165–176. [Google Scholar]
- Milligan, S.R.; Sales, G.D.; Khirnykh, K. Sound levels in rooms housing laboratory animals: An uncontrolled daily variable. Physiol. Behav. 1993, 53, 1067–1076. [Google Scholar] [CrossRef]
- Jirkof, P.; Chourbaji, S.; Ott, S.; Busch, M.; Dammann, P.; Finger-Baier, K.; Gerold, S.; Haemisch, A.; Osterkamp, A.; Warncke, G.R. Species-Specific Housing of Laboratory Rabbits. Specialist Information from the Committee for Humane Laboratory Animal Housing (GV-SOLAS) and the Laboratory Animal Working Group (TVT). 2020; 15p. Available online: https://www.gv-solas.de/wp-content/uploads/2020/03/2021-03_Species-specific_housing_of_laboratory_rabbits.pdf (accessed on 26 November 2025).
- Marai, I.F.M.; Rashwan, A.A. Rabbits behavioural response to climatic and managerial conditions—A review. Arch. Anim. Breed. 2004, 47, 469–482. [Google Scholar] [CrossRef]
- Dockalova, H.; Baholet, D.; Batik, A.; Zeman, L.; Horky, P. Effect of milk thistle (Silybum marianum) seed cakes by horses subjected to physical exertion. J. Equine Vet. Sci. 2022, 113, 103937. [Google Scholar] [CrossRef]
- Pebriansyah, A.; Silberová, P.; Lukešová, D.; Dokoupilová, A.; Janda, K. Feed consumption, carcass evaluation and growth performance of broiler rabbits fed different levels and processing methods of milk thistle (Silybum marianum) supplement. In Proceedings of the Tropentag 2016: “Solidarity in a Competing World—Fair Use of Resources”, Vienna, Austria, 18–21 September 2016; Available online: https://www.tropentag.de/2016/abstracts/links/Pebriansyah_b0LY4K9K.pdf (accessed on 26 November 2025).
- Bencze-Nagy, J.; Strifler, P.; Horváth, B.; Such, N.; Farkas, V.; Dublecz, K.; Pál, L. Effects of dietary milk thistle (Silybum marianum) supplementation in ducks fed mycotoxin-contaminated diets. Vet. Sci. 2023, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef] [PubMed]
- Tajmohammadi, A.; Razavi, B.M.; Hosseinzadeh, H. Silybum marianum (Milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018, 32, 1933–1949. [Google Scholar] [CrossRef] [PubMed]
- De Souza, C.O.; Serrão Peraçoli, M.T.; Weel, I.C.; Bannwart, C.F.; Romão, M.; Nakaira-Takahagi, É.; Lopes de Medeiros, L.T.; Guimarães da Silva, M.; Peraçoli, J.C. Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by l-NAME in rats. Life Sci. 2012, 91, 159–165. [Google Scholar] [CrossRef]
- Anthony, K.; Saleh, M. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants 2013, 2, 398–407. [Google Scholar] [CrossRef]
- Gillessen, A.; Schmidt, H.H.J. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020, 37, 1279–1301. [Google Scholar] [CrossRef]
- Hassan, M.A.E.; Ragab, M.A.; Shazly, S.A.; Ahmed, M.E.; El-Kholany, M.E.; El-Raghi, A.A. Feasible feeding strategies for sustainable management of severe heat-stress conditions: Effect of milk thistle extract on growth performance and health status of newly weaned rabbits. J. Anim. Anim. Nutr. 2024, 108, 778–791. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Zhang, Z.; Xiao, D. Research progress of biological feed in beef cattle. Animals 2023, 13, 2662. [Google Scholar] [CrossRef]
- Kosina, P.; Dokoupilová, A.; Janda, K.; Sládková, K.; Silberová, P.; Pivodová, V.; Ulrichová, J. Effect of Silybum marianum fruit constituents on the health status of rabbits in repeated 42-day fattening experiment. Anim. Feed. Sci. Technol. 2017, 223, 128–140. [Google Scholar] [CrossRef]
- Cunniff, P.A.; Horwitz, W. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; 1904p, Available online: https://www.amazon.com/Official-Methods-Analysis-International-Binders/dp/0935584544 (accessed on 26 November 2025).
- Van Soest, P.J. Collaborative study of acid-detergent fiber and lignin. J. Assoc. Off. Anal. Chem. 1973, 56, 781–784. [Google Scholar] [CrossRef]
- Zeman, L.; Skřivánková, V.; Volek, Z.; Klapil, L.; Klecker, D. Potřeba Živin a Tabulky Výživné Hodnoty Pro Králíky; Mendelova zemědělská a lesnická univerzita v Brně: Brno, Czech Republic, 2005; 62p. [Google Scholar]
- ISO 13906; Animal Feeding Stuffs—Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. ISO: Geneva, Switzerland, 2008.
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef]
- Mohammadi, S.; Asbaghi, S.; Afrisham, R.; Farrokhi, V.; Jadidi, Y.; Mofidi, F.; Ashtary-Larky, D. Impacts of supplementation with silymarin on cardiovascular risk factors: A Systematic review and dose–response meta-analysis. Antioxidants 2024, 13, 390. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, K.H.; Nam, I.S.; Lee, S.S.; Choi, C.W.; Kim, W.Y.; Kwon, E.G.; Lee, K.Y.; Lee, M.J.; Oh, Y.K. Effect of indigenous herbs on growth, blood metabolites and carcass characteristics in the late fattening period of hanwoo steers. Asian-Australas. J. Anim. Sci. 2013, 26, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Elwasife, K.; Abdel Aziz, I.; Shabat, M.; Shahwan, O.; El Hamidi, A.M. Effects of noise on rabbit’s blood. Eur. J. Biophys. 2015, 3, 10–13. [Google Scholar] [CrossRef]
- Lazăr, M.; Radu Rusu, R.-M.; Pavel, G.; Lazăr, R. Biochemical and metabolic responses of rabbits (Oryctolagus cuniculus) to moderate and chronic stress. Sci. Pap. J. Vet. Ser. 2024, 67, 15–22. [Google Scholar] [CrossRef]
- Hahad, O.; Bayo Jimenez, M.T.; Kuntic, M.; Frenis, K.; Steven, S.; Daiber, A.; Münzel, T. Cerebral consequences of environmental noise exposure. Environ. Int. 2022, 165, 107306. [Google Scholar] [CrossRef] [PubMed]
- Demirel, R.; Mollaoğlu, H.; Yeşilyurt, H.; Üçok, K.; Ayçiçek, A.; Akkaya, M.; Genç, A.; Uygur, R.; Doğan, M. Noise Induces Oxidative Stress in Rat. Electron. J. Gen. Med. 2009, 6, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Ondruska, L.; Rafay, J.; Okab, A.B.; Ayoub, M.A.; Al-Haidary, A.A.; Samara, E.M.; Parkanyi, V.; Chrastinova, L.; Jurcik, R.; Massanyi, P.; et al. Influence of elevated ambient temperature upon some physiological measurements of New Zealand White rabbits. Vet. Med. 2011, 56, 180–186. [Google Scholar] [CrossRef]
- Marder, J.; Eylath, U.; Moskovitz, E.; Sharir, R. The effect of heat exposure on blood chemistry of the hyperthermic rabbit. Comp. Biochem. Physiol. A Comp. Physiol. 1990, 97, 245–247. [Google Scholar] [CrossRef]
- De la Fuente, J.; Díaz, M.; Ibáñez, M.; de Chavarri, E.G. Physiological response of rabbits to heat, cold, noise and mixing in the context of transport. Anim. Welf. 2007, 16, 41–47. [Google Scholar] [CrossRef]
- Mutwedu, V.B.; Nyongesa, A.W.; Oduma, J.A.; Kitaa, J.M.; Mbaria, J.M. Thermal stress causes oxidative stress and physiological changes in female rabbits. J. Therm. Biol. 2021, 95, 102780. [Google Scholar] [CrossRef]
- Dočkalová, H.; Horký, P.; Zeman, L.; Skládanka, J. Influence of milk thistle pressed parts on rats liver histology. Potravin. Slovak J. Food Sci. 2018, 12, 33–39. [Google Scholar] [CrossRef]
- Pebriansyah, A.; Lukešová, D.; Knížková, I.; Silberová, P.; Kunc, P. The Effect of natural phytoadditive Silybum marianum on performance of broiler rabbits. Sci. Agric. Bohem. 2019, 50, 40–45. [Google Scholar]
- Khazaei, R.; Seidavi, A.; Bouyeh, M. A review on the mechanisms of the effect of silymarin in milk thistle (Silybum marianum) on some laboratory animals. Vet. Med. Sci. 2022, 8, 289–301. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Shukry, M.; Noreldin, A.E.; Ahmed, H.A.; El-Bahrawy, A.; Ghetas, H.A.; Khalifa, E. Milk thistle (Silybum marianum) extract improves growth, immunity, serum biochemical indices, antioxidant state, hepatic histoarchitecture, and intestinal histomorphometry of striped catfish, Pangasianodon hypophthalmus. Aquaculture 2023, 562, 738761. [Google Scholar] [CrossRef]



| C | SMT | FMT | |
|---|---|---|---|
| Dry matter (g/kg) | 1000 | 1000 | 1000 |
| Ash (g/kg) | 90.44 | 92.13 | 89.76 |
| Crude protein (g/kg) | 151.97 | 182.40 | 182.92 |
| Ether extract (g/kg) | 29.96 | 36.19 | 34.57 |
| Crude fibre (g/kg) | 216.44 | 216.31 | 216.17 |
| ADL-lignin (g/kg) | 56.31 | 53.86 | 56.95 |
| NFE (g/kg) | 511.18 | 472.96 | 476.57 |
| Calcium (g/kg) | 12 | 12 | 12 |
| Phosphorus (g/kg) | 6 | 6 | 6 |
| Natrium (g/kg) | 4 | 4 | 4 |
| Vitamin A (IU/kg) | 11,500 | 11,500 | 11,500 |
| Vitamin D3 (IU/kg) | 1400 | 1400 | 1400 |
| Ferrum (mg/kg) Source: FeSO4·H2O | 30 | 30 | 30 |
| Iodine (mg/kg) Source: Ca(IO3)2 | 1 | 1 | 1 |
| Copper (mg/kg) Source: CuSO4·5H2O | 14 | 14 | 14 |
| Manganese (mg/kg) Source: MnO | 35 | 35 | 35 |
| Zinc (mg/kg) Source: ZnO | 35 | 35 | 35 |
| Selenium (mg/kg) Source: Na2SeO3 | 0.1 | 0.1 | 0.1 |
| Age of Rabbits | C | SMT | FMT | |
|---|---|---|---|---|
| 35–41 days | procedure | habituation | ||
| n | 30 | 30 | 30 | |
| 42 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 30 | 30 | 30 | |
| 42–46 days | procedure | temperature stress | ||
| n | 30 | 30 | 30 | |
| 49 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 30 | 30 | 30 | |
| 56 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 30 | 30 | 30 | |
| 63 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 30 | 30 | 30 | |
| procedure | slaughter without noise stress | |||
| n | 2 | 0 | 2 | |
| 70 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 28 | 30 | 28 | |
| procedure | noise stress before slaughter | |||
| n | 5 | 5 | 5 | |
| procedure | slaughter without noise stress | |||
| n | 5 | 5 | 9 | |
| 77 days | procedure | individual weighing of weekly weight gains and feed refusals | ||
| n | 18 | 20 | 14 | |
| procedure | slaughter without noise stress | |||
| n | 11 | 14 | 7 | |
| (g/kg) | C | SMT Average ± SE | FMT Average ± SE |
|---|---|---|---|
| Total silymarin | 0 | 1.450 ± 0.000 | 0.710 ± 0.000 |
| Silybinin A | 0 | 0.545 ± 0.000 | 0.333 ± 0.008 |
| Silybinin B | 0 | 0.449 ± 0.015 | 0.349 ± 0.015 |
| Isosilybinin A | 0 | 0.158 ± 0.077 | 0.098 ± 0.001 |
| Isosilybinin B | 0 | 0.044 ± 0.000 | 0.033 ± 0.000 |
| Silychristin | 0 | 0.502 ± 0.015 | 0.301 ± 0.008 |
| Silydianin | 0 | 0.044 ± 0.000 | 0.033 ± 0.000 |
| C | SMT | FMT | |
|---|---|---|---|
| Age at slaughter: 63 days | 2 | - | 2 |
| Age at slaughter: 70 days | 10 | 10 | 14 |
| Age at slaughter: 77 days | 11 | 14 | 7 |
| Ungrown | 7 | 6 | 7 |
| Death | 0 | 0 | 0 |
| Total number | 30 | 30 | 30 |
| C Average ± SE | SMT Average ± SE | FMT Average ± SE | |
|---|---|---|---|
| Number of animals | 5 | 5 | 5 |
| Albumin (g/L) | 28.18 ± 1.29 b | 30.48 ± 1.19 ab | 35.35 ± 1.38 a |
| ALP (µkat/L) | 2.46 ± 0.29 | 3.02 ± 0.28 | 3.04 ± 0.40 |
| ALT (µkat/L) | 0.53 ± 0.04 | 0.60 ± 0.04 | 0.55 ± 0.07 |
| AST (µkat/L) | 0.24 ± 0.03 | 0.19 ± 0.02 | 0.20 ± 0,01 |
| BHB (mmol/L) | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.07 ± 0.00 |
| Ca (mmol/L) | 2.63 ± 0.10 b | 2.85 ± 0.08 b | 3.37 ± 0.14 a |
| CHOL (mmol/L) | 1.42 ± 0.25 | 1.36 ± 0.17 | 1.61 ± 0.18 |
| HDL (mmol/L) | 0.53 ± 0.06 | 0.44 ± 0.05 | 0.59 ± 0.05 |
| LDL (mmol/L) | 0.89 ± 0.19 | 0.92 ± 0.14 | 1.03 ± 0.14 |
| CK (µkat/L) | 21.06 ± 3.59 | 18.74 ± 3.46 | 24.17 ± 2.13 |
| CREA (µmol/L) | 60.64 ± 8.40 ab | 48.37 ± 1.12 b | 72.37 ± 4.94 a |
| GGT (µkat/L) | 0.09 ± 0.01 | 0.13 ± 0.02 | 0.13 ± 0.02 |
| GLU (mmol/L) | 5.55 ± 0.19 b | 6.14 ± 0.29 b | 7.48 ± 0.40 a |
| GSH-Px (µkat/L) | 488.68 ± 49.44 b | 630.42 ± 47.52 b | 1480.40 ± 190.40 a |
| LD (µkat/L) | 2.66 ± 0.23 | 2.62 ± 0.38 | 3.06 ± 0.26 |
| Lactate (mmol/L) | 2.36 ± 0.23 | 2.54 ± 0.26 | 3.96 ± 0.77 |
| FFA (mmol/L) | 0.10 ± 0.03 b | 0.10 ± 0.01 b | 0.26 ± 0.05 a |
| Pi (mmol/L) | 1.53 ± 0.09 b | 1.54 ± 0.05 b | 2.24 ± 0.13 a |
| TP (g/L) | 42.98 ± 2.48 b | 44.51 ± 1.75 b | 54.25 ± 1.87 a |
| TAS (mmol/L) | 0.79 ± 0.02 ab | 0.75 ± 0.13 b | 0.95 ± 0.04 a |
| TAG (mmol/L) | 0.84 ± 0.15 | 1.13 ± 0.16 | 1.28 ± 0.14 |
| Urea (mmol/L) | 5.48 ± 0.29 ab | 5.44 ± 0.41 b | 7.56 ± 0.77 a |
| C Average ± SE | SMT Average ± SE | FMT Average ± SE | |
|---|---|---|---|
| Number of animals | 5 | 5 | 5 |
| Albumin (g/L) | 33.69 ± 0.45 | 33.02 ± 0.64 | 32.60 ± 2.30 |
| ALP (µkat/L) | 2.32 ± 0.15 | 2.67 ± 0.08 | 2.21 ± 0.16 |
| ALT (µkat/L) | 0.64 ± 0.02 | 0.56 ± 0.12 | 0.49 ± 0.04 |
| AST (µkat/L) | 0.21 ± 0.02 | 0.24 ± 0.02 | 0.21 ± 0.01 |
| BHB (mmol/L) | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.03 ± 0.01 |
| Ca (mmol/L) | 3.06 ± 0.08 | 3.10 ± 0.06 | 3.06 ± 0.19 |
| CHOL (mmol/L) | 1.48 ± 0.17 | 1.18 ± 0.09 | 1.14 ± 0.14 |
| HDL (mmol/L) | 0.61 ± 0.07 | 0.45 ± 0.06 | 0.53 ± 0.06 |
| LDL (mmol/L) | 0.88 ± 0.12 | 0.73 ± 0.10 | 0.60 ± 0.09 |
| CK (µkat/L) | 21.40 ± 2.07 | 30.71 ± 3.94 | 20.38 ± 2.03 |
| CREA (µmol/L) | 56.90 ± 1.02 | 62.54 ± 10.80 | 64.17 ± 3.42 |
| GGT (µkat/L) | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 |
| GLU (mmol/L) | 7.42 ± 0.35 | 7.27 ± 0.26 | 6.87 ± 0.39 |
| GSH-Px (µkat/L) | 395.34 ± 46.84 b | 691.80 ± 41.84 b | 1534.94 ± 149.25 a |
| LD (µkat/L) | 2.21 ± 0.27 | 3.24 ± 0.38 | 2.43 ± 0.20 |
| Lactate (mmol/L) | 3.19 ± 0.46 | 3.79 ± 0.98 | 3.03 ± 0.39 |
| FFA (mmol/L) | 0.11 ± 0.01 b | 0.13 ± 0.02 b | 0.32 ± 0.08 a |
| Pi (mmol/L) | 1.93 ± 0.13 | 1.77 ± 0.08 | 2.07 ± 0.16 |
| TP (g/L) | 50.58 ± 0.81 | 50.47 ± 1.37 | 50.65 ± 4.03 |
| TAS (mmol/L) | 0.86 ± 0.05 | 0.89 ± 0.03 | 0.97 ± 0.04 |
| TAG (mmol/L) | 1.07 ± 0.13 | 1.32 ± 0.30 | 0.90 ± 0.13 |
| Urea (mmol/L) | 5.74 ± 0.21 | 6.09 ± 0.37 | 6.16 ± 0.24 |
| C Average ± SE | SMT Average ± SE | FMT Average ± SE | |
|---|---|---|---|
| Number of animals | 10 | 10 | 10 |
| Albumin (g/L) | 30.94 ± 1.12 | 31.75 ± 0.77 | 33.98 ± 1.34 |
| ALP (µkat/L) | 2.39 ± 0.15 | 2.84 ± 0.15 | 2.63 ± 0.24 |
| ALT (µkat/L) | 0.58 ± 0.03 | 0.58 ± 0.06 | 0.52 ± 0.04 |
| AST (µkat/L) | 0.22 ± 0.02 | 0.22 ± 0.01 | 0.20 ± 0.01 |
| BHB (mmol/L) | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 |
| Ca (mmol/L) | 2.85 ± 0.09 | 2.98 ± 0.07 | 3.22 ± 0.12 |
| CHOL (mmol/L) | 1.45 ± 0.14 | 1.27 ± 0.10 | 1.38 ± 0.14 |
| HDL (mmol/L) | 0.57 ± 0.05 | 0.45 ± 0.03 | 0.56 ± 0.04 |
| LDL (mmol/L) | 0.88 ± 0.11 | 0.82 ± 0.09 | 0.81 ± 0.11 |
| CK (µkat/L) | 24.23 ± 2.17 | 24.73 ± 3.18 | 22.27 ± 1.52 |
| CREA (µmol/L) | 58.77 ± 4.04 | 55.46 ± 5.64 | 68.27 ± 3.15 |
| GGT (µkat/L) | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 |
| GLU (mmol/L) | 6.49 ± 0.36 | 6.70 ± 0.26 | 7.17 ± 0.28 |
| GSH-Px (µkat/L) | 442.01 ± 35.68 b | 661.11 ± 31.55 b | 1507.67 ± 114.61 a |
| LD (µkat/L) | 2.44 ± 0.18 | 2.93 ± 0.27 | 2.75 ± 0.19 |
| Lactate (mmol/L) | 2.77 ± 0.28 | 3.17 ± 0.52 | 3.50 ± 0.43 |
| FFA (mmol/L) | 0.11 ± 0.01 b | 0.12 ± 0.02 b | 0.29 ± 0.05 a |
| Pi (mmol/L) | 1.73 ± 0.10 b | 1.66 ± 0.06 b | 2.16 ± 0.10 a |
| TP (g/L) | 46.78 ± 1.77 | 47.49 ± 1.44 | 52.45 ± 2.18 |
| TAS (mmol/L) | 0.82 ± 0.03 b | 0.82 ± 0.04 b | 0.96 ± 0.03 a |
| TAG (mmol/L) | 0.95 ± 0.08 | 1.22 ± 0.16 | 1.09 ± 0.11 |
| Urea (mmol/L) | 5.61 ± 0.17 b | 5.76 ± 0.28 ab | 6.86 ± 0.44 a |
| Standard Conditions Average ± SE | Noise Stress Average ± SE | |
|---|---|---|
| Number of animals | 15 | 15 |
| Albumin (g/L) | 31.33 ± 1.05 | 33.11 ± 0.76 |
| ALP (µkat/L) | 2.84 ± 0.19 a | 2.40 ± 0.09 b |
| ALT (µkat/L) | 0.56 ± 0.03 | 0.56 ± 0.04 |
| AST (µkat/L) | 0.21 ± 0.01 | 0.21 ± 0.01 |
| BHB (mmol/L) | 0.05 ± 0.01 | 0.04 ± 0.01 |
| Ca (mmol/L) | 2.95 ± 0.10 | 3.08 ± 0.07 |
| CHOL (mmol/L) | 1.46 ± 0.11 | 1.27 ± 0.08 |
| HDL (mmol/L) | 0.52 ± 0.03 | 0.53 ± 0.04 |
| LDL (mol/L) | 0.95 ± 0.09 | 0.73 ± 0.06 |
| CK (µkat/L) | 23.33 ± 1.91 | 24.16 ± 1.96 |
| CREA (µmol/L) | 60.46 ± 4.00 | 61.20 ± 3.61 |
| GGT (µkat/L) | 0.12 ± 0.01 | 0.12 ± 0.01 |
| GLU (mmol/L) | 6.39 ± 0.27 b | 7.18 ± 0.19 a |
| GSH-Px (µkat/L) | 866.50 ± 132.74 | 874.03 ± 138.36 |
| LD (µkat/L) | 2.78 ± 0.17 | 2.63 ± 0.20 |
| Lactate (mmol/L) | 2.95 ± 0.32 | 3.34 ± 0.36 |
| FFA (mmol/L) | 0.16 ± 0.03 | 0.19 ± 0.03 |
| Pi (mmol/L) | 1.77 ± 0.10 | 1.93 ± 0.08 |
| TP (g/L) | 47.25 ± 1.73 | 50.56 ± 1.34 |
| TAS (mmol/L) | 0.83 ± 0.03 b | 0.91 ± 0.02 a |
| TAG (mmol/L) | 1.08 ± 0.08 | 1.10 ± 0.12 |
| Urea (mmol/L) | 6.16 ± 0.39 | 6.00 ± 0.16 |
| SS | MS | df | F | p | ||
|---|---|---|---|---|---|---|
| ALB | Diet | 49.54 | 24.77 | 2 | 2.739 | 0.0848 |
| Stressor | 23.58 | 23.58 | 1 | 2.607 | 0.1195 | |
| Combination | 87.50 | 43.75 | 2 | 4.838 | 0.0172 | |
| ALP | Diet | 1.05 | 0.52 | 2 | 1.684 | 0.2068 |
| Stressor | 1.44 | 1.44 | 1 | 4.638 | 0.0415 | |
| Combination | 0.62 | 0.31 | 2 | 0.992 | 0.3854 | |
| ALT | Diet | 0.02 | 0.01 | 2 | 0.582 | 0.5663 |
| Stressor | 0.00 | 0.00 | 1 | 0.007 | 0.9360 | |
| Combination | 0.05 | 0.02 | 2 | 1.261 | 0.3015 | |
| AST | Diet | 0.00 | 0.00 | 2 | 0.440 | 0.6495 |
| Stressor | 0.00 | 0.00 | 1 | 0.297 | 0.5909 | |
| Combination | 0.00 | 0.00 | 2 | 2.231 | 0.1292 | |
| BHB | Diet | 0.00 | 0.00 | 2 | 0.291 | 0.7503 |
| Stressor | 0.00 | 0.00 | 1 | 0.602 | 0.4454 | |
| Combination | 0.00 | 0.00 | 2 | 5.371 | 0.0118 | |
| Ca | Diet | 0.71 | 0.35 | 2 | 5.145 | 0.0138 |
| Stressor | 0.12 | 0.12 | 1 | 1.692 | 0.2057 | |
| Combination | 0.74 | 0.37 | 2 | 5.454 | 0.0112 | |
| CHOL | Diet | 0.16 | 0.08 | 2 | 0.537 | 0.5914 |
| Stressor | 0.30 | 0.30 | 1 | 1.942 | 0.1762 | |
| Combination | 0.37 | 0.18 | 2 | 1.208 | 0.3163 | |
| HDL | Diet | 0.09 | 0.05 | 2 | 2.884 | 0.0754 |
| Stressor | 0.00 | 0.00 | 1 | 0.074 | 0.7883 | |
| Combination | 0.02 | 0.01 | 2 | 0.696 | 0.5082 | |
| LDL | Diet | 0.03 | 0.01 | 2 | 0.151 | 0.8609 |
| Stressor | 0.34 | 0.34 | 1 | 3.634 | 0.0687 | |
| Combination | 0.21 | 0.10 | 2 | 1.132 | 0.3389 | |
| CK | Diet | 33.65 | 16.83 | 2 | 0.379 | 0.6888 |
| Stressor | 5.26 | 5.26 | 1 | 0.118 | 0.7338 | |
| Combination | 468.72 | 234.36 | 2 | 5.274 | 0.0126 | |
| CREA | Diet | 884.7 | 442.4 | 2 | 2.353 | 0.1167 |
| Stressor | 4.1 | 4.1 | 1 | 0.022 | 0.8835 | |
| Combination | 700.4 | 350.2 | 2 | 1.863 | 0.1770 | |
| GGT | Diet | 0.00 | 0.00 | 2 | 3.833 | 0.0359 |
| Stressor | 0.00 | 0.00 | 1 | 0.000 | 0.9944 | |
| Combination | 0.00 | 0.00 | 2 | 0.579 | 0.5684 | |
| GLU | Diet | 2.47 | 1.24 | 2 | 2.374 | 0.1146 |
| Stressor | 4.72 | 4.72 | 1 | 9.065 | 0.0061 | |
| Combination | 8.10 | 1.05 | 2 | 7.782 | 0.0025 | |
| GSH-Px | Diet | 6,334,336 | 3,167,168 | 2 | 56.399 | 0.0000 |
| Stressor | 425 | 425 | 1 | 0.008 | 0.931 | |
| Combination | 38213 | 19106 | 2 | 0.340 | 0.715 | |
| LD | Diet | 1.22 | 0.61 | 2 | 1.408 | 0.2641 |
| Stressor | 0.18 | 0.18 | 1 | 0.414 | 0.5259 | |
| Combination | 2.29 | 1.14 | 2 | 2.637 | 0.0922 | |
| Lactate | Diet | 2.63 | 1.31 | 2 | 0.780 | 0.4696 |
| Stressor | 1.11 | 1.11 | 1 | 0.655 | 0.4263 | |
| Combination | 6.64 | 3.32 | 2 | 1.968 | 0.1617 | |
| FFA | Diet | 0.21 | 0.11 | 2 | 12.642 | 0.0002 |
| Stressor | 0.00 | 0.00 | 1 | 0.839 | 0.3687 | |
| Combination | 0.00 | 0.00 | 2 | 0.146 | 0.8651 | |
| Pi | Diet | 1.46 | 0.73 | 2 | 11.338 | 0.0003 |
| Stressor | 0.18 | 0.18 | 1 | 2.764 | 0.1094 | |
| Combination | 0.43 | 0.22 | 2 | 3.342 | 0.0524 | |
| TP | Diet | 190.81 | 95.40 | 2 | 3.640 | 0.0416 |
| Stressor | 82.46 | 82.46 | 1 | 3.146 | 0.0888 | |
| Combination | 183.00 | 91.50 | 2 | 3.491 | 0.0467 | |
| TAS | Diet | 0.13 | 0.06 | 2 | 7.387 | 0.0032 |
| Stressor | 0.05 | 0.05 | 1 | 5.264 | 0.0308 | |
| Combination | 0.02 | 0.01 | 2 | 1.074 | 0.3576 | |
| TAG | Diet | 0.36 | 0.18 | 2 | 1.254 | 0.3035 |
| Stressor | 0.00 | 0.00 | 1 | 0.008 | 0.9295 | |
| Combination | 0.58 | 0.29 | 2 | 2.032 | 0.1531 | |
| UREA | Diet | 9.30 | 4.65 | 2 | 5.179 | 0.0135 |
| Stressor | 0.21 | 0.21 | 1 | 0.228 | 0.6371 | |
| Combination | 5.87 | 2.93 | 2 | 3.268 | 0.0556 | |
| Period | C (g/kg) | SMT (g/kg) | FMT (g/kg) | |||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 42–49 | 30 | 47.45 ± 2.12 | 30 | 50.33 ± 1.23 | 30 | 48.78 ± 2.04 |
| 49–56 | 30 | 46.89 ± 2.41 | 30 | 47.00 ± 1.92 | 30 | 42.70 ± 1.57 |
| 56–63 | 30 | 42.35 ± 1.48 | 30 | 40.81 ± 1.20 | 30 | 41.12 ± 1.37 |
| 63–70 | 28 | 35.77 ± 2.13 | 30 | 36.71 ± 1.39 | 28 | 36.02 ± 1.78 |
| 70–77 | 18 | 40.83 ± 2.00 | 20 | 37.50 ± 1.42 | 14 | 41.33 ± 3.75 |
| Period | C (g/kg) | SMT (g/kg) | FMT (g/kg) | |||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 42 days | 30 | 1265.00 ± 25.56 | 30 | 1282.33 ± 24.22 | 30 | 1268.57 ± 29.41 |
| 49 days | 30 | 1597.14 ± 28.82 | 30 | 1634.67 ± 26.64 | 30 | 1610.00 ± 34.54 |
| 56 days | 30 | 1925.36 ± 36.06 | 30 | 1963.67 ± 28.41 | 30 | 1908.93 ± 41.56 |
| 63 days | 30 | 2221.79 ± 40.39 | 30 | 2249.33 ± 27.78 | 30 | 2196.79 ± 46.82 |
| 70 days | 28 | 2472.14 ± 49.90 | 30 | 2506.33 ± 29.71 | 28 | 2448.93 ± 54.39 |
| 77 days | 18 | 2620.00 ± 40.26 | 20 | 2685.50 ± 28.77 | 14 | 2512.14 ± 72.42 |
| Period | C (g/kg/Week) | SMT (g/kg/Week) | FMT (g/kg/Week) | |||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 42–49 | 30 | 1051.43 ± 17.55 | 30 | 1056.17 ± 36.51 | 30 | 1002.50 ± 17.78 |
| 49–56 | 30 | 1170.00 ± 18.88 ab | 30 | 1217.67 ± 20.47 a | 30 | 1111.07 ± 21.87 b |
| 56–63 | 30 | 1261.79 ± 24.42 a | 30 | 1275.67 ± 16.76 a | 30 | 1178.21 ± 18.20 b |
| 63–70 | 28 | 1362.86 ± 16.82 ab | 30 | 1405.00 ± 16.07 a | 28 | 1297.68 ± 18.54 b |
| 70–77 | 18 | 1413.16 ±20.13 a | 20 | 1420.00 ± 14.83 a | 14 | 1315.00 ± 23.27 b |
| Period | C (g/kg) | SMT (g/kg) | FMT (g/kg) | |||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 42–49 | 30 | 150.20 ± 2.51 | 30 | 150.88 ± 5.22 | 30 | 143.21 ± 2.54 |
| 49–56 | 30 | 167.14 ± 2.70 ab | 30 | 173.95 ± 2.92 a | 30 | 158.72 ± 3.12 b |
| 56–63 | 30 | 180.26 ± 3.49 a | 30 | 182.24 ± 2.39 a | 30 | 168.32 ± 2.60 b |
| 63–70 | 28 | 194.69 ± 2.40 ab | 30 | 200.71 ± 2.30 a | 28 | 185.38 ± 2.65 b |
| 70–77 | 18 | 201.89 ± 2.88 a | 20 | 202.86 ± 2.12 a | 14 | 187.86 ± 3.32 b |
| C (g/kg) | SMT (g/kg) | FMT (g/kg) | ||||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 49–56 | 30 | 3.88 ± 0.10 | 30 | 4.07 ± 0.30 | 30 | 3.97 ± 0.18 |
| 56–63 | 30 | 4.56 ± 0.19 | 30 | 4.60 ± 0.24 | 30 | 4.59 ± 0.25 |
| 63–70 | 28 | 6.81 ± 0.92 | 30 | 6.51 ± 1.11 | 28 | 5.75 ± 0.38 |
| 70–77 | 18 | 5.21 ± 0.32 | 20 | 5.79 ± 0.40 | 14 | 7.40 ± 2.89 |
| C Average ± SE | SMT Average ± SE | FMT Average ± SE | |
|---|---|---|---|
| Ash (%) | 51.07 ± 0.51 a | 49.76 ± 1.35 a | 32.87 ± 0.58 b |
| CP (%) | 75.47 ± 0.20 b | 78.25 ± 0.40 a | 70.08 ± 0.61 c |
| EE (%) | 83.71 ± 0.43 a | 82.69 ± 0.47 a | 77.15 ± 1.22 b |
| CF (%) | 21.62 ± 1.09 a | 20.45 ± 1.99 a | 10.93 ± 1.09 b |
| NFE (%) | 72.53 ± 0.22 a | 68.76 ± 0.77 b | 65.37 ± 0.46 c |
| DE (MJ) | 12.58 ± 0.03 a | 12.51 ± 0.11 a | 11.69 ± 0.07 b |
| C | SMT | FMT | ||||
|---|---|---|---|---|---|---|
| n | Average ± SE | n | Average ± SE | n | Average ± SE | |
| 49–56 | 30 | 0.59 ± 0.02 b | 30 | 0.74 ± 0.05 a | 30 | 0.73 ± 0.03 ab |
| 56–63 | 30 | 0.69 ± 0.03 b | 30 | 0.84 ± 0.04 a | 30 | 0.84 ± 0.05 ab |
| 63–70 | 28 | 1.04 ± 0.14 | 30 | 1.19 ± 0.20 | 28 | 1.05 ± 0.07 |
| 70–77 | 18 | 0.79 ± 0.05 | 20 | 1.05 ± 0.07 | 14 | 1.35 ± 0.53 |
| C | SMT | FMT | |
|---|---|---|---|
| Average ± SE | Average ± SE | Average ± SE | |
| Number of animals | 23 | 24 | 23 |
| Live weight (g) | 2726.21 ± 20.63 | 2735.67 ± 88.77 | 2690.42 ± 85.69 |
| Carcass weight (g) | 1372.97 ± 13.52 | 1360.13 ± 16.83 | 1360.92 ± 13.70 |
| Liver (g) | 112.62 ± 2.99 | 111.00 ± 2.11 | 110.29 ± 2.52 |
| Head (g) | 124.76 ± 1.04 | 123.17 ± 1.09 | 124.04 ± 1.25 |
| Kidney with fat (g) | 35.52 ± 1.25 | 36.53 ± 0.90 | 35.96 ± 1.02 |
| Carcass I (g) | 1565.69 ± 14.98 | 1551.13 ± 17.99 | 1551.04 ± 14.70 |
| Carcass II (g) | 1645.86 ± 16.31 | 1630.83 ± 18.70 | 1631.21 ± 15.83 |
| Carcass yield I (%) | 61.60 ± 0.57 | 60.73 ± 0.48 | 61.74 ± 0.40 |
| Carcass yield II (%) | 60.41 ± 0.56 | 59.58 ± 0.48 | 60.62 ± 0.40 |
| C | SMT | FMT | |
|---|---|---|---|
| Average ± SE | Average ± SE | Average ± SE | |
| Number of animals | 10 | 10 | 14 |
| Live weight (g) | 2763.33 ± 53.33 | 2673.00 ± 33.60 | 2675.00 ± 18.48 |
| Carcass weight (g) | 1404.44 ± 27.06 a | 1289.10 ± 35.50 b | 1363.79 ± 15.26 ab |
| Liver (g) | 112.67 ± 8.85 | 102.20 ± 2.95 | 106.93 ± 3.46 |
| Head (g) | 126.33 ± 1.31 | 121.00 ± 2.72 | 124.71 ± 1.97 |
| Kidney with fat (g) | 37.00 ± 2.79 | 32.90 ± 1.35 | 34.64 ± 1.30 |
| Carcass I (g) | 1603.22 ± 29.64 a | 1473.80 ± 37.62 b | 1553.79 ± 16.75 ab |
| Carcass II (g) | 1680.44 ± 36.63 a | 1545.20 ± 37.74 b | 1630.07 ± 18.26 ab |
| Carcass yield I (%) | 62.22 ± 1.53 | 58.95 ± 1.15 | 62.09 ± 0.62 |
| Carcass yield II (%) | 60.93 ± 1.52 | 57.80 ± 1.16 | 60.95 ± 0.62 |
| C Average ± SE | SMT Average ± SE | FMT Average ± SE | |
|---|---|---|---|
| Number of animals | 11 | 14 | 7 |
| Live weight (g) | 2737.50 ± 23.03 | 2758.57 ± 14.74 | 2734.29 ± 44.71 |
| Carcass weight (g) | 1372.92 ± 18.23 | 1386.93 ± 15.41 | 1368.29 ± 36.79 |
| Liver (g) | 114.00 ± 2.93 | 118.07 ± 2.65 | 118.00 ± 3.13 |
| Head (g) | 125.33 ± 1.75 | 124.14 ± 0.96 | 123.57 ± 1.54 |
| Kidney with fat (g) | 35.58 ± 1.91 | 39.14 ± 1.07 | 38.57 ± 1.56 |
| Carcass I (g) | 1565.50 ± 20.84 | 1582.14 ± 16.58 | 1559.86 ± 38.70 |
| Carcass II (g) | 1647.83 ± 21.67 | 1668.29 ± 16.36 | 1648.43 ± 40.59 |
| Carcass yield I (%) | 61.34 ± 0.49 | 61.62 ± 0.39 | 61.32 ± 0.53 |
| Carcass yield II (%) | 60.18 ± 0.49 | 60.47 ± 0.38 | 60.24 ± 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dočkalová, H.; Bátik, D.B.; Horký, P.; Balabánová, M.; Bátik, A.; Ondráček, J.; Dokoupilová, A. Effects of Different Forms of Milk Thistle Supplementation in Rabbit Diets on Stress-Induced Physiological Responses. Animals 2025, 15, 3582. https://doi.org/10.3390/ani15243582
Dočkalová H, Bátik DB, Horký P, Balabánová M, Bátik A, Ondráček J, Dokoupilová A. Effects of Different Forms of Milk Thistle Supplementation in Rabbit Diets on Stress-Induced Physiological Responses. Animals. 2025; 15(24):3582. https://doi.org/10.3390/ani15243582
Chicago/Turabian StyleDočkalová, Hana, Daria Baholet Bátik, Pavel Horký, Marie Balabánová, Andrej Bátik, Jaroslav Ondráček, and Adéla Dokoupilová. 2025. "Effects of Different Forms of Milk Thistle Supplementation in Rabbit Diets on Stress-Induced Physiological Responses" Animals 15, no. 24: 3582. https://doi.org/10.3390/ani15243582
APA StyleDočkalová, H., Bátik, D. B., Horký, P., Balabánová, M., Bátik, A., Ondráček, J., & Dokoupilová, A. (2025). Effects of Different Forms of Milk Thistle Supplementation in Rabbit Diets on Stress-Induced Physiological Responses. Animals, 15(24), 3582. https://doi.org/10.3390/ani15243582

