Effects of Different Additives on the Quality of Rice Straw Haylage, Ruminal Fermentation Parameters and Methane Production in Hu Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Haylage Preparation
2.3. Chemical Composition and Fermentation Characteristics of Ensiling
2.4. Animal Experiment
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Additives on the Chemical Composition of Rice Straw Haylage
3.2. Effects of Different Additives on Fermentation Quality of Rice Straw Haylage
3.3. Effects of Different Additives on Lactic Acid Bacteria, E. coli, and Bacillus Counts in Rice Straw Haylage
3.4. Effects of BMLB Supplemented Rice Straw Haylage on Nutrient Apparent Digestibility of Rice Straw Haylage in Hu Sheep
3.5. Effects of BMLB Treatment on Ruminal Fermentation Characteristics in Hu Sheep Fed with Rice Straw Haylage
3.6. Effects of BMLB Treatment on Methane Emissions from Hu Sheep Fed Rice Straw Haylage
4. Discussion
4.1. Effects of Different Additives on Nutritional Components and Fermentation Quality of Rice Straw Haylage
4.2. Effects of BMLB Treatment on Nutrient Digestibility and Ruminal Characteristics of Rice Straw Haylage in Hu Sheep
4.3. Effects of BMLB Treatment on Methane Emissions of Rice Straw Haylage in Hu Sheep
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kocher, G.S.; Kaur, P.; Taggar, M.S. An overview of pretreatment processes with special reference to biological pretreatment for rice straw delignification. Curr. Biochem. Eng. 2017, 4, 151–163. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Gao, S.; Liao, Z.; Lai, T.; Zhou, H.; Chen, Q.; Li, L.; Gao, H.; Lu, W. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 2020, 10, 10721. [Google Scholar] [CrossRef] [PubMed]
- Sarnklong, C.; Cone, J.W.; Pellikaan, W.; Hendriks, W.H. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian-Australas. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Peripolli, V.; Barcellos, J.O.J.; Prates, Ê.R.; McManus, C.; Silva, L.P.D.; Stella, L.A.; Junior, J.B.G.C.; Lopes, R.B. Nutritional value of baled rice straw for ruminant feed. Rev. Bras. Zootec. 2016, 45, 392–399. [Google Scholar] [CrossRef]
- Khan, N.A.; Hussain, S.; Ahmad, N.; Alam, S.; Bezabhi, M.; Hendriks, W.H.; Yu, P.; Cone, J.W. Improving the feeding value of straws with Pleurotus ostreatus. Anim. Prod. Sci. 2015, 55, 241–245. [Google Scholar] [CrossRef]
- Malik, K.; Tokkas, J.; Anand, R.C.; Kumari, N. Pretreated rice straw as an improved fodder for ruminants—An overview. J. Appl. Nat. Sci. 2015, 7, 514–520. [Google Scholar] [CrossRef]
- Oskoueian, E.; Jahromi, M.F.; Jafari, S.; Shakeri, M.; Le, H.H.; Ebrahimi, M. Manipulation of rice straw silage fermentation with different types of lactic acid bacteria inoculant affects rumen microbial fermentation characteristics and methane production. Vet. Sci. 2021, 8, 100. [Google Scholar] [CrossRef]
- Fadel Elseed, A.M.A.; Sekine, J.; Hishinuma, M.; Hamana, K. Effects of ammonia, urea plus calcium hydroxide and animal urine treatments on chemical composition and in sacco degradability of rice straw. Asian-Australas. J. Anim. Sci. 2003, 16, 368–373. [Google Scholar] [CrossRef]
- Sufyan, A.; Ahmad, N.; Shahzad, F.; Embaby, M.G.; AbuGhazaleh, A.; Khan, N.A. Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species. J. Sci. Food Agric. 2022, 102, 2445–2453. [Google Scholar] [CrossRef]
- Ibrahim, M.N.M.; Tamminga, S.; Zemmelink, G. Effect of urea treatment on rumen degradation characteristics of rice straws. Anim. Feed Sci. Technol. 1989, 24, 83–95. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Rafii, M.Y.; Ain Izzati, M.N.; Khalilah, A.K.; Awad, E.A.; Kaka, U.; Chukwu, S.C.; Liang, J.B.; Sazili, A.Q. Biological additives improved qualities, in vitro gas production kinetics, digestibility, and rumen fermentation characteristics of different varieties of rice straw silage. Anim. Prod. Sci. 2022, 62, 1414–1429. [Google Scholar] [CrossRef]
- Moniruzzaman, M. Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw. Appl. Biochem. Biotechnol. 1996, 59, 283–297. [Google Scholar] [CrossRef]
- Akinfemi, A.; Ogunwole, O.A. Chemical composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak J. Anim. Sci. 2012, 45, 14–20. [Google Scholar]
- Hussein, A.M.; Hassanien, H.A.; Phillip, Y.L.; Abou EL-Fadel, M.H.; El-Badawy, M.M.; El-Maghraby, M.M.; Khayyal, A.A.; Salem, A.Z. Effect of urea-treated rice straw, mixed with faba bean straw, on nutrient digestibility, blood metabolites and performance of growing lambs. Trop. Anim. Health Prod. 2024, 56, 122. [Google Scholar] [CrossRef]
- Kim, W.; Yahaya, M.S.; Goto, M. Effects of steam explosion on the chemical composition and rumen degradability of rice (Oryza sativa L.) straw. Grassl. Sci. 2005, 51, 139–144. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A.; Hong, S.H.; Bauer, M.W. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 2006, 131, 87–102. [Google Scholar] [CrossRef]
- Hue, K.T.; Ledin, I. Effect of supplementing urea treated rice straw and molasses with different forage species on the performance of lambs. Small Rumin. Res. 2008, 78, 134–143. [Google Scholar] [CrossRef]
- Sarwono, K.A.; Rohmatussolihat, R.; Watman, M.; Ratnakomala, S.; Astuti, W.D.; Fidriyanto, R.; Ridwan, R.; Widyastuti, Y. Characteristics of fresh rice straw silage quality prepared with addition of lactic acid bacteria and crude cellulase. AIMS Agric. Food 2022, 7, 481–499. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-Australas. J. Anim. Sci. 2017, 30, 1568–1574. [Google Scholar] [CrossRef]
- Hussain, A.A.; Abdel-Salam, M.S.; Abo-Ghalia, H.H.; Hegazy, W.K.; Hafez, S.S. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J. Genet. Eng. Biotechnol. 2017, 15, 77–85. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Zhang, Y.; Xu, X.; Zhao, Y.; Jiang, X.; Zhang, R.; Gui, Z. Characterization of cellulose-degrading bacteria isolated from silkworm excrement and optimization of its cellulase production. Polymers 2023, 15, 4142. [Google Scholar] [CrossRef]
- Wang, J.; Bao, F.; Wei, H.; Zhang, Y. Screening of cellulose-degrading bacteria and optimization of cellulase production from Bacillus cereus A49 through response surface methodology. Sci. Rep. 2024, 14, 7755. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Wang, L.; Ma, Q.; Yu, T.; Liu, D.; Dai, Y.; Zhao, G. Genomics analysis of Bacillus megaterium 1259 as a probiotic and its effects on performance in lactating dairy cows. Animals 2021, 11, 397. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Chen, Y.; Gong, X.; Dai, Y.; Zhan, K.; Lin, M.; Wang, L.; Zhao, G. Effects of Bacillus megatherium 1259 on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in Holstein bull calves. Animals 2021, 11, 2379. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Guo, W.; Yang, M.; Sun, Y.; Wang, Y.; Yan, Y.; Zhu, B. Effect of Bacillus additives on fermentation quality and bacterial community during the ensiling process of whole-plant corn silage. Process 2022, 10, 978. [Google Scholar] [CrossRef]
- Zhang, Y.C. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality. J. Integr. Agric. 2018, 17, 2768–2782. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1920; Volume 2. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy. Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Ottenstein, D.M.; Bartley, D.A. Separation of free acids C2–C5 in dilute aqueous solution column technology. J. Chromatogr. Sci. 1971, 9, 673–681. [Google Scholar]
- Zewdie, A.K. The different methods of measuring feed digestibility: A review. EC Nutr. 2019, 14, 68–74. [Google Scholar]
- Ding, H.; Han, Z.; Li, J.; Li, X.; Dong, Z.; Zhao, J.; Shao, T. Effect of fibrolytic enzymes, cellulolytic fungi and lactic acid bacteria on fermentation characteristics, structural carbohydrate composition and in vitro digestibility of rice straw silage. Fermentation 2022, 8, 709. [Google Scholar] [CrossRef]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Hankla, N.; Phesatcha, K. Effect of rice straw treatment on feed intake, rumen fermentation and milk production in lactating dairy cows. Afr. J. Agric. Res. 2013, 8, 1677–1687. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A. Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. J. Fungi 2020, 6, 69. [Google Scholar] [CrossRef]
- Kabir, M.E.; Alam, M.J.; Hossain, M.M.; Ferdaushi, Z. Effect of feeding probiotic fermented rice straw-based total mixed ration on production, blood parameters and faecal microbiota of fattening cattle. J. Anim. Health Prod. 2022, 10, 190–197. [Google Scholar]
- Aquino, D.; Del Barrio, A.; Trach, N.X.; Hai, N.T.; Khang, D.N.; Toan, N.T.; Van Hung, N. Rice straw-based fodder for ruminants. In Sustainable Rice Straw Management; Springer: Cham, Switzerland, 2019; pp. 111–129. [Google Scholar]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Using ADF and NDF in dairy cattle diet formulation—A western Canadian perspective. Anim. Feed Sci. Technol. 1996, 58, 101–111. [Google Scholar] [CrossRef]
- Tekçe, E.; Gül, M. The Importance of NDF and ADF in Ruminant Nutrition; Atatürk Üniversitesi Veteriner Fakültesi: Erzurum, Turkey, 2014. [Google Scholar]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Bao, X.; Feng, H.; Guo, G.; Huo, W.; Li, Q.; Xu, Q.; Wang, C.; Chen, L. Effects of laccase and lactic acid bacteria on the fermentation quality, nutrient composition, enzymatic hydrolysis, and bacterial community of alfalfa silage. Front. Microbiol. 2022, 13, 1035942. [Google Scholar] [CrossRef]
- Chang, Y.C.; Choi, D.; Takamizawa, K.; Kikuchi, S. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour. Technol. 2014, 152, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Orden, E.A.; Yamaki, K.; Ichinohe, T.; Fujihara, T. Feeding value of ammoniated rice straw supplemented with rice bran in sheep: II. In situ rumen degradation of untreated and ammonia treated rice straw. Asian-Australas. J. Anim. Sci. 2000, 13, 906–912. [Google Scholar] [CrossRef]
- Ngele, M.B.; Adegbola, T.A.; Bogoro, S.E.S.; Kalla, D.J.U. Utilization of Urea Treated Based Rice Straw: Effect of Intake on Performance, Blood and Rumen Metabolites in Sheep; Anand Publishing: Jaipur, India, 2013. [Google Scholar]
- Nagaraja, T.G. Microbiology of the rumen. In Rumenology; Springer: Cham, Switzerland, 2016; pp. 39–61. [Google Scholar]
- Baldwin, R.L.; Allison, M.J. Rumen metabolism. J. Anim. Sci. 1983, 57, 461–477. [Google Scholar]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Owen, F.N.; Zinn, R. Ruminant Fermentation. In The Ruminant Animal Digestive Physiology and Nutrition; Prentice Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. In Annales de Zootechnie; EDP Sciences: Les Ulis, France, 2000; pp. 231–253. [Google Scholar]
- Hook, S.E.; Wright, A.D.G.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef]
- Kobayashi, Y. Abatement of methane production from ruminants: Trends in the manipulation of rumen fermentation. Asian-Australas. J. Anim. Sci. 2010, 23, 410–416. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation quality and additives: A case of rice straw silage. Biomed. Res. Int. 2016, 2016, 7985167. [Google Scholar] [CrossRef]
| Items | Treatments | SEM | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CK | BM | LB | BMLB | M | MBM | MLB | MBMLB | |||
| DM (%) | 53.01 c | 63.89 ab | 63.33 ab | 65.51 a | 63.92 ab | 61.09 ab | 62.84 ab | 64.73 ab | 1.422 | 0.048 |
| CP (%DM) | 3.64 d | 3.88 bc | 4.03 ab | 4.05 ab | 3.81 cd | 3.95 bc | 3.89 bc | 4.16 a | 0.841 | 0.047 |
| NDF (%DM) | 72.37 a | 66.97 b | 70.07 ab | 67.43 b | 67.00 b | 69.23 ab | 69.87 ab | 69.50 ab | 0.154 | <0.001 |
| ADF (%DM) | 58.57 a | 58.19 a | 58.55 a | 51.17 b | 57.58 a | 59.28 a | 57.78 a | 55.10 ab | 0.053 | 0.024 |
| Ash (%DM)) | 22.78 a | 20.75 bc | 19.95 bc | 19.31 c | 21.35 ab | 19.62 bc | 20.94 abc | 19.93 bc | 0.360 | 0.017 |
| Items | Treatments | SEM | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CK | BM | LB | BMLB | M | MBM | MLB | MBMLB | |||
| pH | 6.42 a | 6.05 b | 5.49 d | 5.41 d | 5.72 c | 5.54 cd | 5.56 cd | 5.60 cd | 0.402 | 0.032 |
| NH3-N (% DM) | 8.59 a | 8.45 ab | 7.70 ab | 5.98 c | 8.15 ab | 7.83 ab | 6.12 c | 7.56 b | 0.072 | <0.001 |
| Acetate (g/kg DM) | 4.45 a | 2.19 c | 2.22 c | 1.60 c | 2.13 c | 3.83 a | 1.97 c | 2.87 b | 0.032 | <0.001 |
| Propionate (g/kg DM) | 0.23 bc | 0.10 cd | 0.09 d | 0.08 d | 0.07 d | 0.23 b | 0.34 a | 0.20 bc | 0.013 | <0.001 |
| Butyrate (g/kg DM) | 0.09 a | 0.06 b | 0.02 d | 0.02 d | 0.02 d | 0.04 c | 0.02 d | 0.02 d | 0.003 | <0.001 |
| Lactic acid (g/kg DM) | 6.45 c | 7.74 bc | 11.03 ab | 13.1 a | 9.89 c | 10.6 bc | 12.5 a | 12.24 ab | 0.062 | 0.046 |
| Items | Treatments | SEM | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| CK | BM | LB | BMLB | M | MBM | MLB | MBMLB | |||
| Lactic acid bacteria (lgCFU/g FM) | 5.66 b | 6.65 a | 6.98 a | 6.88 a | 6.63 a | 6.48 a | 6.86 a | 6.90 a | 0.465 | 0.055 |
| E. coli (lgCFU/g FM) | 7.96 a | 7.39 ab | 7.24 abc | 6.28 c | 6.70 cd | 7.25 abc | 6.75 bc | 6.79 bc | 0.848 | 0.034 |
| Bacillus (lgCFU/g FM) | 5.25 d | 7.36 a | 6.15 bc | 7.28 a | 6.81 b | 7.27 a | 6.42 b | 6.67 b | 0.130 | <0.001 |
| Items | CK | BMLB | SEM | p-Value |
|---|---|---|---|---|
| Apparent digestibility % | ||||
| DM | 54.5 | 56.1 | 0.369 | 0.069 |
| CP | 31.9 b | 36.8 a | 0.571 | 0.031 |
| NDF | 60.3 b | 67.4 a | 0.822 | 0.027 |
| ADF | 60.1 | 59.6 | 0.598 | 0.151 |
| Items | CK | BMLB | SEM | p-Value |
|---|---|---|---|---|
| pH | 7.30 | 7.26 | 0.332 | 0.104 |
| VFAs | ||||
| Acetate (mmol/L) | 45.4 a | 34.2 b | 2.379 | 0.035 |
| Propionate (mmol/L) | 5.54 b | 6.92 a | 0.077 | 0.042 |
| Acetate/Propionate | 8.13 a | 5.03 b | 0.398 | 0.015 |
| Butyrate (mmol/L) | 5.39 | 5.16 | 0.344 | 0.529 |
| NH3-N (mg/100 mL) | 10.68 a | 8.45 b | 0.250 | 0.047 |
| Items | CK | BMLB | SEM | p-Value |
|---|---|---|---|---|
| Daily CH4 emission (mg/m3·d) | 413.7 | 407.9 | 5.45 | 0.920 |
| Daily CH4 emission/metabolic BW (mg/m3·kg·d) | 26.90 a | 17.96 b | 1.840 | 0.041 |
| CH4 emission/DMI (mg/m3·kg) | 3.05 | 2.70 | 0.260 | 0.622 |
| CH4 emission/NDF intake (mg/m3·kg) | 3.81 | 3.17 | 0.319 | 0.367 |
| CH4 emission/ADF intake (mg/m3·kg) | 4.17 | 3.63 | 0.379 | 0.545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Wang, L.; Zheng, C.; Gao, Z.; Li, Z.; Su, R.; Chen, W.; Lv, X.; Sun, W. Effects of Different Additives on the Quality of Rice Straw Haylage, Ruminal Fermentation Parameters and Methane Production in Hu Sheep. Animals 2025, 15, 3573. https://doi.org/10.3390/ani15243573
Deng J, Wang L, Zheng C, Gao Z, Li Z, Su R, Chen W, Lv X, Sun W. Effects of Different Additives on the Quality of Rice Straw Haylage, Ruminal Fermentation Parameters and Methane Production in Hu Sheep. Animals. 2025; 15(24):3573. https://doi.org/10.3390/ani15243573
Chicago/Turabian StyleDeng, Jun, Lin Wang, Chunbin Zheng, Zihan Gao, Zhongju Li, Rui Su, Weihao Chen, Xiaoyang Lv, and Wei Sun. 2025. "Effects of Different Additives on the Quality of Rice Straw Haylage, Ruminal Fermentation Parameters and Methane Production in Hu Sheep" Animals 15, no. 24: 3573. https://doi.org/10.3390/ani15243573
APA StyleDeng, J., Wang, L., Zheng, C., Gao, Z., Li, Z., Su, R., Chen, W., Lv, X., & Sun, W. (2025). Effects of Different Additives on the Quality of Rice Straw Haylage, Ruminal Fermentation Parameters and Methane Production in Hu Sheep. Animals, 15(24), 3573. https://doi.org/10.3390/ani15243573

