Effects of Supplementing Rumen-Protected Lysine and Methionine on Apparent Digestibility, Rumen Fermentation Parameters, and Microbial Profiles in Lactating Dairy Cows Under Different Environmental Conditions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design, Diets and Environment
2.2. Data Collection and Sampling Procedure
2.3. Rumen Microorganism DNA Extraction and PCR Amplification
2.4. Analysis of Sequencing Data
2.5. Statistical Analyses
3. Results
3.1. Environmental Temperature Indicators
3.2. Effects of Supplementing RPL and RPM on Apparent Digestibility in Dairy Cows
3.3. Effects of Supplementing Rumen-Protected Lysine and Methionine on Rumen Fermentation Parameters in Dairy Cows
3.4. Effects of Supplementing Rumen-Protected Lysine and Methionine on Rumen Microbial Communities in Dairy Cows
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture; Committee on Nutrient Requirements of Dairy Cattle. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; National Academies Press (US): Washington, DC, USA, 2021. [Google Scholar]
- Patton, R.A. Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: A meta-analysis. J. Dairy Sci. 2010, 93, 2105–2118. [Google Scholar] [CrossRef]
- Gil, L.A.; Shirley, R.L.; Moore, J.E.; Easley, J.F. Effect on rumen bacteria of methionine hydroxy analog and sulfur-containing amino acids, in vitro. Proc. Soc. Exp. Biol. Med. 1973, 142, 670–674. [Google Scholar] [CrossRef]
- Chalupa, W. Utilization of non–protein nitrogen in the production of animal protein. Proc. Nutr. Soc. 1973, 32, 99–105. [Google Scholar] [CrossRef]
- Chalupa, W. Rumen Bypass and Protection of Proteins and Amino Acids. J. Dairy Sci. 1975, 58, 1198–1218. [Google Scholar] [CrossRef]
- Velle, W.; Sjaastad, Ø.V.; Aulie, A.; Grønset, D.; Feigenwinter, K.; Framstad, T. Rumen Escape and Apparent Degradation of Amino Acids After Individual Intraruminal Administration to Cows. J. Dairy Sci. 1997, 80, 3325–3332. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636s–1640s. [Google Scholar] [CrossRef]
- Toledo, M.Z.; Stangaferro, M.L.; Gennari, R.S.; Barletta, R.V.; Perez, M.M.; Wijma, R.; Sitko, E.M.; Granados, G.; Masello, M.; Van Amburgh, M.E.; et al. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Lactation performance and plasma amino acid concentrations. J. Dairy Sci. 2021, 104, 7583–7603. [Google Scholar] [CrossRef]
- Ordway, R.S.; Boucher, S.E.; Whitehouse, N.L.; Schwab, C.G.; Sloan, B.K. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance. J. Dairy Sci. 2009, 92, 5154–5166. [Google Scholar] [CrossRef]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Zou, Y.; Zhao, F.Q.; Liu, J.; Liu, H. Lysine Stimulates Protein Synthesis by Promoting the Expression of ATB0,+ and Activating the mTOR Pathway in Bovine Mammary Epithelial Cells. J. Nutr. 2018, 148, 1426–1433. [Google Scholar] [CrossRef]
- Guinard, J.; Rulquin, H. Effects of graded amounts of duodenal infusions of lysine on the mammary uptake of major milk precursors in dairy cows. J. Dairy Sci. 1994, 77, 3565–3576. [Google Scholar] [CrossRef]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef]
- Pereira, A.B.D.; Whitehouse, N.L.; Aragona, K.M.; Schwab, C.S.; Reis, S.F.; Brito, A.F. Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine. J. Dairy Sci. 2017, 100, 6239–6255. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Li, A.; Qubi, W.; Gong, C.; Li, X.; Xing, J.; Shi, H.; Li, Y.; Wang, Y.; et al. Changes in the growth performance, serum biochemistry, rumen fermentation, rumen microbiota community, and intestinal development in weaned goats during rumen-protected methionine treatment. Front. Vet. Sci. 2024, 11, 1482235. [Google Scholar] [CrossRef]
- Gu, F.; Liang, S.; Zhu, S.; Liu, J.; Sun, H.Z. Multi-omics revealed the effects of rumen-protected methionine on the nutrient profile of milk in dairy cows. Food Res. Int. 2021, 149, 110682. [Google Scholar] [CrossRef]
- Wei, X.; Wu, H.; Wang, Z.; Zhu, J.; Wang, W.; Wang, J.; Wang, Y.; Wang, C. Rumen-protected lysine supplementation improved amino acid balance, nitrogen utilization and altered hindgut microbiota of dairy cows. Anim. Nutr. 2023, 15, 320–331. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef]
- Chowdhury, V.S. Heat Stress Biomarker Amino Acids and Neuropeptide Afford Thermotolerance in Chicks. J. Poult. Sci. 2019, 56, 1–11. [Google Scholar] [CrossRef]
- Chowdhury, V.S.; Han, G.; Eltahan, H.M.; Haraguchi, S.; Gilbert, E.R.; Cline, M.A.; Cockrem, J.F.; Bungo, T.; Furuse, M. Potential Role of Amino Acids in the Adaptation of Chicks and Market-Age Broilers to Heat Stress. Front. Vet. Sci. 2020, 7, 610541. [Google Scholar] [CrossRef]
- Ncho, C.M. Heat stress and the chicken gastrointestinal microbiota: A systematic review. J. Anim. Sci. Biotechnol. 2025, 16, 85. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 711–0714. [Google Scholar] [CrossRef]
- Van Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Oxford University Press. Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. Isme J. 2012, 6, 343–351. [Google Scholar] [CrossRef]
- Gao, W.; Chen, A.; Zhang, B.; Kong, P.; Liu, C.; Zhao, J. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements. Asian-Australas. J. Anim. Sci. 2015, 28, 485–493. [Google Scholar] [CrossRef][Green Version]
- Gao, S.T.; Guo, J.; Quan, S.Y.; Nan, X.M.; Fernandez, M.V.S.; Baumgard, L.H.; Bu, D.P. The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef]
- Robertshaw, D. 1—The Environmental Physiology of Animal Production. In Environmental Aspects of Housing for Animal Production; Clark, J.A., Ed.; Butterworth-Heinemann: Oxford, UK, 1981; pp. 3–17. [Google Scholar]
- Shwartz, G.; Rhoads, M.L.; VanBaale, M.J.; Rhoads, R.P.; Baumgard, L.H. Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 2009, 92, 935–942. [Google Scholar] [CrossRef]
- Patbandha, T.K.; Marandi, S.; Ravikala, K.; Pathak, R.; Maharana, B.R.; Murthy, K.S. Association of milk components with intra-mammary inflammation in Jaffrabadi buffaloes. Vet. World 2015, 8, 989–993. [Google Scholar] [CrossRef][Green Version]
- Zhao, K.; Liu, W.; Lin, X.Y.; Hu, Z.Y.; Yan, Z.G.; Wang, Y.; Shi, K.R.; Liu, G.M.; Wang, Z.H. Effects of rumen-protected methionine and other essential amino acid supplementation on milk and milk component yields in lactating Holstein cows. J. Dairy Sci. 2019, 102, 7936–7947. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Dou, M.; Liu, S.; Yan, B.; Li, C.; Khan, M.Z.; Zhang, Y.; Xiao, J. Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Front. Vet. Sci. 2022, 9, 981757. [Google Scholar] [CrossRef]
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [CrossRef]
- Nascimento, B.M.; Parker Gaddis, K.L.; Koltes, J.E.; Tempelman, R.J.; VandeHaar, M.J.; White, H.M.; Peñagaricano, F.; Weigel, K.A. Impact of heat stress on dry matter intake and residual feed intake in mid-lactation dairy cows. J. Dairy Sci. 2025, 108, 7345–7353. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; Abd El-Hack, M.E.; Swelum, A.A.; Yao, J.; Cao, Y. Post-ruminal effects of rumen-protected methionine supplementation with low protein diet using long-term simulation and in vitro digestibility technique. AMB Express 2018, 8, 36. [Google Scholar] [CrossRef]
- Hassan, F.-U.; Guo, Y.; Li, M.; Tang, Z.; Peng, L.; Liang, X.; Yang, C. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms 2021, 9, 1717. [Google Scholar] [CrossRef]
- Broderick, G.A. Utilization of protein in red clover and alfalfa silages by lactating dairy cows and growing lambs. J. Dairy Sci. 2018, 101, 1190–1205. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, H.; Hao, L.; Cao, X.; Degen, A.; Zhou, J.; Zhang, C. Rumen Bacterial Community of Grazing Lactating Yaks (Poephagus grunniens) Supplemented with Concentrate Feed and/or Rumen-Protected Lysine and Methionine. Animals 2021, 11, 2425. [Google Scholar] [CrossRef]
- Abdelmegeid, M.K.; Elolimy, A.A.; Zhou, Z.; Lopreiato, V.; McCann, J.C.; Loor, J.J. Rumen-protected methionine during the peripartal period in dairy cows and its effects on abundance of major species of ruminal bacteria. J. Anim. Sci. Biotechnol. 2018, 9, 17. [Google Scholar] [CrossRef]
- Bedford, A.; Beckett, L.; Harthan, L.; Wang, C.; Jiang, N.; Schramm, H.; Guan, L.L.; Daniels, K.M.; Hanigan, M.D.; White, R.R. Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Sci. Rep. 2020, 10, 13092. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, S.; Ding, J.; He, J.; Ma, L.; Bu, D. Effects of Heat Stress on the Ruminal Epithelial Barrier of Dairy Cows Revealed by Micromorphological Observation and Transcriptomic Analysis. Front. Genet. 2021, 12, 768209. [Google Scholar] [CrossRef]
- Onodera, R. Methionine and lysine metabolism in the rumen and the possible effects of their metabolites on the nutrition and physiology of ruminants. Amino Acids 1993, 5, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Belasco, I.J. Fate of Carbon-14 Labeled Methionine Hydroxy Analog and Methionine in the Lactating Dairy Cow. J. Dairy Sci. 1980, 63, 775–784. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.W.; Ma, Z.Y.; Wang, H.C.; Zhang, C.F. Effects of rumen-protected methionine and lysine supplementation on milk yields and components, rumen fermentation, and the rumen microbiome in lactating yaks (Bos grunniens). Anim. Feed Sci. Technol. 2021, 277, 114972. [Google Scholar] [CrossRef]
- Han, H.; Zhang, L.; Shang, Y.; Wang, M.; Phillips, C.J.C.; Wang, Y.; Su, C.; Lian, H.; Fu, T.; Gao, T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals 2022, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Polansky, O.; Sekelova, Z.; Faldynova, M.; Sebkova, A.; Sisak, F.; Rychlik, I. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl. Environ. Microbiol. 2015, 82, 1569–1576. [Google Scholar] [CrossRef]
- Pandit, R.J.; Hinsu, A.T.; Patel, N.V.; Koringa, P.G.; Jakhesara, S.J.; Thakkar, J.R.; Shah, T.M.; Limon, G.; Psifidi, A.; Guitian, J.; et al. Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome 2018, 6, 115. [Google Scholar] [CrossRef]
- Pacífico, C.; Petri, R.M.; Ricci, S.; Mickdam, E.; Wetzels, S.U.; Neubauer, V.; Zebeli, Q. Unveiling the Bovine Epimural Microbiota Composition and Putative Function. Microorganisms 2021, 9, 342. [Google Scholar] [CrossRef]
- Sheng, H.; Liu, C.; Li, Z.; Wang, P.; Wang, L.; Jin, S.; Li, X.; Yuan, L.; Chang, J.; Yin, Q.; et al. Effects of fermented diet on reproductive performance and fecal microbiota for late-gestation sows. Front. Nutr. 2025, 12, 1502193. [Google Scholar] [CrossRef]
- Luo, Z.; Ou, H.; Tan, Z.; Jiao, J. Rumen-protected methionine and lysine supplementation to the low protein diet improves animal growth through modulating colonic microbiome in lambs. J. Anim. Sci. Biotechnol. 2025, 16, 46. [Google Scholar] [CrossRef]
- Ioannou, A.; Berkhout, M.D.; Geerlings, S.Y.; Belzer, C. Akkermansia muciniphila: Biology, microbial ecology, host interactions and therapeutic potential. Nat. Rev. Microbiol. 2025, 23, 162–177. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Correia Sales, G.F.; Carvalho, B.F.; Schwan, R.F.; de Figueiredo Vilela, L.; Moreno Meneses, J.A.; Gionbelli, M.P.; Luiza da Silva Ávila, C. Heat stress influence the microbiota and organic acids concentration in beef cattle rumen. J. Therm. Biol. 2021, 97, 102897. [Google Scholar] [CrossRef]
- Wu, H.; Meng, Q.; Yu, Z. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures. Bioresour. Technol. 2015, 186, 25–33. [Google Scholar] [CrossRef]










| Items 4 | CON | RPLM |
|---|---|---|
| Ingredient(%DM) | ||
| Steam-flaked corn | 10.42 | 10.42 |
| Sugar beet pulp | 4.74 | 4.74 |
| Corn silage | 28.97 | 28.97 |
| Alfalfa hay | 13.30 | 13.30 |
| Cottonseed meal | 6.33 | 6.33 |
| Oat grass | 2.23 | 2.23 |
| BSG | 4.89 | 4.89 |
| Premixed supplement 1 | 29.12 | 29.12 |
| Total | 100 | 100 |
| Chemical composition 2,3 | ||
| DM,% as fed | 48.3 | 48.3 |
| CP | 15.27 | 15.27 |
| EE | 5.40 | 5.40 |
| NDF | 29.39 | 29.39 |
| ADF | 16.97 | 16.97 |
| Starch | 27.28 | 27.28 |
| Met(g) | 57.4 | 75.6 |
| Met/MP | 1.80 | 2.35 |
| Lys(g) | 202.1 | 225.4 |
| Lys/MP | 6.34 | 7.01 |
| Lys:Met ratio | 3.52 | 2.98 |
| NEL(Mcal/kg) 2 | 1.74 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.; Wang, K.; Han, X.; Tang, X.; Wang, D.; Ding, Y.; Ma, Y.; Jiang, M.; Liu, S.; Huang, Y.; et al. Effects of Supplementing Rumen-Protected Lysine and Methionine on Apparent Digestibility, Rumen Fermentation Parameters, and Microbial Profiles in Lactating Dairy Cows Under Different Environmental Conditions. Animals 2025, 15, 3439. https://doi.org/10.3390/ani15233439
Tao R, Wang K, Han X, Tang X, Wang D, Ding Y, Ma Y, Jiang M, Liu S, Huang Y, et al. Effects of Supplementing Rumen-Protected Lysine and Methionine on Apparent Digestibility, Rumen Fermentation Parameters, and Microbial Profiles in Lactating Dairy Cows Under Different Environmental Conditions. Animals. 2025; 15(23):3439. https://doi.org/10.3390/ani15233439
Chicago/Turabian StyleTao, Ruoran, Ke Wang, Xing Han, Xu Tang, Dian Wang, Yuhang Ding, Yuhong Ma, Maocheng Jiang, Sijia Liu, Yinghao Huang, and et al. 2025. "Effects of Supplementing Rumen-Protected Lysine and Methionine on Apparent Digestibility, Rumen Fermentation Parameters, and Microbial Profiles in Lactating Dairy Cows Under Different Environmental Conditions" Animals 15, no. 23: 3439. https://doi.org/10.3390/ani15233439
APA StyleTao, R., Wang, K., Han, X., Tang, X., Wang, D., Ding, Y., Ma, Y., Jiang, M., Liu, S., Huang, Y., Fan, C., Zhuo, Z., & Cheng, J. (2025). Effects of Supplementing Rumen-Protected Lysine and Methionine on Apparent Digestibility, Rumen Fermentation Parameters, and Microbial Profiles in Lactating Dairy Cows Under Different Environmental Conditions. Animals, 15(23), 3439. https://doi.org/10.3390/ani15233439

