Effect of Dietary Supplementation on Milk Nutrient Deposition and Enteric Methane Emission in Dual-Purpose Cows from the Colombian Amazon
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Location
2.3. Animals and Experimental Design
2.4. Sample Size
2.5. Data Collection
2.6. Milk Production and Milk Sampling
2.7. Estimated Dry Matter Intake (DMC)
% Fecal Cr
2.8. Laboratory Analysis
2.9. Apparent Digestibility
2.10. Calculation of CH4 Emissions
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federación Colombiana de Ganaderos (FEDEGAN). Balance y Perspectivas del Sector Ganadero Colombiano 2024–2025. 2025. Available online: https://estadisticas.fedegan.org.co/DOC/download.jsp?pRealName=Balance_perspectivas_ganaderia_colombiana_2024_2025_.pdf&iIdFiles=1121 (accessed on 9 August 2025).
- Organización Mundial de la Salud. Healthy Diet; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 29 April 2025).
- FEDEGAN. Inventario Ganadero. Federación Colombiana de Ganaderos. 2023. Available online: https://www.fedegan.org.co/estadisticas/inventario-ganadero (accessed on 9 August 2025).
- Bravo Parra, A.M. Cadenas Sostenibles Ante un Clima Cambiante. La Ganadería en Colombia; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn/Eschborn, Germany, 2021; 142p. [Google Scholar]
- Galina, C.; Turnbull, F.; Noguez-Ortiz, A. Factors affecting technology adoption in small community farmers in relation to reproductive events in tropical cattle raised under dual purpose systems. Open J. Vet. Med. 2016, 6, 15–21. [Google Scholar] [CrossRef]
- Orantes, M.A.; Vilaboa, A.J.; Ortega, J.E.; Córdova, A.V. Comportamiento de los comercializadores de ganado bovino en la región centro del estado de Chiapas. Rev. Quehacer Científico 2010, 1, 51–56. [Google Scholar]
- Cortés, H.; Aguilar, C.; Vera, R. Sistemas bovinos doble propósito en el trópico bajo de Colombia, modelo de simulación. Arch. Zootec. 2003, 52, 25–34. [Google Scholar]
- Ruiz Guevara, C.; García Hernández, L.A.; Ávila Bello, C.H.; Brunett Pérez, L. Sustentabilidad financiera: El caso de una empresa ganadera de bovino de doble propósito. Rev. Mex. Agronegocios 2008, 22, 503–515. [Google Scholar]
- Aguilar-Pérez, C.F.; Ku-Vera, J.C.; Magaña-Monforte, J.G. Energetic efficiency of milk synthesis in dual-purpose cows grazing tropical pastures. Trop. Anim. Health Prod. 2011, 43, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Archimède, H.; Eugène, M.; Marie-Magdeleine, C.; Boval, M.; Martin, C.; Morgavi, D.P.; Lecomte, P.; Doreau, M. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 2011, 166, 59–64. [Google Scholar] [CrossRef]
- Carvalho, P.; Gomes, C.; Saibo, N.J.M. C4 phosphoenolpyruvate carboxylase: Evolution and transcriptional regulation. Genet. Mol. Biol. 2024, 46 (Suppl. 1), e20230190. [Google Scholar] [CrossRef] [PubMed]
- Uzcátegui-Varela, J.P.; Chompre, K.; Castillo, D.; Rangel, S.; Briceño-Rangel, A.; Piña, A. Nutritional assessment of tropical pastures as a sustainability strategy in dual-purpose cattle ranching in the South of Lake Maracaibo, Venezuela. J. Saudi Soc. Agric. Sci. 2022, 21, 432–439. [Google Scholar] [CrossRef]
- Archimède, H.; Rira, M.; Eugène, M.; Fleury, J.; Lastel, M.L.; Periacarpin, F.; Silou-Etienne, T.; Morgavi, D.P.; Doreau, M. Intake, total-tract digestibility and methane emissions of Texel and Blackbelly sheep fed C4 and C3 grasses tested simultaneously in a temperate and a tropical area. J. Clean. Prod. 2018, 185, 455–463. [Google Scholar] [CrossRef]
- Wilson, J.R. Cell wall characteristics in relation to forage digestion by ruminants. J. Agric. Sci. 1994, 122, 173–182. [Google Scholar] [CrossRef]
- Montiel, F.; Galina, C.; Lamothe, C.; Castañeda, O. Effect of a feed supplementation during the mid-lactating period on body condition, milk yield, metabolic profile and pregnancy rate of grazing dual-purpose cows in the Mexican humid tropic. Arch. Med. Vet. 2007, 39, 207–213. [Google Scholar] [CrossRef]
- McAllister, T.A.; Mathison, E.; Cheng, K.J. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Hegarty, R.S. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 2011, 166–167, 291–301. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Towards sustainable animal diets. Optimization of feed use efficiency in ruminant production systems. In FAO Animal Production and Health Proceedings, No. 16, Proceedings of the FAO Symposium, Bangkok, Thailand, 27 November 2012; FAO: Rome, Italy, 2013; pp. 67–74. [Google Scholar]
- Gaviria-Uribe, X.; Bolivar, D.M.; Rosenstock, T.S.; Molina-Botero, I.C.; Chirinda, N.; Barahona, R.; Arango, J. Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel Cayman grass and its associations with two Leucaena shrub legumes. Front. Vet. Sci. 2020, 7, 579189. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC National Greenhouse Gas Inventories Programme: Hayama, Japan, 2006; Volume 4, Chapter 10. [Google Scholar]
- Kurihara, M.; Magner, T.; Hunter, R.A.; McCrabb, G.J. Methane production and energy partition of cattle in the tropics. Br. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- Sommart, K.; Kaewpila, C.; Kongphitee, K.; Subepang, S.; Phonbumrung, T.; Ogino, A.; Suzuki, T. Methane emissions and energy utilization of zebu cattle in the tropics. In IRCAS-NARO International Symposium on Agricultural Greenhouse Gas Mitigation; Tsukuba International Congress Center: Ibaraki, Japan, 2017. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Lachnicht, S.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- GHG Protocol Initiative. IPCC Global Warming Potential Values (Version 2.0); GHG Protocol: Washington, DC, USA, 2024; Available online: https://ghgprotocol.org (accessed on 7 August 2025).
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef]
- Smith, P.; Kenny, D.; Roskam, E.; O’Rourke, M.; Kelly, A.; Hayes, M.; Kirwan, S.; Waters, S. Strategies to Reduce Methane Emissions from Irish Beef Production; Teagasc: Carlow, Ireland, 2022. [Google Scholar]
- Ali, A.I.M.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing tropical cattle for improved nutrient utilization and reduced enteric methane emissions. Animals 2019, 9, 210. [Google Scholar] [CrossRef]
- Mayorga Mogollón, O.L. Cuantificación de emisiones de gas metano entérico en ganado bovino de carne y leche. In Conversatorios Sobre Ganadería Sostenible; AGROSAVIA: Carlow, Ireland, 2020; 28p, Available online: https://sociedadsostenible.co/wp-content/uploads/2020/05/0521-Olga-Mayorga.pdf (accessed on 8 August 2025).
- Díaz, T. Alimentación de vacas en explotaciones doble propósito. In Alimentación de Vacas; Díaz, E.T., Ed.; Instituto Colombiano Agropecuario: Bogotá, Colombia, 1988; pp. 1–26. [Google Scholar]
- Romero, H.; Rubiano, J. Suplementación de vacas doble propósito en pastoreo, con núcleos energético-proteínicos en fase de lactancia en el departamento del Tolima. In Monografía; CORPOICA: Bogotá, Colombia, 1999. [Google Scholar]
- Correa, H.J.; Jaimes, L.J. Design and operation of a spirometry mask to quantify exhaled methane emission by grazing cattle. Livest. Res. Rural Dev. 2023, 35, 83. [Google Scholar]
- Basto, M.B. Zonas de vida en el departamento del Caquetá, Colombia, basadas en los escenarios de emisión de cambio climático para el período 2011–2100 y estrategias educativas de adaptación para el manejo de las plantaciones de Hevea brasiliensis. Tesis Doctoral, Universidad Surcolombiana, Huila, Colombia, 2019. [Google Scholar]
- National Research Council. The Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Standing Committee on Agriculture (SCA). Feeding Standards for Australian Livestock. Ruminants; CSIRO Publishing: Melbourne, VIC, Australia, 1990; 226p. [Google Scholar]
- Jaimes, L.J.; Castrillón, S.; Bustamante, B.S.; Correa, H.J. Through the Mouth or Nostrils: The methane Excretion Route in Belching Dairy Cows. Animals 2025, 15, 2350. [Google Scholar] [CrossRef]
- Jaimes, L.J.; Cerón, J.M.; Correa, H.J. Season and stage of lactation affects feed intake of Holstein cows grazing Kikuyo (Cenchrus clandestinus) in Colombia. Livest. Res. Rural Dev. 2015, 27. Available online: https://www.lrrd.org/lrrd27/12/jaim27244.html (accessed on 1 July 2025).
- Jaimes-Cruz, L.J.; Escobar-Riomalo, J.E.; Muñoz, S.; Correa-Cardona, H.J. Measurement of fermentation gas production with ruminant feed using a demonstrative continuous flow biodigester. Rev. Fac. Nac. Agron. Medellín 2024, 77, 64. [Google Scholar]
- Harris, L.E.; Cook, C.W.; Butcher, J.E. Symposium on forage evaluation: 5. Intake and digestibility techniques and supplemental feeding in range forage evaluation. Agron. J. 1959, 51, 226–234. [Google Scholar] [CrossRef]
- Rueda, S.; Mastranyero Heffer, J.; Correa, H.J. Consumo y respuesta animal de vacas de doble propósito suplementadas con torta de palmiste y paja de arroz sometidas a tratamientos de deslignificación. Livest. Res. Rural Dev. 2021, 33, 89. [Google Scholar]
- Lippke, H. Estimation of forage intake by ruminants on pasture. Crop Sci. 2002, 42, 869–872. [Google Scholar] [CrossRef]
- Geerken, C.M.; Calzadilla, D.; González, R. Aplicación de la técnica de dos marcadores para medir el consumo de pasto y la digestibilidad de la ración de vacas en pastoreo suplementadas con concentrado. Pastos Y Forrajes 1987, 10, 266–273. [Google Scholar]
- ISO 9622/IDF 141:2013; Milk and Milk Products—Guide to the Preparation of Samples and Dilutions for Microbiological Examination. ISO: Geneva, Switzerland, 2013.
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2018. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B. Analysis of Forages and Fibrous Foods: A Laboratory Manual for Animal Science; Cornell University: Ithaca, NY, USA, 1985. [Google Scholar]
- Marumo, J.L.; LaPierre, P.A.; Van Amburgh, M.E. Enteric methane emissions prediction in dairy cattle and effects of monensin on methane emissions: A meta-analysis. Animals 2023, 13, 1392. [Google Scholar] [CrossRef]
- FAO. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Available online: https://www.uncclearn.org/wp-content/uploads/library/fao149.pdf (accessed on 12 August 2025).
- Juárez, F.; Contreras, J.; Montero, M. Tasa de Cambios Con Relación a Edad en Rendimiento, Composición Química y Digestibilidad de Cinco Pastos Tropicales; Universidad de Veracruz, Facultad de Medicina Veterinaria y Zootecnia: Heroica Veracruz, Mexico, 2009. [Google Scholar]
- Korir, D.; Marquardt, S.; Eckard, R.; Sánchez, A.; Dickhoefer, U.; Merbold, L.; Butterbach-Bahl, K.; Jones, C.; Robertson-Dean, M.; Goopy, J. Weight gain and enteric methane production of cattle fed on tropical grasses. Anim. Prod. Sci. 2023, 63, 120–132. [Google Scholar] [CrossRef]
- Quintero-Anzueta, S.; Molina-Botero, I.C.; Ramírez-Navas, J.S.; Rao, I.; Chirinda, N.; Barahona-Rosales, R.; Arango, J. Nutritional evaluation of tropical forage grass alone and grass-legume diets to reduce in vitro methane production. Front. Sustain. Food Syst. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Robles, J.L.E.; Xochitemol, H.A.; Benaouda, M.; Osorio, A.J.; Corona, L.; Castillo, G.E.; Castelan, O.O.A.; Gonzalez-Ronquillo, M. Concentrate supplementation on milk yield, methane and CO2 production in crossbred dairy cows grazing in tropical climate regions. J. Anim. Behav. Biometeorol. 2021, 9, 2118. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Berça, A.S.; Silva, M.L.C.; Leite, R.G.; Dallantonia, E.E.; Romanzini, E.P.; Barbero, R.P.; da Silva Cardoso, A.; Lage, J.F.; Tedeschi, L.O. Effects of supplement type during the pre-finishing growth phase on subsequent performance of Nellore bulls finished in confinement or on tropical pasture. Appl. Anim. Sci. 2022, 38, 474–486. [Google Scholar] [CrossRef]
- Carulla, J.; Cárdenas, E.; Sánchez, N.; Riveros, C. Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializados de la zona andina colombiana. In Seminario Nacional de Lechería Especializada: Bases Nutricionales y su Impacto en la Productividad; Eventos y Asesorías Agropecuarias UE: Plaza Mayor, Medellín, 2004; pp. 21–38. [Google Scholar]
- Palma, M.N.N.; Estrada-Aniello, M.; Zadoks, R.N. Strategies of energy supplementation for cattle fed tropical forages. Anim. Feed Sci. Technol. 2023, 306, 115371. [Google Scholar]
- Lazzarini, I.; Detmann, E.; Paulino, M.F.; Valadares Filho, S.C.; Valadares, R.F.D.; Oliveira, F.A.; Silva, P.T.; Reis, W.L.S. Nutritional performance of cattle grazing on low-quality tropical forage supplemented with nitrogenous compounds and/or starch. Rev Bras Zootecn 2013, 42, 664–674. [Google Scholar] [CrossRef]
- Weiss, W.P. Optimizing and evaluating dry matter intake of dairy cows. In Advances in Dairy Technology; WCDS: Huntly, VA, USA, 2015; Volume 27, pp. 189–200. [Google Scholar]
- Bargo, F.; Muller, L.; Kolver, E.; Delahoy, J. Production and digestion of supplemented dairy cows on pasture. J. Dairy Sci. 2003, 86, 1–42. [Google Scholar] [CrossRef]
- Coleman, S.W.; Gunter, S.A.; Sprinkle, J.E.; Neel, J.P.S. Beef Species Symposium: Difficulties associated with predicting forage intake by grazing beef cows. J. Anim. Sci. 2014, 92, 2775–2784. [Google Scholar] [CrossRef]
- de Souza, S. Suplementos múltiplos de baixo consumo para recria de bovinos em capim Aruana. Tesis de Maestría, Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, Dois Vizinhos, Brazil, 2018. [Google Scholar]
- Gutiérrez, G.S.; Lana, R.P.; Rivelli, L.R.; de Carvalho, A.U.; de Moraes, É.H.B.K. Performance of crossbred lactating cows at grazing in response to nitrogen supplementation and different levels of concentrate feed. Arq. Bras. Med. Veterinária E Zootec. 2019, 71, 1005–1014. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.H.; Chen, Y.X.; Cheng, Z.H.; Duan, Q.H.; Meng, Q.H.; Tao, X.P.; Shang, B.; Dong, H.M. Age-related response of rumen microbiota to mineral salt and effects of their interactions on enteric methane emissions in cattle. Microb. Ecol. 2017, 73, 590–601. [Google Scholar] [CrossRef]
- Flores-Coello, G.; Hernández-Medrano, J.H.; Ku-Vera, J.; Diaz, D.; Solorio-Sánchez, F.J.; Sarabia-Salgado, L.; Galindo, F. Intensive silvopastoral systems mitigate enteric methane emissions from cattle. Atmosphere 2023, 14, 863. [Google Scholar] [CrossRef]
- Rivera, J.E.; Villegas, G.; Chará, J.; Durango, S.G.; Romero, M.A.; Verchot, L. Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Transl. Anim. Sci. 2022, 6, txac139. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; Lopez, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Z.; Guo, L.; Li, F.; Li, F.; Liang, Y.; Tang, D.; Zhang, H.; Wang, Z. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl. Anim. Sci. 2021, 5, txab065. [Google Scholar] [CrossRef]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Della Rosa, M.M.; Bosher, T.J.; Khan, M.A.; Sandoval, E.; Dobson-Hill, B.; Duranovich, F.N.; Jonker, A. Effect of supplementing high-fiber or high-starch concentrates or a 50:50 mix of both to late-lactation dairy cows fed cut herbage on methane production, milk yield, and ruminal fermentation. J. Dairy Sci. 2025, 108, 7036–7050. [Google Scholar] [CrossRef]
- Bargo, F.; Müller, L.D.; Kolver, E.S.; Delahoy, J.E. Milk response to concentrate supplementation of high-producing dairy cows grazing at two pasture allowances. J. Dairy Sci. 2002, 85, 1777–1792. [Google Scholar] [CrossRef]
- Azis, I.U.; Agus, A.; Astuti, A.; Yusiati, L.M.; Anas, M.A. Effect of mineral premix supplementation on intake and digestibility of repeat breeder cows. IOP Conf. Ser. Earth Environ. Sci. 2023, 1183, 012017. [Google Scholar] [CrossRef]
- Sankar, V.; Singh, P.; Patil, A.K.; Verma, A.K.; Das, A. Influence of urea molasses mineral blocks having bentonite as binder on the feed intake, nutrient utilization and economics of feeding of crossbred calves. Indian J. Anim. Sci. 2021, 91, 733–737. [Google Scholar] [CrossRef]
- Ismartoyo, I.; Suryani, N.N.; Koten, B.B.; Ingratubun, J. The feed ADF and NDF digestibility of goat fed four different diets. Hasanuddin J. Anim. Sci. 2022, 4, 67–72. [Google Scholar]
- Relling, E.A.; Van Niekerk, W.A.; Coertze, R.J.; Rethman, N.F.G. An evaluation of Panicum maximum cv. Gatton: 2. The influence of stage of maturity on diet selection, intake and rumen fermentation in sheep. S. Afr. J. Anim. Sci. 2001, 31, 85–92. [Google Scholar] [CrossRef]
- Emanuele, S.M.; Staples, C.R. Ruminal release of minerals from six forage species. J. Anim. Sci. 1990, 68, 2052–2060. [Google Scholar] [CrossRef]
- Garcia-Rivera, J.; Morris, M.P. Oxalate content of tropical forage grasses. Science 1955, 122, 1089–1090. [Google Scholar] [CrossRef]
- Blaney, B.J.; Gartner, R.J.W.; Head, T.A. Effects of oxalate in tropical grasses on calcium, phosphorus and magnesium availability to cattle. J. Agric. Sci. 1982, 99, 533–539. [Google Scholar] [CrossRef]
- Caro, F.; Correa, H.J. Digestibilidad posruminal aparente de la materia seca, la proteína cruda y cuatro macrominerales en el pasto kikuyo (Pennisetum clandestinum) cosechado a dos edades de rebrote. Livest. Res. Rural Dev. 2006, 18, 143. Available online: http://www.lrrd.org/lrrd18/10/caro18143.htm (accessed on 23 July 2025).
- Owen, E.C. The effect of thyroxine on the metabolism of lactating cows. 2. Calcium and phosphorus metabolism. Biochem. J. 1948, 43, 243–247. [Google Scholar] [CrossRef]
- Kleiber, M.; Smith, A.H.; Ralston, N.P.; Black, A.L. Radiophosphorus (P32) as tracer for measuring endogenous phosphorus in cow’s feces. J. Nutr. 1951, 45, 253–263. [Google Scholar] [CrossRef]
- Gurgel, A.L.C.; dos Santos, G.T.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Difante, G.d.S.; Dias, A.M.; Longhini, V.Z.; Dias-Silva, T.P.; de Araújo, M.J.; Neto, J.V.E.; et al. Mathematical models to predict dry matter intake and milk production by dairy cows managed under tropical conditions. Agriculture 2023, 13, 1446. [Google Scholar] [CrossRef]
- Hristov, A.N.; Price, W.J.; Shafii, B. A meta-analysis examining the relationship among dietary factors, dry matter intake, and milk and milk protein yield in dairy cows. J. Dairy Sci. 2004, 87, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
- Baudracco, J.; Lopez-Villalobos, N.; Holmes, C.W.; Macdonald, K.A. Effects of stocking rate, supplementation, genotype and their interactions on grazing dairy systems: A review. N. Z. J. Agric. Res. 2010, 53, 109–133. [Google Scholar] [CrossRef]
- López, H.; Kanitz, F.D.; Moreira, V.R.; Satter, L.D.; Wiltbank, M.C. Effect of dietary phosphorus on performance of lactating dairy cows: Milk production and cow health. J. Dairy Sci. 2004, 87, 139–145. [Google Scholar] [CrossRef]
- Valk, H.; Kogut, J. Salt block intake by high-yielding dairy cows fed rations with different amounts of NaCl. Livest. Prod. Sci. 1998, 56, 35–42. [Google Scholar] [CrossRef]
- Aguilar-Pérez, C.; Ku-Vera, J.; Centurión-Castro, F.; Garnsworthy, P.C. Energy balance, milk production and reproduction in grazing crossbred cows in the tropics with and without cereal supplementation. Livest. Sci. 2009, 122, 227–233. [Google Scholar] [CrossRef]
- Islam, M.Z.; Islam, M.Z.; Barman, K.K.; Bari, M.S.; Habib, M.R.; Rashid, M.H.; Islam, M.A. Impact of concentrate supplementation on extended transitional crossbred Zebu cow’s performances. J. Bangladesh Agric. Univ. 2020, 18, 117–123. [Google Scholar] [CrossRef]
- Faría Mármol, J.; Chirinos, Z.; Morillo, D.E. Efecto de la sustitución parcial del alimento concentrado por pastoreo con Leucaena leucocephala sobre la producción y características de la leche y variación de peso de vacas mestizas. Zootec. Trop. 2007, 25, 383–392. [Google Scholar]
- Lawrence, D.C.; O’Donovan, M.; Boland, T.M.; Lewis, E.; Kennedy, E. The effect of concentrate feeding amount and feeding strategy on milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows. J. Dairy Sci. 2015, 98, 338–348. [Google Scholar] [CrossRef]
- Muñoz, C.; Herrera, D.; Hube, S.; Morales, J.; Ungerfeld, E.M. Effects of dietary concentrate supplementation on enteric methane emissions and performance of late lactation dairy cows. Chil. J. Agric. Res. 2018, 78, 429–437. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Chen, Y.; Shi, R.; Cheng, Z.; Dong, H. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows. Anim. Sci. J. 2017, 88, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Maji, C.; Kumar Das, M.; Banerjee, S.; Saren, S.; Tudu, B. Effects of Area Specific Mineral Mixture (ASMM) supplementation on production and reproductive parameters of crossbred and desi cows: A field study. Res. Biot. 2020, 2, 55. [Google Scholar] [CrossRef]
- Wu, Z.; Satter, L.D.; Sojo, R. Milk production, reproductive performance, and fecal excretion of phosphorus by dairy cows fed three amounts of phosphorus. J. Dairy Sci. 2000, 83, 1028–1041. [Google Scholar] [CrossRef]
- Verma, R.K.; Kumar, P.; Adil, A.; Arya, G.K. Effect of feed supplement on milk production, fat %, total serum protein and minerals in lactating buffalo. Vet. World 2009, 2, 193–194. [Google Scholar]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Hornick, J.-L.; Chentouf, M.; Cabaraux, J.-F. Effects of Sulla Flexuosa Hay as Alternative Feed Resource on Goat’s Milk Production and Quality. Animals 2023, 13, 709. [Google Scholar] [CrossRef]
- Boukrouh, S.; Mnaouer, I.; Mendes de Souza, P.; Hornick, J.-L.; Nilahyane, A.; El Amiri, B.; Hirich, A. Microalgae supplementation improves goat milk composition and fatty acid profile: A meta-analysis and meta-regression. Arch. Anim. Breed. 2025, 68, 223–238. [Google Scholar] [CrossRef]
- VandeHaar, M.J. Efficiency of nutrient use and relationship to profitability on dairy farms. J. Dairy Sci. 1998, 81, 272–282. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- de Souza, J.; Batistel, F.; Santos, F.A.P. Enhancing the recovery of human-edible nutrients in milk and nitrogen efficiency throughout the lactation cycle by feeding fatty acid supplements. Front. Sustain. Food Syst. 2023, 7, 1186454. [Google Scholar] [CrossRef]
- Nascimento, D.B.D.; Lopes, M.L.S.; Izidro, J.L.P.S.; Bezerra, R.C.A.; Gois, G.C.; de Amaral, T.N.E.; da Silva Dias, W.; de Barros, M.M.L.; da Silva Oliveira, A.R.; De Farias Sobrinho, J.L.; et al. Nitrogen, phosphorus, and potassium cycling in pasture ecosystems. Ciência Anim. Bras./Braz. Anim. Sci. 2024, 25, e-76743E. [Google Scholar] [CrossRef]
- Taylor, M.S.; Knowlton, K.F.; McGilliard, M.L.; Swecker, W.S.; Ferguson, J.D.; Wu, Z.; Hanigan, M.D. Dietary calcium has little effect on mineral balance and bone mineral metabolism through twenty weeks of lactation in Holstein cows. J. Dairy Sci. 2009, 92, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Aarons, S.R.; Gourley, C.J.P.; Powell, J.M. Nutrient intake, excretion and use efficiency of grazing lactating herds on commercial dairy farms. Animals 2020, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Jaimes Cruz, L.J.; Correa Cardona, H.J. Balance de nitrógeno, fósforo y potasio en vacas Holstein pastando praderas de kikuyo (Cenchrus clandestinus) en el norte de Antioquia. CES Med. Vet. Y Zootec. 2016, 11, 18–41. Available online: https://revistas.ces.edu.co/index.php/mvz/article/view/3959 (accessed on 18 August 2025). [CrossRef]
- VandeHaar, M.J.; St-Pierre, N. Major advances in nutrition: Relevance to the sustainability of the dairy industry. J. Dairy Sci. 2006, 89, 1280–1291. [Google Scholar] [CrossRef]
- Arriaga, H.; Pinto, M.; Calsamiglia, S.; Merino, P. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: An environmental perspective. J. Dairy Sci. 2009, 92, 204–215. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.W. Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- de Haas, Y.; Pszczola, M.; Soyeurt, H.; Wall, E.; Lassen, J. Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. J. Dairy Sci. 2017, 100, 855–870. [Google Scholar] [CrossRef] [PubMed]
- McGeough, E.J.; Passetti, L.C.G.; Chung, Y.H.; Beauchemin, K.A.; McGinn, S.M.; Harstad, O.M.; Crow, G.; McAllister, T.A. CH4 emissions, feed intake, and total tract digestibility in lambs fed diets differing in fat content and fibre digestibility. Can. J. Anim. Sci. 2019, 99, 858–866. [Google Scholar] [CrossRef]
- Medjadbi, M.; García Rodríguez, A.; Atxaerandio, R.; Charef, S.E.; Picault, C.; Ibarruri, J.; Iñarra, B.; San Martín, D.; Serrano Pérez, B.; Martín Alonso, M.J.; et al. Response of rumen methane production and microbial community to different abatement strategies in yaks. J. Anim. Sci. 2024, 102, skae351. [Google Scholar] [CrossRef]
- Washburn, L.E.; Brody, S. Growth and development with special reference to domestic animals. XLII. In CH4, Hydrogen, and Carbon Dioxide Production in the Digestive Tract of Ruminants in Relation to the Respiratory Exchange; Missouri Agricultural Experiment Station, Research Bulletin: Columbia, MO, USA, 1937. [Google Scholar]
- Koch, A.-K.S.; Nørgaard, P.; Hilden, K. A new method for simultaneous recording of methane eructation, reticulo-rumen motility and jaw movements in rumen fistulated cattle. In Ruminant Physiology: Digestion, Metabolism, and Effects of Nutrition on Reproduction and Welfare; Chilliard, Y., Glasser, F., Faulconnier, Y., Bocquier, F., Veissier, I., Doreau, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 360–361. [Google Scholar]
- Ribeiro, R.S.; Rodrigues, J.P.P.; Maurício, R.M.; Borges, A.L.C.C.; Reis e Silva, R.; Berchielli, T.T.; Valadares Filho, S.C.; Machado, F.S.; Campos, M.M.; Ferreira, A.L.; et al. Predicting enteric methane production from cattle in the tropics. Animal 2020, 14, s438–s452. [Google Scholar] [CrossRef]
- Mills, J.A.; Kebreab, E.; Yates, C.M.; Crompton, L.A.; Cammell, S.B.; Dhanoa, M.S.; Agnew, R.E.; France, J. Alternative approaches to predicting methane emissions from dairy cows. J Anim Sci 2003, 81, 3141–3150. [Google Scholar] [CrossRef]
- Muetzel, S.; Hannaford, R.; Jonker, A. Effect of animal and diet parameters on methane emissions for pasture-fed cattle. Anim. Prod. Sci. 2024, 64, AN23049. [Google Scholar] [CrossRef]
- Sakamoto, L.S.; Souza, L.L.; Gianvecchio, S.B.; de Oliveira, M.H.V.; Silva, J.A.I.V.; Canesin, R.C.; Branco, R.H.; Baccan, M.; Berndt, A.; de Albuquerque, L.G.; et al. Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS ONE 2021, 16, e0257964. [Google Scholar] [CrossRef]
- Min, B.-R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric methane emissions and animal performance in dairy and beef cattle production: Strategies, opportunities, and impact of reducing emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef]
- Pozo-Leyva, D.; Casanova-Lugo, F.; López-González, F.; Celis-Álvarez, M.D.; Cruz-Tamayo, A.A.; Canúl-Solís, J.R.; Chay-Canúl, A.J. Impact of diversified grazing systems on milk production, nutrient use and enteric methane emissions in dual-purpose cows. Trop. Anim. Health Prod. 2024, 56, 140. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Cantalapiedra-Hijar, G.; Eugène, M.; Martin, C.; Noziere, P.; Popova, M.; Ortigues-Marty, I.; Muñoz-Tamayo, R.; Ungerfeld, E.M. Review: Reducing enteric methane emissions improves energy metabolism in livestock: Is the tenet right? Animal 2023, 17 (Suppl. 3), 100830. [Google Scholar] [CrossRef] [PubMed]
- Ulyatt, M.J.; Lassey, K.R. Methane emissions from pastoral systems: The situation in New Zealand. Arch. Latinoam. Prod. Anim. 2001, 9, 118–126. [Google Scholar]
- Primavesi, O.; Shiraishi Frighetto, R.T.; Pedreira, M.d.S.; de Lima, M.A.; Berchelli, T.T.; Barbosa, P.F. Dairy cattle enteric methane measured in Brazilian tropical conditions. Pesqui. Agropecuária Bras. 2004, 39, 277–283. [Google Scholar] [CrossRef]
- Villanueva, C.; Ibrahim, M.; Castillo, C. Enteric methane emissions in dairy cows with different genetic groups in the humid tropics of Costa Rica. Animals 2023, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- Yassegoungbe, F.P.; Vihowanou, G.S.; Onanyemi, T.; Assouma, M.H.; Schlecht, E.; Dossa, L.H. Enteric methane production, yield, and intensity in smallholder dairy farming systems in peri-urban areas of coastal West African countries: Case study of Benin. J. Sustain. Agric. Environ. 2024, 3, e70019. [Google Scholar] [CrossRef]
- Correddu, F.; Carta, S.; Congiu, M.; Cesarani, A.; Dimauro, C.; Macciotta, N.P.P. Phenotypic and genetic characterization of methane emission predicted from milk fatty acid profile of Sarda dairy ewes. Ital. J. Anim. Sci. 2023, 22, 805–815. [Google Scholar] [CrossRef]
- Bosher, T.; Della Rosa, M.M.; Khan, M.A.; Sneddon, N.; Donaghy, D.; Jonker, A. Methane emissions intensity in grazing dairy cows fed graded levels of concentrate pellets. N. Z. J. Agric. Res. 2024, 67, 296–302. [Google Scholar] [CrossRef]


| 1 MP | MS | PS | CO | |
|---|---|---|---|---|
| Ingredients, kg/Ton | ||||
| Corn | 500 | |||
| Soybean cake | 330 | 240 | ||
| Wheat bread | 100 | |||
| Palm kernel | 100 | |||
| Molasses | 50 | 50 | 49 | |
| Bran | 80.5 | 100 | ||
| Ca carbonate | 192 | 113 | 10 | |
| Dicalcium phosphate | 360 | 210 | ||
| NaCl | 240 | 70 | ||
| Sulphur power | 25 | 22 | ||
| Mg oxide | 40 | 40 | ||
| Urea | 60 | |||
| Premix | 12.5 | 5 | 1 | |
| Chemical composition, % 2 DM | ||||
| NDF | 69.0 | 15.2 | ||
| N | 1.50 | 5.40 | 2.70 | |
| Ash | 9.26 | 37.6 | 5.88 | |
| Ca | 0.27 | 13.67 | 7.87 | 1.08 |
| P | 0.18 | 7.45 | 4.78 | 0.39 |
| K | 1.50 | 2.24 | 1.16 | 1.02 |
| iDM | 53.9 | ND | 16.8 | 13.1 |
| GE, Mcal/kg | 4.04 | 3.14 | 4.42 | |
| ME, 3 Mcal/kg | 1.39 | 4 3.12 | ||
| NEl, 5 Mcal/kg | 0.791 | 5 2.00 | ||
| Response Variables | Treatments | SE | p | ||
|---|---|---|---|---|---|
| 1 CO | PS | MS | |||
| 2 LW, kg | 494 | 529 | 470 | 25.0 | 0.281 |
| PDMI, kg/day | 6.83 | 7.53 | 8.83 | 0.536 | 0.067 |
| TDMI, kg/day | 9.53 | 7.89 | 8.93 | 0.536 | 0.116 |
| GEI, Mcal/day | 39.6 a | 31.7 b | 35.7 ab | 2.16 | 0.050 |
| NDF, kg/day | 5.20 | 5.19 | 6.09 | 0.370 | 0.213 |
| N, g/d | 183 a | 134 b | 132 b | 0.008 | 0.001 |
| Ca, g/d | 50.8 a | 51.9 a | 37.6 b | 0.001 | 0.001 |
| K, g/d | 153 | 140 | 161 | 0.009 | 0.375 |
| P, g/d | 24.0 b | 32.7 a | 23.1 b | 0.001 | 0.001 |
| Apparent Digestibility % | |||||
| DM | 53.2 a | 41.1 b | 41.9 b | 2.25 | 0.002 |
| NDF | 45.7 | 43.2 | 47.2 | 2.42 | 0.521 |
| N | 59.5 a | 51.3 ab | 38.8 b | 3.11 | 0.001 |
| Ca | 26.4 a | 10.4 a | −25.6 b | 8.88 | 0.001 |
| K | 74.2 | 78.5 | 73.9 | 2.29 | 0.483 |
| P | 11.2 a | 18.7 a | −15.0 b | 4.41 | 0.001 |
| Response Variables | Treatments | SE | p | ||
|---|---|---|---|---|---|
| CO | PS | MS | |||
| Milk, L/cow/day | 6.14 | 5.56 | 6.53 | 0.527 | 0.337 |
| 1 MF, % | 5.35 | 5.44 | 4.84 | 0.352 | 0.468 |
| MP, % | 3.59 | 3.40 | 3.43 | 0.186 | 0.626 |
| TMS, % | 14.1 | 14.2 | 13.3 | 0.405 | 0.227 |
| Lac, % | 4.34 | 4.54 | 4.63 | 0.084 | 0.113 |
| Ca | 0.12 | 0.12 | 0.10 | 0.006 | 0.154 |
| P | 0.079 | 0.080 | 0.077 | 0.024 | 0.644 |
| K | 0.14 | 0.15 | 0.15 | 0.006 | 0.703 |
| Milk deposition efficiency, % | |||||
| N | 18.4 | 21.8 | 25.8 | 2.29 | 0.084 |
| Ca | 14.4 ab | 12.8 b | 18.1 a | 1.37 | 0.004 |
| P | 20.4 a | 13.6 b | 21.5 a | 1.72 | 0.004 |
| K | 5.94 | 5.81 | 6.48 | 0.83 | 0.723 |
| Nutrient | Milk, L/Cow/Day |
|---|---|
| Ca | 0.836 |
| P | 0.881 |
| K | 0.786 |
| N | 0.590 |
| Response Variables | Treatments | SE | p | ||
|---|---|---|---|---|---|
| CO | PS | MS | |||
| 1 CH4, ppm | 1759 | 1732 | 1911 | 47.0 | 0.156 |
| EXHA, L/cow/min | 104 | 109 | 105 | 2.68 | 0.359 |
| CH4, L/day | 263 | 272 | 286 | 7.38 | 0.146 |
| CH4, g/day | 189 | 195 | 205 | 5.26 | 0.152 |
| CH4, %GE | 6.30 b | 8.23 a | 7.59 a | 0.48 | 0.030 |
| CH4, L/L milk | 45.9 | 52.8 | 50.2 | 6.13 | 0.719 |
| CH4, g/L milk | 32.8 | 37.8 | 35.9 | 4.37 | 0.717 |
| CH4, g/FPCM | 39.1 | 47.2 | 43.8 | 4.21 | 0.649 |
| CH4, L/kg TDMI | 40.4 | 37.3 | 32.9 | 2.87 | 0.133 |
| CH4, g/kg TDMI | 28.9 | 26.6 | 23.6 | 2.00 | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante Castaneda, B.S.; Rodríguez Hernández, L.E.; Méndez Santos, P.A.; Aldana Novoa, A.F.; Mejía Sánchez, M.A.; Jaimes Cruz, L.J.; Bolivar Vergara, D.M.; Carulla Fornaguera, J.E.; Barahona Rosales, R.; Berdugo-Gutiérrez, J.A.; et al. Effect of Dietary Supplementation on Milk Nutrient Deposition and Enteric Methane Emission in Dual-Purpose Cows from the Colombian Amazon. Animals 2025, 15, 3542. https://doi.org/10.3390/ani15243542
Bustamante Castaneda BS, Rodríguez Hernández LE, Méndez Santos PA, Aldana Novoa AF, Mejía Sánchez MA, Jaimes Cruz LJ, Bolivar Vergara DM, Carulla Fornaguera JE, Barahona Rosales R, Berdugo-Gutiérrez JA, et al. Effect of Dietary Supplementation on Milk Nutrient Deposition and Enteric Methane Emission in Dual-Purpose Cows from the Colombian Amazon. Animals. 2025; 15(24):3542. https://doi.org/10.3390/ani15243542
Chicago/Turabian StyleBustamante Castaneda, Brandon Stiven, Linda Estefanía Rodríguez Hernández, Paula Andrea Méndez Santos, Anderson Ferlay Aldana Novoa, Maira Alejandra Mejía Sánchez, Ligia Johana Jaimes Cruz, Diana María Bolivar Vergara, Juan Evangelista Carulla Fornaguera, Rolando Barahona Rosales, Jésus Alfredo Berdugo-Gutiérrez, and et al. 2025. "Effect of Dietary Supplementation on Milk Nutrient Deposition and Enteric Methane Emission in Dual-Purpose Cows from the Colombian Amazon" Animals 15, no. 24: 3542. https://doi.org/10.3390/ani15243542
APA StyleBustamante Castaneda, B. S., Rodríguez Hernández, L. E., Méndez Santos, P. A., Aldana Novoa, A. F., Mejía Sánchez, M. A., Jaimes Cruz, L. J., Bolivar Vergara, D. M., Carulla Fornaguera, J. E., Barahona Rosales, R., Berdugo-Gutiérrez, J. A., Barrientos Grajales, S. M., Montoya Zuluaga, J. J., Pino Giraldo, I. D., Cerón Alzate, J. M., Galeano, M. V., Timarán Vallejo, D. A., & Correa Cardona, H. J. (2025). Effect of Dietary Supplementation on Milk Nutrient Deposition and Enteric Methane Emission in Dual-Purpose Cows from the Colombian Amazon. Animals, 15(24), 3542. https://doi.org/10.3390/ani15243542

