Recent Advances in Nutritional Requirements and Metabolic Homeostasis Regulation of Animals Under Stress Conditions
Simple Summary
Abstract
1. Introduction
2. The Types of Common Stress and the Construction of Stress Models in Animals
2.1. Immune Stress and Model Establishment
2.2. Oxidative Stress and Model Establishment
2.3. Environmental Stress and Model Establishment
3. The Impact of Stress on Animal Nutritional Requirements
3.1. Effects of Stress on Protein Nutritional Requirements of Animals
3.2. Effects of Stress on Carbohydrate and Energy Requirements of Animals
4. Research on the Mechanism of Metabolic Regulation in Stressed Animals
4.1. Immune Stress and Metabolic Mechanisms in Animals
4.2. Oxidative Stress and Metabolic Mechanisms in Animals
4.3. Environmental Stress and Metabolic Mechanisms in Animals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lu, H.J.; Koju, N.; Sheng, R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol. Sin. 2024, 45, 1095–1114. [Google Scholar] [CrossRef]
- Kashiwagi, K.; Yokoyama, T.; Nishimoto, M.; Takahashi, M.; Sakamoto, A.; Yonemochi, M.; Shirouzu, M.; Ito, T. Structural basis for eIF2B inhibition in integrated stress response. Science 2019, 364, 495–499. [Google Scholar] [CrossRef]
- Sawka, M.N.; Leon, L.R.; Montain, S.J.; Sonna, L.A. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr. Physiol. 2011, 1, 1883–1928. [Google Scholar] [CrossRef]
- Li, Y.; Mao, K.; Zang, Y.; Lu, G.; Qiu, Q.; Ouyang, K.; Zhao, X.; Song, X.; Xu, L.; Liang, H.; et al. Revealing the developmental characterization of rumen microbiome and its host in newly received cattle during receiving period contributes to formulating precise nutritional strategies. Microbiome 2023, 11, 238. [Google Scholar] [CrossRef]
- Tofani, G.S.S.; Leigh, S.J.; Gheorghe, C.E.; Bastiaanssen, T.F.S.; Wilmes, L.; Sen, P.; Clarke, G.; Cryan, J.F. Gut microbiota regulates stress responsivity via the circadian system. Cell Metab. 2025, 37, 138–153.e135. [Google Scholar] [CrossRef]
- Rhoads, M.L. Review: Reproductive consequences of whole-body adaptations of dairy cattle to heat stress. Animal 2023, 17 (Suppl. 1), 100847. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.S. Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters. Animals 2023, 13, 259. [Google Scholar] [CrossRef]
- Acharya, R.Y.; Hemsworth, P.H.; Coleman, G.J.; Kinder, J.E. The Animal-Human Interface in Farm Animal Production: Animal Fear, Stress, Reproduction and Welfare. Animals 2022, 12, 487. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Wassie, T.; Wu, X. Curcumin and Intestinal Oxidative Stress of Pigs With Intrauterine Growth Retardation: A Review. Front. Nutr. 2022, 9, 847673. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Kou, S.; Chen, C.; Raza, S.H.A.; Wang, S.; Ma, X.; Zhang, W.J.; Nie, C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol. 2021, 21, 85. [Google Scholar] [CrossRef]
- Castro, F.L.S.; Kim, Y.; Xu, H.; Kim, W.K. The effect of total sulfur amino acid levels on growth performance and bone metabolism in pullets under heat stress. Poult. Sci. 2020, 99, 5783–5791. [Google Scholar] [CrossRef]
- Teixeira, I.; Harter, C.J.; Vargas, J.A.C.; Souza, A.P.; Fernandes, M. Review: Update of nutritional requirements of goats for growth and pregnancy in hot environments. Animal 2024, 18 (Suppl. 2), 101219. [Google Scholar] [CrossRef]
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat stress impacts on broiler performance: A systematic review and meta-analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.J.S.; Lee, J.; Kim, D.H.; Beak, S.H.; Hong, S.J.; Jeong, I.H.; Yoo, S.P.; Lee, J.O.; Cho, I.G.; Fassah, D.M.; et al. Effects of stress after road transportation and oral administration of chromium and meloxicam on plasma cortisol concentrations and behavior in dairy calves. Anim. Biosci. 2022, 35, 503–510. [Google Scholar] [CrossRef]
- Choi, W.T.; Ghassemi Nejad, J.; Moon, J.O.; Lee, H.G. Dietary supplementation of acetate-conjugated tryptophan alters feed intake, milk yield and composition, blood profile, physiological variables, and heat shock protein gene expression in heat-stressed dairy cows. J. Therm. Biol. 2021, 98, 102949. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Saredy, J.; Yuan, Z.; Yang, X.; Wang, H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020, 37, 101759. [Google Scholar] [CrossRef]
- Han, Q.; Liu, R.; Wang, H.; Zhang, R.; Liu, H.; Li, J.; Bao, J. Gut Microbiota-Derived 5-Hydroxyindoleacetic Acid Alleviates Diarrhea in Piglets via the Aryl Hydrocarbon Receptor Pathway. J. Agric. Food Chem. 2023, 71, 15132–15144. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Poller, W.C.; Swirski, F.K.; Russo, S.J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 2023, 24, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.J.; Corr, E.M.; van Solingen, C.; Schlamp, F.; Brown, E.J.; Koelwyn, G.J.; Lee, A.H.; Shanley, L.C.; Spruill, T.M.; Bozal, F.; et al. Chronic stress primes innate immune responses in mice and humans. Cell Rep. 2021, 36, 109595. [Google Scholar] [CrossRef]
- Bonetti, A.; Tugnoli, B.; Ghiselli, F.; Markley, G.; Cooper, E.; Piva, A.; Stahl, C.H.; Grilli, E. A microencapsulated blend of botanicals supports weaning piglets during a lipopolysaccharide challenge by modulating liver inflammation and intestinal integrity. J. Anim. Sci. 2024, 102, skae277. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. The Combined Effect of Weaning Stress and Immune Activation during Pig Gestation on Serum Cytokine and Analyte Concentrations. Animals 2021, 11, 2274. [Google Scholar] [CrossRef]
- Xu, W.; Lu, J.; Chen, Y.; Wang, Z.; Cao, J.; Dong, Y. Impairment of CRH in the intestinal mucosal epithelial barrier of pregnant Bama miniature pig induced by restraint stress. Endocr. J. 2021, 68, 485–502. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, Z.; Wang, J. Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation 2021, 44, 1507–1517. [Google Scholar] [CrossRef]
- Pi, C.C.; Cheng, Y.C.; Chen, C.C.; Lee, J.W.; Lin, C.N.; Chiou, M.T.; Chen, H.W.; Chiu, C.H. Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function. BMC Vet. Res. 2024, 20, 531. [Google Scholar] [CrossRef] [PubMed]
- Agustinho, B.C.; Mark, A.E.; Laarman, A.H.; Konetchy, D.E.; Rezamand, P. Effect of pH and lipopolysaccharide on tight junction regulators and inflammatory markers in intestinal cells as an experimental model of weaning transition in dairy calves. JDS Commun. 2023, 4, 394–399. [Google Scholar] [CrossRef]
- Rahman, M.A.; Kanda, Y.; Ozawa, M.; Kawamura, T.; Takeuchi, A.; Katakai, T. Transdermal entry of yeast components elicits transient B cell-associated responses in skin-draining lymph nodes. Cell. Immunol. 2020, 355, 104159. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X.; Zhang, X.; Niu, G.; Yang, L.; Ji, W.; Zhang, L.; Ren, L. PCV2 and PRV Coinfection Induces Endoplasmic Reticulum Stress via PERK-eIF2α-ATF4-CHOP and IRE1-XBP1-EDEM Pathways. Int. J. Mol. Sci. 2022, 23, 4479. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, L.; Wang, J.; Su, D.; Li, D.; Du, Y.; Yang, G.; Zhang, G.; Chu, B. African Swine Fever Virus K205R Induces ER Stress and Consequently Activates Autophagy and the NF-κB Signaling Pathway. Viruses 2022, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, L.; Lucius, R.; Roider, J.; Klettner, A. Interaction of inflammatorily activated retinal pigment epithelium with retinal microglia and neuronal cells. Exp. Eye Res. 2020, 199, 108167. [Google Scholar] [CrossRef]
- Langendijk, P.L.; Soede, N.M. Physiology and management of the peri-parturient sow in the context of changing production conditions. Reprod. Domest. Anim. Zuchthyg. 2023, 58 (Suppl. 2), 84–92. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Peng, Y.; Zhang, Y.; Liu, Y.; Liu, Y.; Yin, Y. Research progress on anti-stress nutrition strategies in swine. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2023, 13, 342–360. [Google Scholar] [CrossRef]
- Nemeth, M.; Herrmann, S.M.; Wallner, B.; Millesi, E. Effects of the estrous cycle and sex on stress responses in guinea pigs. Sci. Rep. 2025, 15, 25253. [Google Scholar] [CrossRef]
- Sohal, R.S.; Allen, R.G. Oxidative Stress as a Causal Factor in Differentiation and Aging—A Unifying Hypothesis. Exp. Gerontol. 1990, 25, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. Commun. Free Radic. Res. 2022, 27, 45–52. [Google Scholar] [CrossRef]
- Li, D.; Shen, L.; Zhang, D.; Wang, X.; Wang, Q.; Qin, W.; Gao, Y.; Li, X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J. Environ. Sci. 2023, 126, 683–696. [Google Scholar] [CrossRef]
- Xie, M.; Li, Q.; Qiu, S.; Qi, X.; Shen, H. Effects of Eupolyphaga sinensis Walker polypeptides on growth performance, meat quality, organ indexes and antioxidant capacity of broilers under oxidative stress. Chin. J. Anim. Nutr. 2018, 30, 1726–1735. [Google Scholar]
- Li, X.; Wang, C.; Zhu, J.; Lin, Q.; Yu, M.; Wen, J.; Feng, J.; Hu, C. Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. Oxidative Med. Cell. Longev. 2022, 2022, 3745135. [Google Scholar] [CrossRef]
- Veshkini, A.; Gnott, M.; Vogel, L.; Kröger-Koch, C.; Tuchscherer, A.; Tröscher, A.; Bernabucci, U.; Trevisi, E.; Starke, A.; Mielenz, M.; et al. Abomasal infusion of essential fatty acids and conjugated linoleic acid during late pregnancy and early lactation affects immunohematological and oxidative stress markers in dairy cows. J. Dairy Sci. 2023, 106, 5096–5114. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Jiang, J.; Wan, F.; Tan, D.; Zheng, H.; Xue, H.; Hang, Y.; Lu, Y.; Su, Y. Cordyceps militaris Extract and Cordycepin Alleviate Oxidative Stress, Modulate Gut Microbiota and Ameliorate Intestinal Damage in LPS-Induced Piglets. Antioxidants 2024, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- García-Trejo, S.S.; Gómez-Sierra, T.; Eugenio-Pérez, D.; Medina-Campos, O.N.; Pedraza-Chaverri, J. Protective Effect of Curcumin on D-Galactose-Induced Senescence and Oxidative Stress in LLC-PK1 and HK-2 Cells. Antioxidants 2024, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Ulla, A.; Uchida, T.; Miki, Y.; Sugiura, K.; Higashitani, A.; Kobayashi, T.; Ohno, A.; Nakao, R.; Hirasaka, K.; Sakakibara, I.; et al. Morin attenuates dexamethasone-mediated oxidative stress and atrophy in mouse C2C12 skeletal myotubes. Arch. Biochem. Biophys. 2021, 704, 108873. [Google Scholar] [CrossRef] [PubMed]
- Ambwani, S.; Dolma, R.; Sharma, R.; Kaur, A.; Singh, H.; Ruj, A.; Ambwani, T.K. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet. Immunol. Immunopathol. 2023, 262, 110632. [Google Scholar] [CrossRef]
- Yuan, T.; Fu, D.; Xu, R.; Ding, J.; Wu, J.; Han, Y.; Li, W. Corticosterone mediates FKBP51 signaling and inflammation response in the trigeminal ganglion in chronic stress-induced corneal hyperalgesia mice. J. Steroid Biochem. Mol. Biol. 2023, 231, 106312. [Google Scholar] [CrossRef]
- Jafari, Z.; Mehla, J.; Afrashteh, N.; Kolb, B.E.; Mohajerani, M.H. Corticosterone response to gestational stress and postpartum memory function in mice. PLoS ONE 2017, 12, e0180306. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhu, J.; Wu, J.; Thompson, C.B.; Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. USA 2020, 117, 31189–31197. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, J.S.; Lee, Y.S.; Han, J.; Lee, D.K.; Kwon, S.W.; Han, D.H.; Lee, Y.H.; Bae, S.H. SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity. Autophagy 2020, 16, 1949–1973. [Google Scholar] [CrossRef]
- Park, A.; Koh, H.C. NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis. Arch. Toxicol. 2019, 93, 1239–1253. [Google Scholar] [CrossRef]
- Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 2020, 69, 1988–1997. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.; Zhong, S.; Yu, W.; Wang, J.; Zhu, W.; Yang, T.; Zhao, G.; Jiang, Y.; Li, Y. Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet. Sci. 2022, 10, 22. [Google Scholar] [CrossRef]
- Cilenti, F.; Barbiera, G.; Caronni, N.; Iodice, D.; Montaldo, E.; Barresi, S.; Lusito, E.; Cuzzola, V.; Vittoria, F.M.; Mezzanzanica, L.; et al. A PGE2-MEF2A axis enables context-dependent control of inflammatory gene expression. Immunity 2021, 54, 1665–1682.e1614. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, Z.; Bai, Y.; Xu, S. Redox state and metabolic responses to severe heat stress in lenok Brachymystax lenok (Salmonidae). Front. Mol. Biosci. 2023, 10, 1156310. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Cui, J.; Du, Y.; Teng, X.; Zhang, Z. Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. Ecotoxicol. Environ. Saf. 2021, 226, 112833. [Google Scholar] [CrossRef]
- Chen, F.; Ling, X.; Zhao, Y.; Fu, S. Hypoxia-induced oxidative stress and apoptosis in gills of scaleless carp (Gymnocypris przewalskii). Fish Physiol. Biochem. 2022, 48, 911–924. [Google Scholar] [CrossRef]
- Bejaoui, B.; Sdiri, C.; Ben Souf, I.; Belhadj Slimen, I.; Ben Larbi, M.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. [Google Scholar] [CrossRef]
- Takeuchi, K.; Nakano, Y.; Kato, U.; Kaneda, M.; Aizu, M.; Awano, W.; Yonemura, S.; Kiyonaka, S.; Mori, Y.; Yamamoto, D.; et al. Changes in temperature preferences and energy homeostasis in dystroglycan mutants. Science 2009, 323, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Saleh, K.M.M.; Tarkhan, A.H.; Al-Zghoul, M.B. Embryonic Thermal Manipulation Affects the Antioxidant Response to Post-Hatch Thermal Exposure in Broiler Chickens. Animals 2020, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Ghassemi Nejad, J.; Lee, H.G. Impact of Cold Stress on Physiological, Endocrinological, Immunological, Metabolic, and Behavioral Changes of Beef Cattle at Different Stages of Growth. Animals 2023, 13, 1073. [Google Scholar] [CrossRef]
- Saeed, M.; Babazadeh, D.; Naveed, M.; Arain, M.A.; Hassan, F.U.; Chao, S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: A review. Trop. Anim. Health Prod. 2017, 49, 1329–1338. [Google Scholar] [CrossRef]
- Mutua, J.Y.; Marshall, K.; Paul, B.K.; Notenbaert, A.M.O. A methodology for mapping current and future heat stress risk in pigs. Anim. Int. J. Anim. Biosci. 2020, 14, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, Z.; Dong, G.; Wei, X.; Song, D. Dietary calcium soaps of fatty acids and chromium nicotinate affect lactation performance, physiological and serum biochemical indices of dairy cows under heat stress. Chin. J. Anim. Nutr. 2012, 24, 145–151. [Google Scholar]
- Paranhos Da Costa, M.J.R.; Silva, R.G.D.; Souza, R.C.D. Effect of air temperature and humidity on ingestive behaviour of sheep. Int. J. Biometeorol. 1992, 36, 218–222. [Google Scholar] [CrossRef]
- Silva, P.S.; Hooper, H.B.; Manica, E.; Merighe, G.K.F.; Oliveira, S.A.; Traldi, A.S.; Negrão, J.A. Heat stress affects the expression of key genes in the placenta, placental characteristics, and efficiency of Saanen goats and the survival and growth of their kids. J. Dairy Sci. 2021, 104, 4970–4979. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Zhu, R.; Zhang, S.; Liu, S.; Wang, Y.; Wu, Y.; Xing, S.; Liao, X.; Mi, J. Porcine gut microbiota in mediating host metabolic adaptation to cold stress. Npj Biofilms Microbiomes 2022, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.R.; Neinast, M.D.; Zeng, X.; Chu, Q.; Axsom, J.; Thorsheim, C.; Li, K.; Blair, M.C.; Rabinowitz, J.D.; Arany, Z. Comprehensive quantification of metabolic flux during acute cold stress in mice. Cell Metab. 2023, 35, 2077–2092.e2076. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, X.; Wan, B.; Wang, D.; Li, M.; Cheng, K.; Luo, Q.; Wang, D.; Lu, Y.; Zhu, L. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema. Cell Commun. Signal. CCS 2022, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cui, Y.; Ma, R.; Yu, S.; Zhang, H.; Zhao, P.; He, J. Hypoxia Regulates the Proliferation and Apoptosis of Coronary Artery Smooth Muscle Cells Through HIF-1α Mediated Autophagy in Yak. Biomolecules 2025, 15, 256. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yang, J.; Kim, J.; Jang, Y.; Lee, J.; Han, D.; Kim, H.; Jeong, B.C.; Seong, J.K. Effects of Environmental Noise Stress on Mouse Metabolism. Int. J. Mol. Sci. 2024, 25, 10985. [Google Scholar] [CrossRef]
- Ma, T.; Matsuo, R.; Kurogi, K.; Miyamoto, S.; Morita, T.; Shinozuka, M.; Taniguchi, F.; Ikegami, K.; Yasuo, S. Sex-dependent effects of chronic jet lag on circadian rhythm and metabolism in mice. Biol. Sex Differ. 2024, 15, 102. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W.; Ba, M.; Xuan, S.; Huang, D.; Qi, D.; Pei, X.; Lu, D.; Li, Z. Chronic Jet Lag Disrupts Circadian Rhythms and Induces Hyperproliferation in Murine Lacrimal Glands via ROS Accumulation. Investig. Ophthalmol. Vis. Sci. 2025, 66, 12. [Google Scholar] [CrossRef]
- Shi, Z.; Xi, L.; Wang, Y.; Zhao, X. Chronic Exposure to Environmental Pollutant Ammonia Causes Damage to the Olfactory System and Behavioral Abnormalities in Mice. Environ. Sci. Technol. 2023, 57, 15412–15421. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Chen, S.; Wei, B.; Gao, Y.; Huang, L.; Liu, C.; Huang, T.; Yu, M.; Zhao, S.H.; et al. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. Ecotoxicol. Environ. Saf. 2020, 205, 111050. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sang, Z.; Zhuo, Y.; Wang, X.; Guo, Z.; He, L.; Zeng, C.; Dai, H. Transport stress induces pig jejunum tissue oxidative damage and results in autophagy/mitophagy activation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, W.; Zhou, L.; Feng, F. Effect of Pre-Slaughter Transport Stress on Protein S-Nitrosylation Levels of Pork during Postmortem Aging. J. Agric. Food Chem. 2023, 71, 11150–11157. [Google Scholar] [CrossRef] [PubMed]
- Grimm, H.; Calder, P.C. Immunonutrition. Br. J. Nutr. 2002, 87, S1. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Yerou, H.; Ben Larbi, M.; M’Hamdi, N.; Najar, T. Insects as an alternative protein source for poultry nutrition: A review. Front. Vet. Sci. 2023, 10, 1200031. [Google Scholar] [CrossRef]
- Pasiakos, S.M. Nutritional Requirements for Sustaining Health and Performance During Exposure to Extreme Environments. Annu. Rev. Nutr. 2020, 40, 221–245. [Google Scholar] [CrossRef]
- Racinais, S.; Dablainville, V.; Rousse, Y.; Ihsan, M.; Grant, M.E.; Schobersberger, W.; Budgett, R.; Engebretsen, L. Cryotherapy for treating soft tissue injuries in sport medicine: A critical review. Br. J. Sports Med. 2024, 58, 1215–1223. [Google Scholar] [CrossRef]
- Espina, J.A.; Cordeiro, M.H.; Milivojevic, M.; Pajic-Lijakovic, I.; Barriga, E.H. Response of cells and tissues to shear stress. J. Cell Sci. 2023, 136, jcs260985. [Google Scholar] [CrossRef]
- Cao, X.; Xiao, S.; Shen, C.; Fan, Y. Microdamage in biological hard tissues and its repair mechanisms. Biomed. Eng. Online 2025, 24, 102. [Google Scholar] [CrossRef]
- He, Z.; Cai, Y.; Xiao, Y.; Cao, S.; Zhong, G.; Li, X.; Li, Y.; Luo, J.; Tang, J.; Qu, F.; et al. Intervention of Dietary Protein Levels on Muscle Quality, Antioxidation, and Autophagy in the Muscles of Triploid Crucian Carp (Carassius carassius Triploid). Int. J. Mol. Sci. 2023, 24, 12043. [Google Scholar] [CrossRef]
- Mafra, D.; Brum, I.; Borges, N.A.; Leal, V.O.; Fouque, D. Low-protein diet for chronic kidney disease: Evidence, controversies, and practical guidelines. J. Intern. Med. 2025, 298, 319–335. [Google Scholar] [CrossRef]
- Castro, T.F.; de Matos, N.A.; de Souza, A.B.F.; Costa, G.P.; Perucci, L.O.; Talvani, A.; Cangussu, S.D.; de Menezes, R.C.A.; Bezerra, F.S. Protein restriction during pregnancy affects lung development and promotes oxidative stress and inflammation in C57 BL/6 mice offspring. Nutrition 2022, 101, 111682. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Park, H.; Hong, J.; Kim, Y.; Jeong, Y.; Sa, S.; Choi, Y.; Kim, J. Heat Stress in Growing-Finishing Pigs: Effects of Low Protein with Increased Crystalline Amino Acids on Growth, Gut Health, Antioxidant Status and Microbiome. Animals 2025, 15, 848. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Liu, X.; Feng, Y.; Ding, H.; Sun, H.; Li, Z.; Shi, B. Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs. J. Anim. Sci. Biotechnol. 2024, 15, 56. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Li, H.; Zhang, J.; Hu, C.; Liu, X. The adverse effect of heat stress and potential nutritional interventions. Food Funct. 2022, 13, 9195–9207. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cui, Z.; Wang, H.; Huang, B.; Ma, H. Dietary supplementation of dimethyl itaconate protects against chronic heat stress-induced growth performance impairment and lipid metabolism disorder in broiler chickens. J. Anim. Sci. 2023, 101, skad120. [Google Scholar] [CrossRef]
- Morales, A.; Gómez, T.; Villalobos, Y.D.; Bernal, H.; Htoo, J.K.; González-Vega, J.C.; Espinoza, S.; Yáñez, J.; Cervantes, M. Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress. J. Anim. Sci. 2020, 98, skaa056. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Zhu, H.; Hong, Y.; Wu, Z.; Hou, Y.; Li, Q.; Ding, B.; Yi, D.; Chen, H. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun. 2013, 19, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Gong, L.; Zhang, W. Effect of immunological stress on immune parameter and endocrine hormones in weaned pigs. Chin. J. Anim. Sci. 2004, 40, 4–6. [Google Scholar]
- Pang, Y.; Jiang, J.; Wang, L.; Zhai, Q.; Song, C. Effects of immunological stress on immune response in different breeds of piglets. Anim. Husb. Feed Sci. 2009, 1, 28–31. [Google Scholar]
- Haisan, J.; Inabu, Y.; Shi, W.; Oba, M. Effects of pre- and postpartum dietary starch content on productivity, plasma energy metabolites, and serum inflammation indicators of dairy cows. J. Dairy Sci. 2021, 104, 4362–4374. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effect of prepartum dietary energy density on beef cow energy metabolites, and birth weight and antioxidative capabilities of neonatal calves. Sci. Rep. 2022, 12, 4828. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, T.; Jiang, Q.; Yao, K. Dietary fat and high energy density diet: Influence on intestinal health, oxidative stress and performance of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2024, 108, 978–986. [Google Scholar] [CrossRef]
- Ma, Y.; Kroemer, G. The cancer-immune dialogue in the context of stress. Nat. Rev. Immunol. 2024, 24, 264–281. [Google Scholar] [CrossRef]
- Najafi, P.; Zulkifli, I.; Soleimani, A.F. Inhibition of corticosterone synthesis and its effect on acute phase proteins, heat shock protein 70, and interleukin-6 in broiler chickens subjected to feed restriction. Poult. Sci. 2018, 97, 1441–1447. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, Y.; Li, Y.; Xie, H.; Liu, X.; Yong, Y.; Li, Y.; Yu, Z.; Ma, X.; Ju, X. Preliminary Proteomic Study of the Porcine Pituitary Gland under Heat Stress. Life 2024, 14, 366. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 587. [Google Scholar] [CrossRef] [PubMed]
- Zinicola, M.; Menta, P.R.; Ribeiro, B.L.; Boisclair, Y.; Bicalho, R.C. Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle III: Administration of rbIL-8 induces insulin resistance in bull calves. J. Dairy Sci. 2019, 102, 10329–10339. [Google Scholar] [CrossRef]
- Lendez, P.A.; Martinez Cuesta, L.; Nieto Farias, M.V.; Vater, A.A.; Ghezzi, M.D.; Mota-Rojas, D.; Dolcini, G.L.; Ceriani, M.C. Alterations in TNF-α and its receptors expression in cows undergoing heat stress. Vet. Immunol. Immunopathol. 2021, 235, 110232. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Muro, P.; Zhang, L.; Li, S.; Zhao, Z.; Jin, T.; Mao, F.; Mao, Z. The emerging role of oxidative stress in inflammatory bowel disease. Front. Endocrinol. 2024, 15, 1390351. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Cai, X.; Wang, C.; Peng, X.; Xu, L.; Gao, Y.; Tian, T.; Zhu, G.; Pan, Y.; Chu, H.; et al. FOXM1 affects oxidative stress, mitochondrial function, and the DNA damage response by regulating p21 in aging oocytes. Theriogenology 2024, 229, 66–74. [Google Scholar] [CrossRef]
- Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2011, 153, 175–190. [Google Scholar] [CrossRef]
- Bal, A.; Panda, F.; Pati, S.G.; Das, K.; Agrawal, P.K.; Paital, B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2021, 241, 108971. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Storey, K.B. Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. EXCLI J. 2021, 20, 956–967. [Google Scholar] [CrossRef]
- Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015, 6, 109–120. [Google Scholar] [CrossRef]
- Antonucci, S.; Di Lisa, F.; Kaludercic, N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium 2021, 94, 102344. [Google Scholar] [CrossRef] [PubMed]
- Makinde, E.; Ma, L.; Mellick, G.D.; Feng, Y. Mitochondrial Modulators: The Defender. Biomolecules 2023, 13, 226. [Google Scholar] [CrossRef]
- Chen, G.H.; Song, C.C.; Pantopoulos, K.; Wei, X.L.; Zheng, H.; Luo, Z. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic. Biol. Med. 2022, 180, 95–107. [Google Scholar] [CrossRef]
- Bose, A.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of Parkinson’s disease. Eur. J. Neurosci. 2019, 49, 525–532. [Google Scholar] [CrossRef]
- González-Alvarez, M.E.; Roach, C.M.; Keating, A.F. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol. Reprod. Dev. 2023, 90, 503–516. [Google Scholar] [CrossRef]
- Keating, A.F.; Ross, J.W.; Baumgard, L.H. Impact of Real-Life Environmental Exposures on Reproduction: Systemic and ovarian impacts of heat stress in the porcine model. Reproduction 2024, 168, e240217. [Google Scholar] [CrossRef]
- Teng, T.; Song, X.; Sun, G.; Ding, H.; Sun, H.; Bai, G.; Shi, B. Glucose supplementation improves intestinal amino acid transport and muscle amino acid pool in pigs during chronic cold exposure. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2023, 12, 360–374. [Google Scholar] [CrossRef]
- Hu, H.; Bai, X.; Shah, A.A.; Wen, A.Y.; Hua, J.L.; Che, C.Y.; He, S.J.; Jiang, J.P.; Cai, Z.H.; Dai, S.F. Dietary supplementation with glutamine and -aminobutyric acid improves growth performance and serum parameters in 22-to 35-day-old broilers exposed to hot environment. J. Anim. Physiol. Anim. Nutr. 2016, 100, 361–370. [Google Scholar] [CrossRef]
- Liu, E.; Sun, M.; He, C.; Mao, K.; Li, Q.; Zhang, J.; Wu, D.; Wang, S.; Zheng, C.; Li, W.; et al. Rumen Microbial Metabolic Responses of Dairy Cows to the Honeycomb Flavonoids Supplement Under Heat-Stress Conditions. Front. Vet. Sci. 2022, 9, 845911. [Google Scholar] [CrossRef] [PubMed]
- Kikusato, M.; Toyomizu, M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J. Poult. Sci. 2023, 60, 2023021. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Kronenfeld, J.M.; Renquist, B.J. Feed intake-dependent and -independent effects of heat stress on lactation and mammary gland development. J. Dairy Sci. 2020, 103, 12003–12014. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, H.; Yu, D.; Zhao, P.; Liu, Y. Heat stress inhibits the proliferation and differentiation of myoblasts and is associated with damage to mitochondria. Front. Cell Dev. Biol. 2023, 11, 1171506. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, H.; Ouyang, J.; Guo, S.; Zheng, J.; Li, G. Effects of dietary tryptophan supplementation on body temperature, hormone, and cytokine levels in broilers exposed to acute heat stress. Trop. Anim. Health Prod. 2022, 54, 164. [Google Scholar] [CrossRef]
- Fan, H.; Ding, R.; Liu, W.; Zhang, X.; Li, R.; Wei, B.; Su, S.; Jin, F.; Wei, C.; He, X.; et al. Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol. 2021, 40, 101856. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, X.; Fang, H.; Ren, Y.; Li, X.; Ren, W.; Xue, B.; Yang, C. Effect of cold stress on ovarian & uterine microcirculation in rats and the role of endothelin system. Reprod. Biol. Endocrinol. 2020, 18, 29. [Google Scholar] [CrossRef]
- Sun, G.; Song, X.; Zou, Y.; Teng, T.; Jiang, L.; Shi, B. Dietary Glucose Ameliorates Impaired Intestinal Development and Immune Homeostasis Disorders Induced by Chronic Cold Stress in Pig Model. Int. J. Mol. Sci. 2022, 23, 7730. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, M.; Li, W.; Guo, Y.; Zhang, J.; Ye, L.; Guo, Z.; Yang, Y.; Liu, W.; Chen, L.; et al. Effects of co-exposure to heat and ozone on lipid metabolism in the liver and adipose tissue of C57BL/6J male mice. J. Hazard. Mater. 2025, 489, 137577. [Google Scholar] [CrossRef] [PubMed]
- Hatch-McChesney, A.; Smith, T.J. Nutrition, Immune Function, and Infectious Disease in Military Personnel: A Narrative Review. Nutrients 2023, 15, 4999. [Google Scholar] [CrossRef] [PubMed]
- Mengal, K.; Kor, G.; Kozak, P.; Niksirat, H. Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2023, 276, 111332. [Google Scholar] [CrossRef]
- Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023, 14, 1130689. [Google Scholar] [CrossRef]



| Category | Methods | Operation Points | Target Animals | References |
|---|---|---|---|---|
| Direct Immune Activators | 1. Lipopolysaccharide (LPS) Injection | - Dose: Mice/Rats: 0.1–5 mg/kg Pigs: 10–100 μg/kg Chickens: 1–5 mg/kg Calves: 0.5–2 μg/kg - Peak Effect Time: 1–4 h | Mice, rats, pigs, chickens, calves, etc. | Zhou J [24], Pi CC [25], Agustinho BC [26] |
| 2. Yeast Polysaccharide Injection | - Route: Intraperitoneal injection - Dose: 10–100 mg/kg (mice) - Peak Effect Time: Several hours to 24 h | Rodents, poultry | Rahman MA [27] | |
| 3. Viruses | - Route: Nasal drop/Tracheal injection - Dose: 103–106 EID50 (e.g., avian influenza virus); 104–105 TCID50 (PVC-2) - Monitoring: Viral load + inflammatory factors | Poultry, pigs | Chen S [28] | |
| 4. Bacteria (e.g., Escherichia coli) | - Route: Intraperitoneal injection (107–109 CFU/mL) - Monitoring: Intestinal infection + inflammatory factors | Pigs, mice, etc. | Wang Q [29] | |
| 5. Other PAMPs | - Polyinosinic-polycytidylic acid (activates TLR3), CpG DNA (TLR9), Peptidoglycan (TLR2) | Specific receptor mechanism research | Dietrich L [30] | |
| Indirect Stressors | 1. Management Stress | - Transportation, mixing/re-grouping, high-density housing, high/low temperature environment | Pigs, poultry, cattle, rodents | Langendijk PL [31] |
| 2. Physiological Stress | - Weaning (mother-offspring separation + nutritional change), restricted feeding, intense exercise | Piglets, calves, etc. | Wang L [32] | |
| 3. Psychological Stress | - Restraint stress, social defeat stress | Rodents (rarely used in farm animals) | Nemeth M [33] |
| Stress Source Type | Representative Substance | Construction Method | Applicable Animals and Medium of Action | Core Oxidative Damage Indicators | References |
|---|---|---|---|---|---|
| Hormones | Dexamethasone | - Route: Intraperitoneal injection/Drinking water addition - Dosage: Mice/Rats: 1–10 mg/kg/d (injection) Chickens: 2–5 mg/kg/d (injection) - Duration: 3–7 days | Mice, Rats, Chickens | - Plasma MDA ↑, SOD ↓ - Muscle/Liver GSH consumption - Mitochondrial ROS generation ↑ | Ulla A [42], Ambwani S [43] |
| Corticosterone | - Route: Subcutaneous implant of sustained-release tablets - Dose: 10–40 mg/kg (sustained-release for 21 days) - Simulate chronic stress | Rats, Mice - Medium: FKBP51 HPA axis etc. | - Lipid peroxidation in hippocampus/prefrontal cortex ↑ - CAT activity in brain tissue ↓ | Yuan T [44], Jafari Z [45] | |
| Fatty acids | Fish oil (High polyunsaturated fatty acids) | - Feed addition: 5–10% as a substitute for oil - Period: 4–8 weeks - Induction mechanism: n-3 PUFA auto-oxidation | Rats, Carps, Broilers - Medium: PI3K-AKT-mTOR etc. | - Liver TBARS ↑, Carbonylated proteins ↑ - Antioxidant enzymes (GPx, GST) compensatory increase | Yi J [46] |
| Soybean oil/Coconut oil (high in n-6 or saturated fatty acids) | - Feed addition: 10–20% as a substitute for base oil - Period: 6–12 weeks | Pigs, Mice, Laying hens - Medium: KEAP1- NFE2L2 pathway etc. | - Plasma 8-iso-PGF2α ↑ (lipid peroxidation marker) - Liver Nrf2 pathway activation | Lee DH [47] | |
| Chemical inducers | Diquat | - Pathway: Intraperitoneal injection - Dose: Mice: 10–25 mg/kg Piglets: 8–12 mg/kg - Acute model: 6–24 h | Mice, Pigs, Zebrafish - Medium: NF-κB/mTOR etc. | - Systemic oxidative burst (SOD ↓, GSH ↓) - Multiple organs (Liver/Kidney/Gut) MDA ↑ - DNA oxidative damage (8-OHdG ↑) | Park A [48] |
| Dextran sulfate sodium (DSS) | - Pathway: Oral drinking - Concentration: 2–5% (w/v) - Period: 7 days (Acute enteritis) | Mice, Rats - Medium: TNF-α, PD-1 etc. | - Colonic MPO activity ↑ (Neutrophil infiltration) - Intestinal mucosa SOD/CAT activity ↓ - Colonic tissue NOX2 expression ↑ | Wang L [49] | |
| Lipopolysaccharide (LPS) | - Pathway: Intraperitoneal/Venous injection–Dose: Mice: 5 mg/kg Piglets: 100 μg/kg - Time: 4–24 h | Mice, Pigs, Poultry, etc. - Medium: ERK5 etc. | - Mitochondrial ROS release ↑ - Plasma antioxidant capacity (T-AOC) ↓ - Inflammation-oxidation interaction (iNOS induction → NO ↑) | Zhou Y [50], Cilenti F [51] |
| Model Name | Construction Method | Applicable Animals | Core Stress Responses | Operation Cycle | References |
|---|---|---|---|---|---|
| High Temperature Heat Stress | Constant temperature chamber/climate chamber: 35~40 °C, relative humidity 60~70% - Poultry: 38 °C for 72 h (acute) - Mammals: Day-night temperature difference cycle (32 °C day/28 °C night) | Chicken, pig, dairy cow, mice | - Respiratory rate ↑ - Plasma cortisol ↑ - HSP70 expression ↑ - Feed intake (>30%) ↓ | 3 days to 8 weeks | Silva PS [63], Koch F [64] |
| Low Temperature Cold Stress | - Constant temperature chamber: 4~10 °C (acute)/−5~0 °C (extreme) - Aquatic animals: Sudden drop in water temperature (e.g., 28 °C → 15 °C) - Mammals: Standing on ice (15 min/time × 3 times/day) | Zebrafish, mice, broiler chicken | - Activation of brown adipose tissue - UCP1 protein ↑ - Blood glucose first rises then drops - Atrophy of intestinal villi | 24 h to 4 weeks | Zhang Y [64], Bornstein MR [65] |
| High Altitude Hypoxia | - Low-pressure chamber simulation: 5500 m (oxygen partial pressure ≈ 11.4%) - Combined operation: 30 min swimming in 22 °C cold water before entering the chamber - Continuous exposure: >72 h | Rat, mice, yak | - Brain tissue SOD ↓/MDA ↑ - Pulmonary artery pressure ↑ - Compensatory increase in red blood cells (HCT ↑) | 3 to 21 days | Xue Y [66], Yang S [67] |
| Noise Stress | - White noise generator: 80~100 dB - Rhythm: Random intervals (to prevent adaptation) - Nighttime intensification: Silent during the light period, burst during the dark period (simulating sudden noise) | Rat, laying hen, pig | - Serum COR/ACTH ↑ - Apoptosis of hippocampal neurons ↑ - Egg production rate (in poultry) ↓ | 7 to 28 days | Lee J [68] |
| Disrupted Light Rhythm | - Inversion of day and night: 12 h light/12 h dark reversed - Continuous light: 24 h 200 lux - Flicker stimulation: 1 Hz flashing (5 min/h) | Mice, fruit flies, egg-laying ducks | - Disrupted melatonin secretion - Disordered clock genes (Bmal1, Per2) - Ovarian weight (in poultry) ↓ | 2 to 8 weeks | Ma T [69], Huang S [70] |
| Ammonia Exposure | - Sealed chamber: Ammonia concentration 20~50 ppm (upper limit of poultry house standard) - Acute: 80 ppm × 72 h - Chronic: 30 ppm × 4 weeks | Broiler chicken, pig, rat | - Shedding of tracheal cilia - Phagocytic ability of alveolar macrophages ↓ | 3 days to 8 weeks | Shi Z [71], Wang X [72] |
| Transport stress | (amplitude 3 cm, frequency 2 Hz) | Stress research in live animal transportation | Accelerated glycogen depletion, CK increases three fold | 2 to 12 h | He Y [73], Ma C [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, X.; Wu, Z.; Wang, K.; Qiao, R.; Han, X.; Li, X.; Yang, F.; Yu, T.; Wang, T.; et al. Recent Advances in Nutritional Requirements and Metabolic Homeostasis Regulation of Animals Under Stress Conditions. Animals 2025, 15, 3412. https://doi.org/10.3390/ani15233412
Li X, Li X, Wu Z, Wang K, Qiao R, Han X, Li X, Yang F, Yu T, Wang T, et al. Recent Advances in Nutritional Requirements and Metabolic Homeostasis Regulation of Animals Under Stress Conditions. Animals. 2025; 15(23):3412. https://doi.org/10.3390/ani15233412
Chicago/Turabian StyleLi, Xinhang, Xinjian Li, Zhenlong Wu, Kejun Wang, Ruimin Qiao, Xuelei Han, Xiuling Li, Feng Yang, Tong Yu, Tengfei Wang, and et al. 2025. "Recent Advances in Nutritional Requirements and Metabolic Homeostasis Regulation of Animals Under Stress Conditions" Animals 15, no. 23: 3412. https://doi.org/10.3390/ani15233412
APA StyleLi, X., Li, X., Wu, Z., Wang, K., Qiao, R., Han, X., Li, X., Yang, F., Yu, T., Wang, T., & Bai, J. (2025). Recent Advances in Nutritional Requirements and Metabolic Homeostasis Regulation of Animals Under Stress Conditions. Animals, 15(23), 3412. https://doi.org/10.3390/ani15233412

