Comparative Impact of Silver Nitrate and Eco-Friendly Silver Nanoparticles on Sexual Behavior, Productivity, and Bioaccumulation in the Reproductive Organs of Japanese Quails
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Green Synthesis of Silver Nanoparticles
2.2. Experimental Birds and Diet
2.3. Sexual Behavior
2.4. Estimation of Productive Performance
2.5. Estimation of Egg Quality
2.6. Estimation of Reproductive Performance
2.7. Bioaccumulation in Ovaries and Testes
2.8. Calculation of Silver Concentration
2.9. Statistical Analysis
3. Results
3.1. Effects of Ag-NPs and AgNO3 on Sexual Behavior
3.2. Effects of Ag-NPs and AgNO3 on Productive Performance
3.3. Effects of Ag-NPs and AgNO3 on Egg Quality
3.4. Effects of Ag-NPs and AgNO3 on Reproductive Performance
3.5. Effects of Ag-NPs and AgNO3 on Bioaccumulation in Reproductive Organs
3.6. Impact of Ovarian Silver Bioaccumulation on Fertility in Japanese Quails
3.7. Impact of Ovarian Silver Bioaccumulation on Hatchability in Japanese Quails
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, Q.; Shaheen, S.; Azeem, M. Nanobiosensors: Application in healthcare, environmental monitoring and food safety. Asian J. Agric. Biol. 2024, 1, 2023157. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Thangapandiyan, M.; Raja, P.; Rao, G.V.S. Pathological and molecular studies on antitumor effect of curcumin and curcumin solid lipid nanoparticles. Pak. Vet. J. 2023, 43, 315–320. [Google Scholar]
- Saad, N.; El-Abasy, M.A.; El-Khayat, F.; Ali, N.G.; Ismail, M.M. Efficacy of chitosan nanoparticles as a natural antibacterial agent against pathogenic bacteria causing omphalitis in poultry. Pak. Vet. J. 2023, 43, 573–578. [Google Scholar]
- Mehwish; Azam, S.E.; Muzamail, S. Unveiling the future: nanotechnology’s role in advanced food packaging. Agrobiol. Rec. 2024, 15, 24–33. [Google Scholar] [CrossRef]
- Iqbal, T.; Altaf, S.; Salma, U.; Fatima, M.; Khan, M.N.; Farooq, S.; Abrar, M.; Tasleem, M.; Afzal, A. Cell membrane-coated polymeric nanocarriers: A novel drug delivery approach for the targeted therapy of rheumatoid arthritis. Agrobiol. Rec. 2024, 15, 91–102. [Google Scholar] [CrossRef]
- Azam, S.E.; Yasmeen, F.; Rashid, M.S.; Ahmad, U.; Hussain, S.; Perveez, A.; Sarib, M. Silver nanoparticles loaded active packaging of low-density polyethylene (LDPE): A challenge study against Listeria monocytogenes, Bacillus subtilis and Staphylococcus aureus to enhance the shelf life of bread, meat and cheese. Int. J. Agric. Biosci. 2023, 12, 165–171. [Google Scholar] [CrossRef]
- Barakat, M.A.; AlRashdi, B.M.; Germoush, M.O.; Suryya Sani, S.; Ayub, I.; Bashir, W.; Hussain, B.; Mazhar, M.; Ali, S.; Zahid, Z.; et al. Biosynthesis of Salvia hispanica-based silver nanoparticles and evaluation of their antibacterial activity in vitro and in rat model. Pak. Vet. J. 2023, 43, 283–289. [Google Scholar]
- Rasool, M.; Rasool, M.H.; Khurshid, M.; Aslam, B. Biogenic synthesis and characterization of silver nanoparticles: Exploring antioxidant and anti-inflammatory activities and assessing antimicrobial potential against multidrug-resistant bacteria. Asian J. Agric. Biol. 2024, 3, 2023364. [Google Scholar] [CrossRef]
- Ahsan, H.; Ayub, M.; Gul, M.; Qureshi, A.; Asfour, H.Z.; Bilal, H.M.; Azeem, M.; Wahid, A.; Ali, N.; Naveed, R.; et al. Efficacy of silver oxide nanoparticles against multidrug-resistant Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in burn wound infections. Asian J. Agric. Biol. 2024, 4, 2024096. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Al-Atiyat, R.M.; Stanley, D.; Aljassim, R.; Albatshan, H.A. The effect of corn distiller’s dried grains with solubles (DDGS) fortified with enzyme on growth performance of broiler. Environ. Sci. Pollut. Res. 2017, 24, 21412–21421. [Google Scholar] [CrossRef]
- Hafeez, A.; Iqbal, S.; Sikandar, A.; Din, S.; Khan, I.; Ashraf, S.; Khan, R.U.; Laudadio, V.; Tufarelli, V. Feeding of phytobiotics and exogenous protease in broilers: Comparative effect on nutrient digestibility, bone strength and gut morphology. Agriculture 2021, 11, 228. [Google Scholar] [CrossRef]
- Mansoor, A.; Mehmood, M.; Ul Hassan, S.M.; Ali, M.I.; Badshah, M.; Jamal, A. Anti-bacterial effect of titanium oxide nanoparticles and their application as an alternative to antibiotics. Pak. Vet. J. 2023, 43, 269–275. [Google Scholar]
- Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; et al. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water 2021, 13, 2216. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Naz, S.; Al-Atiyat, R.; Khan, R.U.; Abudabos, A.; Alhidary, I.A. Eco-friendly selenium nanoparticles from Capsicum annuum: Impact on growth efficiency, blood biochemistry, immune response, intestinal morphology, and profitability in broiler chickens. Poult. Sci. 2025, 104, 105915. [Google Scholar] [CrossRef]
- Bouafia, A.; Laouini, S.E.; Ahmed, A.S.; Soldatov, A.V.; Algarni, H.; Chong, K.F.; Ali, G.A. The recent progress on silver nanoparticles: Synthesis and electronic applications. Nanomaterials 2021, 11, 2318. [Google Scholar] [CrossRef]
- Shahzadi, S.; Fatima, S.; Shafiq, Z.; Janjua, M.R.S.A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: A multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 2025, 15, 3858–3903. [Google Scholar] [CrossRef]
- Ansari, N.; Tripathi, A.; Ameen, S.; Shaheer Akhtar, M.; Jabeen, F.; Rahman Khan, A.; Luqman, M.; Rahman, Q.I. Green synthesis of nanomaterials: Properties and their potential applications. Sci. Adv. Mater. 2024, 16, 837–854. [Google Scholar] [CrossRef]
- Mosidze, E.; Franci, G.; Dell’Annunziata, F.; Capuano, N.; Colella, M.; Salzano, F.; Galdiero, M.; Bakuridze, A.; Folliero, V. Silver nanoparticle-mediated antiviral efficacy against enveloped viruses: A comprehensive review. Glob. Chall. 2025, 9, 2400380. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, F.; Shahbazi, S.; Reiisi, S.; Shabani, L. Novel green synthesis of silver nanoparticles using carotenoid extracted from Kocuria sp.: Determination of antioxidant, antimicrobial, and anti-human breast cancer activities. 3 Biotech 2025, 15, 91. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar] [PubMed]
- Khalid, A.; Satti, S.; Ayyub, A.; Nawab, F.; Tahir, M.; Naz, S.; Almutairi, M.H.; Alrefaei, A.F.; Khan, R.U.; Ibiwaye, D.I. Blood, feathers, and eggs as bioindicators of selenium sources and their impact on DNA damage in Japanese quails (Coturnix japonica). Res. Vet. Sci. 2025, 185, 105556. [Google Scholar] [CrossRef]
- Batool, S.; Khan, M.A.; Naz, S.; Shah, M.; Alrefai, A.F.; Ibiwoye, D.I.; Momand, N.K.; Khan, R.U. Anticoccidial effect of bitter apple (Citrullus colocynthis) seed powder and organic selenium nanoparticles in mitigating Eimeria tenella-induced challenge in quails. J. Appl. Anim. Res. 2025, 53, 2526393. [Google Scholar] [CrossRef]
- Naumenko, S.; Koshevoy, V.; Matsenko, O.; Miroshnikova, O.; Zhukova, I.; Bespalova, I. Antioxidant properties and toxic risks of using metal nanoparticles on health and productivity in poultry. J. World’s Poult. Res. 2023, 13, 292–306. [Google Scholar] [CrossRef]
- Ashraf, S.; Hussain, T.; Ahmed, A. Green synthesis and characterization of silver nanoparticles using Azadirachta indica extract. J. Nanomater. 2020, 2020, 1–9. [Google Scholar]
- El Kazaz, S.E.; Hafez, M.H.; Hassan, F.A. Influence of silver nanoparticles supplementation on reproductive and productive performance of Japanese quail. Egypt. Poult. Sci. J. 2020, 40, 965–978. [Google Scholar]
- Hafeez, A.; Hassni, S.F.; Naz, S.; Alonaizan, R.; Al-Akeel, R.K.; Dai, S.; Shamsi, S.; Khan, R.U. Impact of grape (Vitis vinifera) seed extract on egg production traits, nutrients digestibility, lipid peroxidation, and fertility of golden laying hens (Gallus gallus) during early stage of production. Vet. Q. 2023, 43, 1–7. [Google Scholar] [CrossRef]
- Guo, H.; Wan, H.; Lou, W.; Khan, R.U.; You, J.; Huang, B.; Hao, S.; Li, G.; Dai, S. Deoxynivalenol and T-2 toxin cause liver damage and egg quality degradation through endoplasmic reticulum stress in summer laying hens. Int. J. Biometeorol. 2024, 68, 1387–1396. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Bauer, M.; Kadasi, A.; Makovicky, P.; Scsukova, S. The toxic influence of silver and titanium dioxide nanoparticles on cultured ovarian granulosa cells. Reprod. Biol. 2021, 21, 100467. [Google Scholar] [CrossRef]
- Katarzyńska-Banasik, D.; Grzesiak, M.; Kowalik, K.; Sechman, A. Administration of silver nanoparticles affects ovarian steroidogenesis and may influence thyroid hormone metabolism in hens (Gallus domesticus). Ecotoxicol. Environ. Saf. 2021, 208, 111427. [Google Scholar] [CrossRef]
- Tiedemann, D.; Taylor, U.; Rehbock, C.; Jakobi, J.; Klein, S.; Kues, W.A.; Barcikowski, S.; Rath, D. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139, 931–942. [Google Scholar] [CrossRef]
- Lytvynenko, A.P.; Rieznichenko, L.S.; Sribna, V.A.; Stupchuk, M.I.; Grushka, N.G.; Shepel, A.; Voznesenska, T.Y.; Blashkiv, T.V.; Kaleynykova, O.N. Functional status of reproductive system under treatment of silver nanoparticles in female mice. Int. J. Reprod. Contracept. Obstet. Gynecol. 2017, 6, 1713–1770. [Google Scholar] [CrossRef]
- Alwan, S.H.; Al-Saeed, M.H. Biosynthesized silver nanoparticles (using Cinnamomum zeylanicum bark extract) improve the fertility status of rats with polycystic ovarian syndrome. Biocatal. Agric. Biotechnol. 2021, 38, 102217. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Muszyński, S.; Tomaszewska, E. Bioactive compounds, antibiotics and heavy metals: Effects on the intestinal structure and microbiome of monogastric animals—A non-systematic review. Ann. Anim. Sci. 2023, 23, 289–313. [Google Scholar] [CrossRef]
- Kotb, O.A.; Attia, A.I.; Reda, F.M.; Mahgoub, S.A.; Alagawany, M.; El-Kholy, M.S. Impact of silver nanoparticles (Ag-NPs) as a dietary supplement on growth performance, carcass traits, blood metabolites, digestive enzymes, and cecal microbiota of growing rabbits. Ann. Anim. Sci. 2024, 24, 1311–1322. [Google Scholar] [CrossRef]
- Williams, K.; Milner, J.; Boudreau, M.D.; Gokulan, K.; Cerniglia, C.E.; Khare, S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague–Dawley rats. Nanotoxicology 2015, 9, 279–289. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sethy, K.; Swain, P.S.; Biswal, S.P. Role of nano-selenium in poultry production and reproduction. In Impact of Climate Change on Livestock Health and Production; CRC Press: Boca Raton, FL, USA, 2022; pp. 139–146. [Google Scholar]
- Ibrahim, F.A.; Mousafa, K.E.M.E.; El Sabry, M.I.; Badr, J.M.; Hassan, A.S.I. Effect of egg disinfection by silver nanoparticles on eggshell microbial load, hatchability, and post-hatch performance of quail chicks. Int. J. Poult. Sci. 2018, 17, 234–242. [Google Scholar] [CrossRef]
- Farzinpour, A.; Karashi, N. The effects of nanosilver on egg quality traits in laying Japanese quail. Appl. Nanosci. 2013, 3, 95–99. [Google Scholar] [CrossRef]
- Faryadi, S.; Sheikhahmadi, A. Short-term effect of nanoparticles of silicon dioxide on performance and egg quality traits in laying quails. Res. J. Livest. Sci. 2017, 29, 173–182. [Google Scholar]
- El-Ratel, I.T.; El-Kholy, K.H.; Mousa, N.A.; El-Said, E.A. Impacts of selenium nanoparticles and spirulina alga to alleviate the deleterious effects of heat stress on reproductive efficiency, oxidative capacity, and immunity of doe rabbits. Anim. Biotechnol. 2023, 34, 3519–3532. [Google Scholar] [CrossRef]
- Qu, W.; Yang, J.; Sun, Z.; Zhang, R.; Zhou, F.; Zhang, K.; Xia, Y.; Huang, K.; Miao, D. Effect of selenium nanoparticles on antioxidative level, egg production and quality, and blood parameters of laying hens exposed to deoxynivalenol. J. Anim. Res. Nutr. 2017, 2, 1. [Google Scholar] [CrossRef]
- Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 2020, 25, 3191. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Chi, Z.; Li, W.; Zhang, X.; Zhang, Q. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: From the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J. Nanobiotechnol. 2019, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Noel Richard Prakash, L.X. Nanoparticles-induced oxidative damage in reproductive system and role of antioxidants on the induced toxicity. Life 2023, 13, 767. [Google Scholar] [CrossRef] [PubMed]
- Suku, A.S.; Mohanan, P.V.; Freeman, J.L. Characterization of genomic and epigenomic biomarkers of nanoparticle toxicity using the zebrafish model system. In Genomic and Epigenomic Biomarkers of Toxicology and Disease: Clinical and Therapeutic Actions; Elsevier: Amsterdam, The Netherlands, 2022; pp. 449–475. [Google Scholar]
- Xiao, B.; Wang, X.; Yang, J.; Wang, K.; Zhang, Y.; Sun, B.; Zhang, T.; Zhu, L. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. Ecotoxicol. Environ. Saf. 2020, 194, 110454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiang, Q.; Shen, L.; Ling, J.; Zhou, C.; Hu, J.; Chen, L. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae. Chemosphere 2020, 247, 125936. [Google Scholar] [CrossRef]
- Sati, A.; Ranade, T.N.; Mali, S.N.; Ahmad Yasin, H.K.; Pratap, A. Silver nanoparticles (AgNPs): Comprehensive insights into bio/synthesis, key influencing factors, multifaceted applications, and toxicity—A 2024 update. ACS Omega 2025, 10, 7549–7582. [Google Scholar] [CrossRef]
- Kulak, E.; Ognik, K.; Stępniowska, A.; Sembratowicz, I. The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens. Animals 2018, 27, 45–55. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Lakkaboyana, S.K.; Maitra, S.S. Silver nanoparticles in poultry health: Applications and toxicokinetic effects. In Silver Nanomaterials for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 685–704. [Google Scholar]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol. 2017, 67, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Tabandeh, M.R.; Samie, K.A.; Mobarakeh, E.S.; Khadem, M.D.; Jozaie, S. Silver nanoparticles induce oxidative stress, apoptosis, and impaired steroidogenesis in ovarian granulosa cells of cattle. Anim. Reprod. Sci. 2022, 236, 106908. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Razi, M.; Sadrkhanlou, R. Nanosilver particles increase follicular atresia: Correlation with oxidative stress and aromatization. Environ. Toxicol. 2017, 32, 2244–2255. [Google Scholar] [CrossRef] [PubMed]
| Ingredients | Contents (%) |
|---|---|
| Yellow Corn | 49.25 |
| Soya bean meal | 32.18 |
| Wheat starch | 10.15 |
| Limestone | 6.5 |
| Di-Calcium Phosphate | 1.16 |
| Salt (NaCl) | 0.3 |
| Alfalfa leaf powder | 0.16 |
| Vitamin and mineral premixture * | 0.3 |
| Calculated analysis * | |
| ME, Kcal/kg | 2830 |
| Crude protein | 22.63 |
| Crude Fiber | 2.21 |
| Ether Extract | 2.19 |
| Calcium | 2.82 |
| Phosphorous | 0.33 |
| Methionine + cysteine | 0.72 |
| Methionine | 0.44 |
| Lysine | 1.01 |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Waltzing | 8.16 ± 0.04 d | 15.25 ± 0.06 a | 12.51 ± 0.10 b | 10.44 ± 0.05 c | 10.15 ± 0.05 d | 0.01 *** |
| Wing flapping | 62.26 ± 0.24 d | 86.22 ± 0.60 a | 80.25 ± 0.38 b | 65.27 ± 5.61 c | 61.14 ± 0.10 cd | 0.01 *** |
| Tidbiting | 1.06 ± 0.02 c | 3.45 ± 0.06 a | 3.28 ± 0.12 b | 1.8 ± 0.05 c | 1.15 ± 0.13 c | 0.01 *** |
| Rear approach | 58.8 ± 0.09 e | 76.28 ± 0.51 a | 74.16 ± 0.62 b | 60.92 ± 0.13 c | 58.31 ± 0.47 d | 0.01 *** |
| Mounting | 49.61 ± 0.65 d | 65.31 ± 0.53 a | 63.73 ± 0.45 b | 52.39 ± 0.42 c | 51.48 ± 0.30 c | 0.01 *** |
| Treading and full copulation | 63.97 ± 0.36 d | 85.07 ± 0.62 a | 80.91 ± 0.55 b | 72.13 ± 0.22 c | 69.13 ± 0.42 c | 0.01 *** |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| HDEP | 67.67 ± 1.5 | 71.00 ± 1.00 | 73.34 ± 1.50 | 66.34 ± 1.50 | 61.00 ± 2.00 | 0.296 NS |
| Egg weight (g) | 11.00 ± 0.5 a | 11.33 ± 0.00 a | 11.00 ± 0.00 a | 9.00 ± 0.00 c | 10.00 ± 0.19 b | 0.01 *** |
| Egg mass (g) | 8.35 ± 0.10 a | 8.65 ± 0.26 a | 8.37 ± 0.25 a | 7.60 ± 0.30 b | 7.70 ± 0.22 b | 0.01 *** |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Shell weight (g) | 0.85 ± 0.03 b | 1.54 ± 0.55 a | 0.93 ± 0.08 b | 0.83 ± 0.13 b | 0.79 ± 0.47 c | 0.022 * |
| Shell thickness(mm) | 0.17 ± 0.01 | 0.51 ± 0.58 | 0.18 ± 0.00 | 0.17 ± 0.01 | 0.18 ± 0.02 | 0.434 NS |
| Albumen weight (g) | 4.61 ± 0.24 | 6.03 ± 0.07 | 5.29 ± 0.60 | 4.84 ± 1.21 | 5.60 ± 0.11 | 0.103 NS |
| Yolk weight (g) | 3.66 ± 0.27 b | 4.85 ± 0.07 a | 4.08 ± 0.09 a | 3.00 ± 0.48 b | 2.75 ± 0.03 c | 0.001 ** |
| Haugh Unit | 96.57 ± 1.0 b | 100.66 ± 1.4 a | 98.31 ± 5.65 b | 92.57 ± 1.90 c | 89.43 ± 4.74 c | 0.043 * |
| Shape Index (%) | 77.41 ± 2.29 b | 80.70 ± 0.55 a | 79.38 ± 0.83 a | 74.89 ± 2.43 c | 72.92 ± 2.52 c | 0.006 ** |
| Yolk Index (%) | 46.85 ± 0.92 b | 49.09 ± 0.61 a | 47.65 ± 1.15 b | 42.09 ± 1.82 c | 41.06 ± 2.07 c | 0.003 ** |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Fertility % | 79.35 ± 0.33 c | 81.50 ± 0.13 a | 80.00 ± 0.19 b | 77.27 ± 0.27 d | 76.00 ± 0.24 e | 0.001 *** |
| Hatchability % | 78.05 ± 0.22 c | 83.28 ± 0.29 a | 80.91 ± 0.59 b | 75.00 ± 0.52 d | 73.00 ± 0.51 e | 0.001 *** |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Ovary | 0.17 ± 0.03 d | 0.70 ± 0.04 b | 0.97 ± 0.05 a | 0.51 ± 0.05 c | 0.69 ± 0.06 b | 0.001 *** |
| Testes | 0.13 ± 0.03 d | 2.08 ± 0.03 b | 3.38 ± 0.13 a | 0.24 ± 0.03 c | 0.45 ± 0.03 c | 0.001 *** |
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Ovary | 0.17 ± 0.03 d | 0.70 ± 0.04 b | 0.97 ± 0.05 a | 0.51 ± 0.05 c | 0.69 ± 0.06 b | 0.314 |
| Fertility % | 79.35 ± 0.33 c | 81.50 ± 0.13 a | 80.00 ± 0.19 b | 77.27 ± 0.27 d | 76.00 ± 0.24 e | |
| Correlation (r) | 0.136 | |||||
| Regression R2 | 0.019 (1.9%) | |||||
| Adjusted R2 | −0.057 | |||||
| Slope (B) | 1.10 | |||||
| Slope p-value | 0.628 | |||||
| Parameter | Control | Ag-NPs (10 mg/kg) | Ag-NPs (20 mg/kg) | AgNO3 (10 mg/kg) | AgNO3 (20 mg/kg) | p Value |
|---|---|---|---|---|---|---|
| Ovary | 0.17 ± 0.03 d | 0.70 ± 0.04 b | 0.97 ± 0.05 a | 0.51 ± 0.05 c | 0.69 ± 0.06 b | 0.153 |
| Hatchability % | 78.05 ± 0.22 c | 83.28 ± 0.29 a | 80.91 ± 0.59 b | 75.00 ± 0.52 d | 73.00 ± 0.51 e | |
| Correlation (r) | 0.283 | |||||
| Regression R2 | 0.080 (8.0%) | |||||
| Adjusted R2 | 0.010 | |||||
| Slope (B) | 4.12 | |||||
| Slope p-value | 0.306 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalaifah, H.; Naz, S.; Asad, F.; Khan, R.U.; Abudabos, A.; Usama, M.; Ashfaq, S.; Satti, S.; Fatima, N.; Shehzadi, H.; et al. Comparative Impact of Silver Nitrate and Eco-Friendly Silver Nanoparticles on Sexual Behavior, Productivity, and Bioaccumulation in the Reproductive Organs of Japanese Quails. Animals 2025, 15, 3276. https://doi.org/10.3390/ani15223276
Al-Khalaifah H, Naz S, Asad F, Khan RU, Abudabos A, Usama M, Ashfaq S, Satti S, Fatima N, Shehzadi H, et al. Comparative Impact of Silver Nitrate and Eco-Friendly Silver Nanoparticles on Sexual Behavior, Productivity, and Bioaccumulation in the Reproductive Organs of Japanese Quails. Animals. 2025; 15(22):3276. https://doi.org/10.3390/ani15223276
Chicago/Turabian StyleAl-Khalaifah, Hanan, Shabana Naz, Farkhanda Asad, Rifat Ullah Khan, Ala Abudabos, Muhammad Usama, Swaira Ashfaq, Sania Satti, Nudrat Fatima, Hifza Shehzadi, and et al. 2025. "Comparative Impact of Silver Nitrate and Eco-Friendly Silver Nanoparticles on Sexual Behavior, Productivity, and Bioaccumulation in the Reproductive Organs of Japanese Quails" Animals 15, no. 22: 3276. https://doi.org/10.3390/ani15223276
APA StyleAl-Khalaifah, H., Naz, S., Asad, F., Khan, R. U., Abudabos, A., Usama, M., Ashfaq, S., Satti, S., Fatima, N., Shehzadi, H., & Alhidary, I. A. (2025). Comparative Impact of Silver Nitrate and Eco-Friendly Silver Nanoparticles on Sexual Behavior, Productivity, and Bioaccumulation in the Reproductive Organs of Japanese Quails. Animals, 15(22), 3276. https://doi.org/10.3390/ani15223276

