The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing, Management, and Experimental Design
2.2. Experimental Diets
2.3. Performance Assay and Sample Collection
2.4. Sample Analysis
2.5. Calculations and Statistical Analysis
3. Results
3.1. Nutrient Content of Experimental Diets
3.2. Growth Performance
3.3. Energy and Nutrient Digestibility and Utilization
3.4. Bone Mineralization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowieson, A.J. Factors that affect the nutritional value of maize for broilers. Anim. Feed Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Soybean Meal INFO Center. 2020. Available online: https://www.soymeal.org/technical-resources/ (accessed on 5 February 2025).
- Dudley-Cash, W.A. Soybean meal source, added enzyme affect nutritional value for chicks. Feedstuffs 2001, 73, 41. [Google Scholar]
- CVB (Centraal Veevoederbureau). Table of Feedstuffs. Information About Composition, Digestibility and Feeding Value; Centraal Veevoederbureau: Lelystad, The Netherlands, 1998. [Google Scholar]
- Bedford, M.R.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef]
- Pallauf, J.; Rimbach, G. Effect of supplemental phytase on mineral and trace element bioavailability and heavy metal accumulation in pigs with different type diets. In Phytase in Animal Nutrition and Animal Waste Management; Coehlbo, M.B., Kornegay, E.T., Eds.; BASF publication DC9601; BASF Corporation: Navi Mumbai, Maharashtra, India, 1997. [Google Scholar]
- Graf, E. Chemistry and applications of phytic acid: An overview. In Phytic Acid: Chemistry and Applications; Graf, E., Ed.; Pilatus Press: Minneapolis, MN, USA, 1986; pp. 1–21. [Google Scholar]
- Thompson, L.U. Phytic acid: A factor influencing starch digestibility and blood glucose response. In Phytic Acid: Chemistry and Applications; Graf, E., Ed.; Pilatus Press: Minneapolis, MN, USA, 1986; pp. 173–194. [Google Scholar]
- Adeola, O.; Cowieson, A.J. Board Invited Review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef]
- Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Rose, S.P.; Ivanova, S. Feed additives in poultry nutrition. Bulg. J. Agric. Sci. 2019, 25, 8–11. [Google Scholar]
- Zanella, I.; Sakomura, N.K.; Silversides, F.G.; Fqueirdo, A.; Pack, M. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult. Sci. 1999, 78, 561–568. [Google Scholar] [CrossRef]
- Silversides, F.G.; Bedford, M.R. Enzymes may improve energy, protein digestibility. Feedstuffs 1999, 71, 15–17. [Google Scholar]
- Munyaka, P.M.; Nandha, N.K.; Kiarie, E.; Nyachoti, C.M.; Khafipour, E. Impact of combined beta-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci. 2016, 95, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Dunaway, A.; Adedokun, S.A. Coccidia vaccine challenge and exogenous enzyme supplementation in broiler chicken 1. Effect on digesta viscosity, diet energy utilization, and apparent metabolizable energy value of wheat. Animals 2021, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mishra, B.; Bedford, M.R.; Jha, R. Effects of supplemental xylanase and xylooligosaccharides on production performance and gut health variables of broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 98. [Google Scholar] [CrossRef]
- Rabello, C.B.V.; Costa, M.J.; Nogueira, W.C.L.; Barbosa, J.G.; Rios-Alva, J.C.; Wyatt, C.L.; York, T.W.; Serrano, M.P.; Oviedo-Rondon, E.O. Effects of graded levels of exogenous xylanase in corn-soy diets with two amino acid density and fat levels postpellet in broiler chickens: Live performance, energy utilization, digestibility, and carcass characteristics. Poult. Sci. 2021, 100, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Melo-Duran, D.; González-Ortiz, G.; Villagomez-Estrada, S.; Bedford, M.R.; Farré, M.; Pérez, J.F.; Solà-Oriol, D. Using in feed xylanase or stimbiotic to reduce the variability in corn nutritive value for broiler chickens. Poult. Sci. 2024, 103, 103401. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Kwakernaak, C. Comparative effects of two phytases versus increasing the inorganic phosphorus content of the diet on nutrient and amino acid digestibility in broilers. Anim. Feed Sci. Technol. 2019, 253, 166–180. [Google Scholar] [CrossRef]
- Rizwanuddin, S.; Kumar, V.; Naik, B.; Singh, P.; Mishra, S.; Rustagi, S.; Kumar, V. Microbial phytase: Their sources production and role in the enhancement of nutritional aspects of food and feed additives. J. Agric. Food Res. 2023, 12, 100559. [Google Scholar] [CrossRef]
- Isah, A.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Chung, E.L.T.; Emmanuel, S.S. Influence of microbial phytase on nutrient digestibility, growth performance, geometric bone characteristics, and expression of calcium and phosphate homeostasis genes in broiler chickens. J. Appl. Anim. Res. 2025, 53, 2491557. [Google Scholar] [CrossRef]
- McKinney, K.; Combs, J.; Becker, P.; Humphries, A.; Filer, K.; Vriesekoop, F. Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Fermentation 2015, 1, 13–23. [Google Scholar] [CrossRef]
- Cobb-Vantress. Cobb 500TM Broiler Performance and Nutrient Supplement. 2022. Available online: www.cobb-vantress.com (accessed on 29 January 2025).
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association Office Analytical Chemists: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef]
- Bauer, M.M.; Ao, T.; Jacob, J.P.; Ford, M.J.; Pescatore, A.J.; Power, R.F.; Adedokun, S.A. Performance, energy, and nutrient utilization benefits with exogenous enzyme supplementation of wheat-soybean meal-based diets fed to 22-day-old broiler chickens. Poult. Sci. 2025, 104, 105039. [Google Scholar] [CrossRef]
- Adejumo, I.O.; Bryson, B.; Olojede, O.C.; Bedford, M.R.; Adedokun, S.A. Effect of sodium sources and exogenous phytase supplementation on growth performance, nutrient digestibility, and digesta pH of 21-day-old broilers. Poult. Sci. 2021, 100, 101467. [Google Scholar] [CrossRef]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS/STAT User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.F.; Plumstead, P.W.; Ravindran, V. Energy contribution of digestible starch, fat, and protein in response to combinations of exogenous xylanase, amylase, and protease in corn-based broiler diets. Poult. Sci. 2011, 90 (E-Suppl. 1), 20. [Google Scholar]
- Gehring, C.K.; Bedford, M.R.; Cowieson, A.J.; Dozier III, W.A. Effects of corn source on the relationship between in vitro assays and ileal nutrient digestibility. Poult. Sci. 2012, 91, 1908–1914. [Google Scholar] [CrossRef]
- Chesson, A. Supplementary enzymes to improve the utilization of pig and poultry diets. In Recent Advances in Animal Nutrition; Haresign, W., Cole, D.J.A., Eds.; Butterworths: Oxford, UK, 1987; pp. 71–89. [Google Scholar]
- Tang, D.; Hao, S.; Liu, G.; Nian, F.; Ru, Y. Effects of maize source and complex enzymes on performance and nutrient utilization of broilers. Asian-Australas. J. Anim. Sci. 2014, 27, 1755–1762. [Google Scholar] [CrossRef]
- Lalpanmawia, H.; Elangovan, A.V.; Sridhar, M.; Shet, D.; Ajith, S.; Pal, D.T. Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim. Feed Sci. Technol. 2014, 192, 81–89. [Google Scholar] [CrossRef]
- Walters, H.G.; Coelho, M.; Coufal, C.D.; Lee, J.T. Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. J. Appl. Poult. Res. 2019, 28, 1210–1225. [Google Scholar] [CrossRef]
- Yegani, M.; Korver, D.R. Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens. Poult. Sci. 2013, 92, 1208–1220. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed. Mill. Int. 1997, 191, 13–26. [Google Scholar]
- Francesch, M.; Geraert, P.A. Enzyme complex containing carbohydrases and phytase improves growth performance and bone mineralization of broilers fed reduced nutrient corn-soybean-based diets. Poult. Sci. 2009, 88, 1915–1924. [Google Scholar] [CrossRef]
- Gonzalez-Ortiz, G.; Olukosi, O.; Bedford, M.R. Evaluation of the effect of different wheats and xylanase supplementation on performance, nutrient and energy utilisation in broiler chicks. Anim. Nutr. 2016, 2, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Dadalt, J.C.; Trindade Neto, M.A. Nitrogen retention, energy, and amino acid digestibility of wheat bran, without or with multicarbohydrase and phytase supplementation, fed to broiler chickens. J. Anim. Sci. 2018, 96, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Parsons, C.M. Effect of day-old chick weight on the response of broilers to high doses of exogenous phytase. Poult. Sci. 2024, 103, 103296. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Emiola, A.; Asiedu, A.O.; Geunter, W.; Simmins, P.H.; Nyachoti, C.M. Performances and nutrient utilization responses in broilers fed phytase supplemented mash or pelleted corn-soybean meal-based diets. J. Poult. Sci. 2010, 47, 310–315. [Google Scholar] [CrossRef]
- Peniazek, J.; Smith, K.; Williams, M.P.; Manangi, M.K.; Vazqueez-Anon, M.; Solbak, A.; Miller, M.; Lee, J. Evaluation of increasing levels of microbial phytase in phosphorus deficient broiler diets via live broiler performancee, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poult. Sci. 2017, 96, 370–382. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Oduguwa, O.; Acamovic, T.; Bedford, M.R. Effects of dietary phytase on performance and nutrient metabolism in chickens. Br. Poult. Sci. 2008, 49, 144–154. [Google Scholar] [CrossRef]
- Al-Qahtani, M.; Ahiwe, E.U.; Abdallh, M.E.; Chang’a, E.P.; Gausi, H.; Bedford, M.R.; Iji, P.A. Endogenous enzyme activities and tibia bone development of broiler chickens fed wheat-based diets supplemented with xylanase, β-glucanase and phytase. Anim. Biosci. 2021, 34, 1049–1060. [Google Scholar] [CrossRef]
- Leyva-Jimenez, H.; Alsadwi, A.M.; Gardner, K.; Voltura, E.; Bailey, C.A. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult. Sci. 2019, 98, 811–819. [Google Scholar] [CrossRef]
| Ingredient | Positive Control | Negative Control 2 |
|---|---|---|
| Treatment A | Treatment B | |
| Corn | 62.42 | 59.30 |
| Soybean meal (47% CP) | 33.32 | 32.21 |
| Wheat bran | 0.00 | 5.23 |
| Soy oil | 0.28 | 0.00 |
| L-Lysine HCl | 0.32 | 0.33 |
| DL-Methionine | 0.29 | 0.29 |
| Salt (NaCl) | 0.41 | 0.41 |
| Limestone | 1.06 | 1.17 |
| Dicalcium phosphate | 1.67 | 0.83 |
| Vitamin–mineral premix 3 | 0.15 | 0.15 |
| Choline chloride (60%) | 0.08 | 0.08 |
| Total | 100.0 | 100.0 |
| Formulated nutrient and energy content | ||
| AMEn, kcal/kg | 2975 | 2885 |
| CP, % | 21.5 | 21.5 |
| Ca, % | 0.90 | 0.75 |
| Total P, % | 0.71 | 0.59 |
| Available P, % | 0.45 | 0.30 |
| SID AA 4 | ||
| Lys, % | 1.20 | 1.20 |
| Met, % | 0.55 | 0.55 |
| Met + Cys, % | 0.80 | 0.80 |
| Thr, % | 0.66 | 0.67 |
| Analyzed nutrient and energy content | ||
| CP, % | 20.5 | 20.8 |
| Gross energy, kcal/kg | 3947 | 3897 |
| Ca, % | 0.99 | 0.77 |
| Total P, % | 0.69 | 0.57 |
| Lys, % | 1.44 | 1.43 |
| Met, % | 0.58 | 0.55 |
| Met + Cys, % | 0.88 | 0.86 |
| Thr, % | 0.76 | 0.76 |
| Ingredient | Positive Control | Negative Control |
|---|---|---|
| Treatment A | Treatment B 2 | |
| Corn | 66.55 | 65.60 |
| Soybean meal (47% CP) | 28.35 | 27.40 |
| Wheat bran | 0.00 | 3.49 |
| Soy oil | 0.90 | 0.00 |
| L-Lysine HCl | 0.37 | 0.38 |
| DL-Methionine | 0.29 | 0.29 |
| L-Threonine | 0.04 | 0.05 |
| Salt (NaCl) | 0.39 | 0.39 |
| Limestone | 0.98 | 1.10 |
| Dicalcium phosphate | 1.43 | 0.60 |
| Vitamin–mineral premix 3 | 0.15 | 0.15 |
| Choline chloride (60%) | 0.08 | 0.08 |
| Titanium dioxide | 0.50 | 0.50 |
| Total | 100.0 | 100.0 |
| Formulated nutrient and energy content | ||
| AMEn, kcal/kg | 3057 | 2967 |
| CP, % | 19.5 | 19.5 |
| Ca, % | 0.80 | 0.65 |
| Total P, % | 0.64 | 0.51 |
| Available P, % | 0.40 | 0.25 |
| SID 4 amino acid, % | ||
| Lys | 1.13 | 1.13 |
| Met | 0.53 | 0.53 |
| Met + Cys | 0.76 | 0.76 |
| Thr | 0.60 | 0.61 |
| Analyzed nutrient and energy content | ||
| CP, % | 19.2 | 18.8 |
| Gross energy, kcal/kg | 3943 | 3908 |
| Ca, % | 0.73 | 0.67 |
| Total P, % | 0.60 | 0.50 |
| Lys, % | 1.38 | 1.36 |
| Met, % | 0.49 | 0.52 |
| Me + Cys, % | 0.78 | 0.81 |
| Thr, % | 0.76 | 0.76 |
| Treatment | Diet | Allzyme Spectrum, mg/kg | IBW, g/b | Feed Intake, g/b/d | Body Weight Gain, g/b/d | ||||
|---|---|---|---|---|---|---|---|---|---|
| d 0–9 | d 9–21 | d 0–21 | d 0–9 | d 9–21 | d 0–21 | ||||
| A | PC | 0 | 40.7 | 21.3z | 74.2 | 52.6 | 17.6z | 47.6 | 35.2 |
| B | NC | 0 | 40.4z | 21.2 | 68.3 | 48.6 | 17.3z | 43.1 | 32.1 |
| C | NC | 150 | 40.8 | 22.2 | 70.0 | 50.4 | 18.3 | 45.0z | 33.5 |
| D | NC | 200 | 41.1z | 20.7 | 70.1z | 48.1 | 16.9 | 46.7z | 32.2 |
| E | NC | 250 | 40.7 | 22.2z | 73.3z | 52.3z | 17.5 | 47.1 | 34.8 |
| Pooled standard deviation | 0.63 | 1.32 | 2.43 | 2.77 | 1.71 | 3.11 | 3.38 | ||
| p-value | 0.187 | 0.069 | 0.002 | 0.001 | 0.446 | 0.015 | 0.147 | ||
| --------------------------------Probability---------------------------------- | |||||||||
| PC vs. NC | 0.309 | 0.844 | <0.001 | 0.003 | 0.684 | 0.002 | 0.047 | ||
| PC vs. Enzyme-supplemented diets | 0.448 | 0.435 | 0.018 | 0.029 | 0.964 | 0.235 | 0.176 | ||
| Linear effect of enzyme supplementation | 0.204 | 0.863 | 0.004 | 0.002 | 0.737 | 0.230 | 0.061 | ||
| Quadratic effect of enzyme supplementation | 0.035 | 0.262 | 0.024 | 0.564 | 0.503 | 0.003 | 0.504 | ||
| Treatment | Diet | Allzyme® Spectrum, mg/kg | Feed Efficiency | ||
|---|---|---|---|---|---|
| Days 0–9 | Days 9–21 | Days 0–21 | |||
| A | PC | 0 | 0.831 | 0.641 | 0.668 |
| B | NC | 0 | 0.808z | 0.628z | 0.666z |
| C | NC | 150 | 0.826 | 0.632 | 0.663 |
| D | NC | 200 | 0.813 | 0.661 | 0.681z |
| E | NC | 250 | 0.824z | 0.652 | 0.684z |
| Pooled standard deviation | 0.04 | 0.02 | 0.03 | ||
| p-value | 0.628 | 0.020 | 0.339 | ||
| --------------------------------Probability---------------------------------- | |||||
| PC vs. NC | 0.182 | 0.228 | 0.827 | ||
| PC vs. Enzyme-supplemented diets | 0.471 | 0.402 | 0.433 | ||
| Linear effect of enzyme supplementation | 0.352 | 0.281 | 0.524 | ||
| Quadratic effect of enzyme supplementation | 0.617 | 0.004 | 0.225 | ||
| Treatment | Diet | Allzyme® Spectrum, mg/kg | DM, % | N, % | Ca, % | P, % | Energy, % | ADE, Kcal/kg |
|---|---|---|---|---|---|---|---|---|
| A | PC | 0 | 79.7 | 86.5 | 46.1z | 55.6z | 81.3z | 3561z |
| B | NC | 0 | 74.3 | 83.1 | 49.0 | 47.3 | 76.7 | 3328 |
| C | NC | 150 | 80.1 | 87.1 | 63.8z | 61.5z | 81.8 | 3550z |
| Dz | NC | 200 | 79.0 | 86.9 | 62.1 | 64.3 | 80.9 | 3510 |
| Ez | NC | 250 | 80.1 | 87.5 | 57.2 | 67.8 | 81.7 | 3549 |
| Pooled standard deviation | 1.95 | 1.67 | 9.05 | 5.37 | 1.73 | 75.26 | ||
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| --------------------------------Probability---------------------------------- | ||||||||
| PC vs. NC | <0.001 | <0.001 | 0.451 | 0.002 | <0.001 | <0.001 | ||
| PC vs. Enzyme-supplemented diets | 0.909 | 0.271 | <0.001 | <0.001 | 0.777 | 0.403 | ||
| Linear effect of enzyme supplementation | 0.716 | 0.462 | <0.001 | 0.001 | 0.882 | 0.235 | ||
| Quadratic effect of enzyme supplementation | <0.001 | <0.001 | 0.210 | <0.001 | <0.001 | <0.001 | ||
| Treatment | Diet | Allzyme® Spectrum mg/kg | DM, % | N, % | Ca, % | P, % | Energy, % | AME, kcal/kg | AMEn, Kcal/kg |
|---|---|---|---|---|---|---|---|---|---|
| A | PC | 0 | 76.4 | 61.9 | 58.3 | 58.9 | 78.7 | 3446 | 3351 |
| B | NC | 0 | 66.8 | 51.7 | 49.5 | 45.0 | 69.7 | 3024 | 2853 |
| C | NC | 150 | 77.1 | 65.0 | 66.8z | 64.0 | 79.0 | 3429 | 3305 |
| D | NC | 200 | 77.3 | 64.7 | 69.0z | 65.3z | 79.1 | 3436 | 3312 |
| E | NC | 250 | 77.6z | 65.3 | 69.5 | 64.6 | 79.5z | 3451z | 3336 |
| Pooled standard deviation | 1.17 | 4.13 | 4.63 | 3.24 | 1.06 | 46.15 | 54.31 | ||
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| --------------------------------Probability---------------------------------- | |||||||||
| PC vs. NC | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| PC vs. Enzyme-supplemented diets | 0.031 | 0.045 | <0.001 | <0.001 | 0.172 | 0.657 | 0.101 | ||
| Linear effect of enzyme supplementation | 0.065 | 0.081 | <0.001 | <0.001 | 0.316 | 0.497 | 0.060 | ||
| Quadratic effect of enzyme supplementation | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| Treatment | Diet | Allzyme® Spectrum, mg/kg | Arg, % | His, % | Ile, % | Leu, % | Lys, % | Met, % | Phe, % | Thr, % | Trp, % | Val, % |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | PC | 0 | 91.6 | 90.0 | 87.1 | 88.8 | 91.4 | 94.5 | 88.6 | 83.7 | 89.7 | 86.3 |
| B | NC | 0 | 89.1 | 87.0 | 84.4 | 86.0 | 89.6 | 93.4 | 85.5 | 79.3 | 86.1 | 83.1 |
| C | NC | 150 | 92.0 | 90.4 | 88.4 | 89.7 | 92.1 | 95.0 | 89.6 | 85.0 | 89.6 | 87.3 |
| D | NC | 200 | 91.8 | 90.3 | 88.1 | 89.4 | 92.0 | 95.0 | 89.3 | 84.0 | 89.4 | 87.0 |
| E | NC | 250 | 92.3 | 90.8 | 88.9 | 90.0 | 92.4 | 95.3 | 89.9 | 85.6 | 89.6 | 87.7 |
| Pooled standard deviation | 1.30 | 1.16 | 1.93 | 1.56 | 1.35 | 0.98 | 1.55 | 1.94 | 1.66 | 1.92 | ||
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| -----------------------------------------------Probability-------------------------------------------- | ||||||||||||
| PC vs. NC | <0.001 | <0.001 | 0.004 | <0.001 | 0.005 | 0.014 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| PC vs. Enzyme-supplemented diets | 0.383 | 0.230 | 0.058 | 0.119 | 0.141 | 0.118 | 0.102 | 0.143 | 0.830 | 0.181 | ||
| Linear effect of enzyme supplementation | 0.654 | 0.481 | 0.147 | 0.257 | 0.278 | 0.233 | 0.228 | 0.306 | 0.771 | 0.352 | ||
| Quadratic effect of enzyme supplementation | <0.001 | <0.001 | 0.001 | <0.001 | 0.002 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| Treatment | Diet | Allzyme® Spectrum, mg/kg | Ala, % | Asp, % | Cys, % | Glu, % | Gly, % | Pro, % | Ser, % | Tyr, % |
|---|---|---|---|---|---|---|---|---|---|---|
| A | PC | 0 | 88.4 | 87.4 | 80.7 | 91.8 | 84.7 | 87.8 | 87.2 | 88.5 |
| B | NC | 0 | 85.2 | 84.3 | 74.6 | 89.7 | 80.2 | 84.5 | 83.1 | 84.6 |
| C | NC | 150 | 89.0 | 88.4 | 81.3 | 92.5 | 85.1 | 88.6 | 88.1z | 88.9 |
| Dz | NC | 200 | 88.7 | 88.1 | 80.5 | 92.3 | 84.7 | 88.2 | 87.4 | 88.7 |
| Ez | NC | 250 | 89.3 | 88.7 | 81.8 | 92.7 | 85.4 | 88.7 | 88.0 | 89.4 |
| Pooled standard deviation | 1.62 | 1.64 | 2.58 | 1.23 | 1.96 | 1.59 | 1.50 | 1.55 | ||
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| -----------------------------------------------Probability-------------------------------------------- | ||||||||||
| PC vs. NC | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| PC vs. Enzyme-supplemented diets | 0.352 | 0.120 | 0.619 | 0.126 | 0.645 | 0.254 | 0.192 | 0.227 | ||
| Linear effect of enzyme supplementation | 0.577 | 0.256 | 0.965 | 0.251 | 0.909 | 0.439 | 0.595 | 0.436 | ||
| Quadratic effect of enzyme supplementation | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
| Treatment | Diet | Allzyme® Spectrum, mg/kg | Bone Breaking Strength, kgF | Bone Ash, % |
|---|---|---|---|---|
| A | PC | 0 | 18.4 | 51.5 |
| B | NC | 0 | 12.8 | 48.5 |
| C | NC | 150 | 17.6 | 51.8 |
| D | NC | 200 | 17.5 | 51.9z |
| E | NC | 250 | 17.7 | 51.6 |
| Standard deviation | 1.23 | 1.20 | ||
| p-value | <0.001 | <0.001 | ||
| --------------------------------Probability---------------------------------- | ||||
| PC vs. NC | <0.001 | <0.001 | ||
| PC vs. Enzyme-supplemented diets | 0.090 | 0.610 | ||
| Linear effect of enzyme supplementation | 0.091 | 0.488 | ||
| Quadratic effect of enzyme supplementation | <0.001 | <0.001 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, M.M.; Ao, T.; Jacob, J.P.; Ford, M.J.; Pescatore, A.J.; Power, R.F.; Adedokun, S.A. The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes. Animals 2025, 15, 3254. https://doi.org/10.3390/ani15223254
Bauer MM, Ao T, Jacob JP, Ford MJ, Pescatore AJ, Power RF, Adedokun SA. The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes. Animals. 2025; 15(22):3254. https://doi.org/10.3390/ani15223254
Chicago/Turabian StyleBauer, Megan M., Tuoying Ao, Jacqueline P. Jacob, Michael J. Ford, Anthony J. Pescatore, Ronan F. Power, and Sunday A. Adedokun. 2025. "The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes" Animals 15, no. 22: 3254. https://doi.org/10.3390/ani15223254
APA StyleBauer, M. M., Ao, T., Jacob, J. P., Ford, M. J., Pescatore, A. J., Power, R. F., & Adedokun, S. A. (2025). The Performance, Energy and Nutrient Utilization, and Bone Mineralization of Broiler Chickens Fed Corn-Soybean Meal-Based Diets with Reduced Metabolizable Energy, Calcium, and Available Phosphorus Supplemented with Exogenous Enzymes. Animals, 15(22), 3254. https://doi.org/10.3390/ani15223254

