Recessive Effect of GC-NPFFR2 rs137147462 on Somatic Cell Score (Mastitis Susceptibility) in Japanese Holsteins
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotypic Records
2.2. DNA Extraction and Genotyping
2.3. Evaluation of Genotypic Distributions
2.4. Data Classification
2.5. Statistical Analysis
- Main effect model:
- Interaction model:where represents the test-day phenotype, is the fixed effect of genotype, is DIM stages, is the genotype-by-DIM interaction, is parity group, is season, is calving year, is the random effect of cowID and n denotes repeated test-day records within each cow, and is the residual error.
2.6. Software
3. Results
3.1. Genetic Variation and Independence of Candidate SNPs
3.2. Main Effects of Genotype on Test-Day Milk Production and Somatic Cell Score
3.3. Genotype-by-DIM Interactions Affecting Milk Traits and SCS
3.3.1. GC-NPFFR2 rs137147462
3.3.2. GC-NPFFR2 rs109452259
3.3.3. BRCA1 rs134817801
3.3.4. DGAT1 p.K232A
3.4. Evaluation of Genetic Inheritance Models
3.5. Supporting Analysis of SCC-Based Mastitis Severity Associated with GC-NPFFR2 rs137147462
4. Discussion
4.1. Effects of Two Loci in the GC-NPFFR2 Region on SCS and SCC-Based Mastitis Traits
4.2. Effects of BRCA1 rs134817801 on SCS and Milk Composition Traits
4.3. Effects of DGAT1 p.K232A on Milk Composition and Mastitis-Related Traits
4.4. Limitations, Perspectives, and Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seegers, H.; Fourichon, C.; Beaudeau, F.O. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Hogeveen, H.; Huijps, K.; Lam, T.J. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Bradley, A. Bovine mastitis: An evolving disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef]
- McCubbin, K.D.; de Jong, E.; Lam, T.J.G.M.; Kelton, D.F.; Middleton, J.R.; McDougall, S.; De Vliegher, S.; Godden, S.; Rajala-Schultz, P.J.; Rowe, S.; et al. Invited review: Selective use of antimicrobials in dairy cattle at drying-off. J. Dairy Sci. 2022, 105, 7161–7189. [Google Scholar] [CrossRef]
- de Jong, E.; McCubbin, K.D.; Speksnijder, D.; Dufour, S.; Middleton, J.R.; Ruegg, P.L.; Lam, T.J.G.M.; Kelton, D.F.; McDougall, S.; Godden, S.M.; et al. Invited review: Selective treatment of clinical mastitis in dairy cattle. J. Dairy Sci. 2023, 106, 3761–3778. [Google Scholar] [CrossRef]
- Zwald, N.R.; Weigel, K.A.; Chang, Y.M.; Welper, R.D.; Clay, J.S. Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. J. Dairy Sci. 2004, 87, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Bloemhof, S.; Dejong, G.; Dehaas, Y. Genetic parameters for clinical mastitis in the first three lactations of Dutch Holstein cattle. Vet. Microbiol. 2009, 134, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Boichard, D. Genetics of resistance to mastitis in dairy cattle. Vet. Res. 2003, 34, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Schutz, M.M. Genetic evaluation of somatic cell scores for United States dairy cattle. J. Dairy Sci. 1994, 77, 2113–2129. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Shook, G.E. A Lactation Measure of Somatic Cell Count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef]
- Ali, A.K.A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk1. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Sahana, G.; Cai, Z.; Sanchez, M.P.; Bouwman, A.C.; Boichard, D. Invited review: Good practices in genome-wide association studies to identify candidate sequence variants in dairy cattle. J. Dairy Sci. 2023, 106, 5218–5241. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, M.; Kumar, H.; Nayak, S.S.; Rajawat, D.; Parida, S.; Bhushan, B.; Sharma, A.; Dutt, T. Molecular characterization of CRBR2 fragment of TLR4 gene in association with mastitis in Vrindavani cattle. Microb. Pathog. 2022, 165, 105483. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; Vanraden, P.M.; Cole, J.B.; Da, Y. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef]
- Loh, P.R.; Tucker, G.; Bulik-Sullivan, B.K.; Vilhjalmsson, B.J.; Finucane, H.K.; Salem, R.M.; Chasman, D.I.; Ridker, P.M.; Neale, B.M.; Berger, B.; et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 2015, 47, 284–290. [Google Scholar] [CrossRef]
- Loh, P.R.; Kichaev, G.; Gazal, S.; Schoech, A.P.; Price, A.L. Mixed-model association for biobank-scale datasets. Nat. Genet. 2018, 50, 906–908. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2020, 10, 910. [Google Scholar] [CrossRef]
- Cikos, S.; Gregor, P.; Koppel, J. Sequence and tissue distribution of a novel G-protein-coupled receptor expressed prominently in human placenta. Biochem. Biophys. Res. Commun. 1999, 256, 352–356. [Google Scholar] [CrossRef]
- Mollereau, C.; Mazarguil, H.; Marcus, D.; Quelven, I.; Kotani, M.; Lannoy, V.; Dumont, Y.; Quirion, R.; Detheux, M.; Parmentier, M.; et al. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur. J. Pharmacol. 2002, 451, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Waqas, S.F.H.; Hoang, A.C.; Lin, Y.-T.; Ampem, G.; Azegrouz, H.; Balogh, L.; Thuróczy, J.; Chen, J.-C.; Gerling, I.C.; Nam, S.; et al. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J. Clin. Investig. 2017, 127, 2842–2854. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, J.; Li, J.; Zhang, L.; Gao, X.; Gao, H.J.; Xu, S. Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene 2012, 505, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P.; et al. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef]
- Thaller, G.; Krämer, W.; Winter, A.; Kaupe, B.; Erhardt, G.; Fries, R. Effects of DGAT1 variants on milk production traits in German cattle breeds. J. Anim. Sci. 2003, 81, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, P.; Rashidi, A. Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis. J. Dairy Sci. 2023, 106, 2573–2587. [Google Scholar] [CrossRef]
- Akiyama, Y.; Ando, T.; Nozaki, N.; Arif, M.; Ide, Y.; Wang, S.; Miura, N. Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle. Genes 2025, 16, 1000. [Google Scholar] [CrossRef]
- Lipkens, Z.; Piepers, S.; De Visscher, A.; De Vliegher, S. Evaluation of test-day milk somatic cell count information to predict intramammary infection with major pathogens in dairy cattle at drying off. J. Dairy Sci. 2019, 102, 4309–4321. [Google Scholar] [CrossRef]
- Costa, A.; Bovenhuis, H.; Egger-Danner, C.; Fuerst-Waltl, B.; Boutinaud, M.; Guinard-Flament, J.; Obritzhauser, W.; Visentin, G.; Penasa, M. Mastitis has a cumulative and lasting effect on milk yield and lactose content in dairy cows. J. Dairy Sci. 2025, 108, 635–650. [Google Scholar] [CrossRef]
- Smith, K.L.; Hillerton, J.E.; Harmon, R.J. Guidelines on Normal and Abnormal Raw Milk Based on Somatic Cell Counts and Signs of Clinical Mastitis; National Mastitis Council: Madison, WI, USA, 2001. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org (accessed on 1 August 2025).
- Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Softw. 2015, 64, 1–23. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Lumley, T. R Package, version 1.3.8.1.2. Genetics: Population Genetics. R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://CRAN.R-project.org/package=genetics (accessed on 1 August 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V. R Package, version 1.8.8. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 August 2025).
- Venables, W.N.; Ripley, B.D. Random and Mixed Effects. In Modern Applied Statistics with S; Venables, W.N., Ripley, B.D., Eds.; Springer: New York, NY, USA, 2002; pp. 271–300. [Google Scholar]
- Brant, R. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics 1990, 46, 1171–1178. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Costa, A.; Egger-Danner, C.; Mészáros, G.; Fuerst, C.; Penasa, M.; Sölkner, J.; Fuerst-Waltl, B. Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows. J. Dairy Sci. 2019, 102, 4238–4248. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited review: Milk lactose—Current status and future challenges in dairy cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Stelwagen, K.; Farr, V.C.; McFadden, H.A. Alteration of the Sodium to Potassium Ratio in Milk and the Effect on Milk Secretion in Goats. J. Dairy Sci. 1999, 82, 52–59. [Google Scholar] [CrossRef]
- Carta, S.; Cesarani, A.; Correddu, F.; Macciotta, N.P.P. Understanding the phenotypic and genetic background of the lactose content in Sarda dairy sheep. J. Dairy Sci. 2023, 106, 3312–3320. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef]
- Herve, L.; Quesnel, H.; Veron, M.; Portanguen, J.; Gross, J.J.; Bruckmaier, R.M.; Boutinaud, M. Milk yield loss in response to feed restriction is associated with mammary epithelial cell exfoliation in dairy cows. J. Dairy Sci. 2019, 102, 2670–2685. [Google Scholar] [CrossRef]
- Wellnitz, O.; Bruckmaier, R.M. Invited review: The role of the blood–milk barrier and its manipulation for the efficacy of the mammary immune response and milk production. J. Dairy Sci. 2021, 104, 6376–6388. [Google Scholar] [CrossRef]
- Visentin, G.; Penasa, M.; Niero, G.; Cassandro, M.; De Marchi, M. Phenotypic characterisation of major mineral composition predicted by mid-infrared spectroscopy in cow milk. Ital. J. Anim. Sci. 2018, 17, 549–556. [Google Scholar] [CrossRef]
- Costa, A.; Lopez-Villalobos, N.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows. Animal 2019, 13, 909–916. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Thakur, M.S.; Khare, V.; Jain, A.; Tiwari, S.P. Genetic analysis of milk minerals in dairy cattle: A review. J. Appl. Genet. 2024, 65, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Schwarzenbacher, H.; Mészáros, G.; Fuerst-Waltl, B.; Fuerst, C.; Sölkner, J.; Penasa, M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J. Dairy Sci. 2019, 102, 10088–10099. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: Highlighting the predictive power of lactose and electrical conductivity. J. Dairy Res. 2018, 85, 193–200. [Google Scholar] [CrossRef]
- Meredith, B.; Lynn, D.; Berry, D.; Kearney, F.; Bradley, D.; Finlay, E.; Fahey, A. A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet. 2013, 4, 229. [Google Scholar] [CrossRef]
- Tiezzi, F.; Parker-Gaddis, K.L.; Cole, J.B.; Clay, J.S.; Maltecca, C. A Genome-Wide Association Study for Clinical Mastitis in First Parity US Holstein Cows Using Single-Step Approach and Genomic Matrix Re-Weighting Procedure. PLoS ONE 2015, 10, e0114919. [Google Scholar] [CrossRef]
- Sahana, G.; Guldbrandtsen, B.; Thomsen, B.; Holm, L.E.; Panitz, F.; Brøndum, R.F.; Bendixen, C.; Lund, M.S. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J. Dairy Sci. 2014, 97, 7258–7275. [Google Scholar] [CrossRef]
- Olsen, H.G.; Knutsen, T.M.; Lewandowska-Sabat, A.M.; Grove, H.; Nome, T.; Svendsen, M.; Arnyasi, M.; Sodeland, M.; Sundsaasen, K.K.; Dahl, S.R.; et al. Fine mapping of a QTL on bovine chromosome 6 using imputed full sequence data suggests a key role for the group-specific component (GC) gene in clinical mastitis and milk production. Genet. Sel. Evol. 2016, 48, 79. [Google Scholar] [CrossRef]
- Cai, Z.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genom. 2018, 19, 656. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Takeda, H.; Costa Monteiro Moreira, G.; Karim, L.; Mullaart, E.; Coppieters, W.; Appeltant, R.; Veerkamp, R.F.; Groenen, M.A.M.; Georges, M.; et al. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet. 2021, 17, e1009331. [Google Scholar] [CrossRef]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef]
- Bennewitz, J.; Reinsch, N.; Grohs, C.; Levéziel, H.; Malafosse, A.; Thomsen, H.; Xu, N.; Looft, C.; Kühn, C.; Brockmann, G.A.; et al. Combined analysis of data from two granddaughter designs: A simple strategy for QTL confirmation and increasing experimental power in dairy cattle. Genet. Sel. Evol. 2003, 35, 319. [Google Scholar] [CrossRef] [PubMed]
- Bennewitz, J.R.; Reinsch, N.; Guiard, V.; Fritz, S.; Thomsen, H.; Looft, C.; Kühn, C.; Schwerin, M.; Weimann, C.; Erhardt, G.; et al. Multiple Quantitative Trait Loci Mapping With Cofactors and Application of Alternative Variants of the False Discovery Rate in an Enlarged Granddaughter Design. Genetics 2004, 168, 1019–1027. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Schenkel, F.S.; Sargolzaei, M.; Robinson, J.A.B. A Genome Scan to Detect Quantitative Trait Loci for Economically Important Traits in Holstein Cattle Using Two Methods and a Dense Single Nucleotide Polymorphism Map. J. Dairy Sci. 2008, 91, 3225–3236. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.; Kramer, W.; Werner, F.A.; Kollers, S.; Kata, S.; Durstewitz, G.; Buitkamp, J.; Womack, J.E.; Thaller, G.; Fries, R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA 2002, 99, 9300–9305. [Google Scholar] [CrossRef]
- Barbosa Da Silva, M.V.G.; Sonstegard, T.S.; Thallman, R.M.; Connor, E.E.; Schnabel, R.D.; Van Tassell, C.P. Characterization of DGAT1 Allelic Effects in a Sample of North American Holstein Cattle. Anim. Biotechnol. 2010, 21, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Manga, I.; Říha, H. The DGAT1 gene K232A mutation is associated with milk fat content, milk yield and milk somatic cell count in cattle (Short Communication). Arch. Anim. Breed. 2011, 54, 257–263. [Google Scholar] [CrossRef]
- Bovenhuis, H.; Visker, M.H.P.W.; Van Valenberg, H.J.F.; Buitenhuis, A.J.; Van Arendonk, J.A.M. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J. Dairy Sci. 2015, 98, 6572–6582. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Tiezzi, F.; Penasa, M.; De Marchi, M.; Cassandro, M. Short communication: Association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. J. Dairy Sci. 2018, 101, 8087–8091. [Google Scholar] [CrossRef] [PubMed]


| Gene (Locus) | rsID | Position | Reference Allele (Wild-Type) | Alternate Allele (Mutant) | Assay ID |
|---|---|---|---|---|---|
| GC-NPFFR2 | rs137147462 | Chr6: 87,153,414 | A | G | ANFVV7A |
| GC-NPFFR2 | rs109452259 | Chr6: 87,068,809 | C | A | ANGZPR7 |
| BRCA1 | rs134817801 | Chr19: 43,092,929 | A | C | AN2XG4G |
| DGAT1 p.K232A | rs109234250 /rs109326954 | Chr14: 611,019–611,020 | AA (K; Lysine) | GC (A; Alanine) | ANH6HP7 |
| Genotypes | Alleles | p-Value in HWE Test | ||||
|---|---|---|---|---|---|---|
| n | Frequency (%) (95%CI) | n | Frequency (%) (95%CI) | |||
| GC-NPFFR2 rs137147462 | AA(A) | 48 | 17.8 (13.5–23.0) | 226 | 42.0 (37.8–46.3) | |
| AG | 130 | 48.3 (42.2–54.5) | 0.901 | |||
| GG (G) | 91 | 33.8 (28.2–39.8) | 312 | 58.0 (53.7–62.2) | ||
| GC-NPFFR2 rs109452259 | CC(C) | 57 | 21.2 (16.5–26.6) | 252 | 46.8 (42.6–51.2) | |
| CA | 138 | 51.3 (45.2–57.4) | 0.713 | |||
| AA (A) | 74 | 27.5 (22.3–33.3) | 286 | 53.2 (48.8–57.4) | ||
| BRCA1 rs134817801 | AA(A) | 92 | 34.2 (28.5–40.2) | 313 | 58.2 (53.9–62.4) | |
| AC | 129 | 48.0 (41.9–54.1) | 0.803 | |||
| CC(C) | 48 | 17.8 (13.5–23.0) | 225 | 41.8 (37.6–46.1) | ||
| DGAT1 p.K232A | KK (K) | 13 | 4.8 (2.5–8.1) | 130 | 24.2 (20.6–28.0) | |
| KA | 104 | 38.7 (32.8–44.8) | 0.411 | |||
| AA (A) | 152 | 56.5 (50.4–62.5) | 408 | 75.8 (72.0–79.4) | ||
| GC-NPFFR2 rs109452259 | LD test | |||||
| CC | CA | AA | r2 | D′ | ||
| GC-NPFFR2 | AA | 19 | 24 | 5 | ||
| rs137147462 | AG | 27 | 81 | 22 | 0.148 | 0.425 |
| GG | 11 | 33 | 47 | |||
| BRCA1 rs134817801 | LD test | |||||
| AA | AC | CC | r2 | D′ | ||
| GC-NPFFR2 | AA | 21 | 19 | 8 | ||
| rs137147462 | AG | 40 | 65 | 25 | 0.001 | 0.044 |
| GG | 31 | 45 | 15 | |||
| DGAT1 p.K232A rs109234250 | LD test | |||||
| KK | KA | AA | r2 | D′ | ||
| GC-NPFFR2 | AA | 2 | 16 | 30 | ||
| rs137147462 | AG | 8 | 48 | 74 | 0.002 | 0.096 |
| GG | 3 | 40 | 48 | |||
| BRCA1 rs134817801 | LD test | |||||
| AA | AC | CC | r2 | D′ | ||
| GC-NPFFR2 | CC | 23 | 30 | 4 | ||
| rs109452259 | CA | 48 | 60 | 30 | 0.011 | 0.129 |
| AA | 21 | 39 | 14 | |||
| DGAT1 p.K232A rs109234250 | LD test | |||||
| KK | KA | AA | r2 | D′ | ||
| GC-NPFFR2 | CC | 2 | 15 | 40 | ||
| rs109452259 | CA | 10 | 51 | 77 | 0.013 | 0.218 |
| AA | 1 | 38 | 35 | |||
| DGAT1 p.K232A rs109234250 | LD test | |||||
| KK | KA | AA | r2 | D′ | ||
| BRCA1 | AA | 4 | 41 | 47 | ||
| rs134817801 | AC | 7 | 38 | 84 | 0.000085 | 0.014 |
| CC | 2 | 25 | 21 | |||
| SNP | Inheritance Model | p Value | Genotype | LSM | SE |
|---|---|---|---|---|---|
| GC-NPFFR2 rs137147462 | Dominant | 0.037 | AA | 2.32 | 0.14 |
| GC-NPFFR2 rs137147462 | Dominant | 0.037 | AG+GG | 2.63 | 0.06 |
| GC-NPFFR2 rs137147462 | Recessive | 0.0054 | AA+AG | 2.46 | 0.07 |
| GC-NPFFR2 rs137147462 | Recessive | 0.0054 | GG | 2.80 | 0.10 |
| DGAT1 p.K232A | Recessive | 0.044 | KK+KA | 2.45 | 0.09 |
| DGAT1 p.K232A | Recessive | 0.044 | AA | 2.68 | 0.08 |
| Genotype | OR | 95%CI (Lower-Upper) | p Value | Significance |
|---|---|---|---|---|
| AG | 1.35 | 0.99–1.84 | 0.0599 | ns |
| GG | 1.63 | 1.18–2.28 | 0.00354 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiyama, Y.; Ando, T.; Nozaki, N.; Arif, M.; Ide, Y.; Wang, S.; Miura, N. Recessive Effect of GC-NPFFR2 rs137147462 on Somatic Cell Score (Mastitis Susceptibility) in Japanese Holsteins. Animals 2025, 15, 3239. https://doi.org/10.3390/ani15223239
Akiyama Y, Ando T, Nozaki N, Arif M, Ide Y, Wang S, Miura N. Recessive Effect of GC-NPFFR2 rs137147462 on Somatic Cell Score (Mastitis Susceptibility) in Japanese Holsteins. Animals. 2025; 15(22):3239. https://doi.org/10.3390/ani15223239
Chicago/Turabian StyleAkiyama, Yoshiyuki, Takaaki Ando, Nobuhiro Nozaki, Mohammad Arif, Yutaro Ide, Shaohsu Wang, and Naoki Miura. 2025. "Recessive Effect of GC-NPFFR2 rs137147462 on Somatic Cell Score (Mastitis Susceptibility) in Japanese Holsteins" Animals 15, no. 22: 3239. https://doi.org/10.3390/ani15223239
APA StyleAkiyama, Y., Ando, T., Nozaki, N., Arif, M., Ide, Y., Wang, S., & Miura, N. (2025). Recessive Effect of GC-NPFFR2 rs137147462 on Somatic Cell Score (Mastitis Susceptibility) in Japanese Holsteins. Animals, 15(22), 3239. https://doi.org/10.3390/ani15223239

