Integrative Multivariate Analysis of Milk Biomarkers, Productive Performance, and Animal Welfare Indicators in Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Welfare Assessment
2.3. Milk Sampling and Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Data
3.1.1. Milk Biomarkers and Production
3.1.2. Welfare Indicators
3.2. Associations Between Milk Biomarkers and Animal-Based Welfare Parameters
3.3. Multivariate Structure
4. Discussion
4.1. Descriptive Patterns of Welfare and Milk Quality
4.2. Associations Between Biomarkers and Welfare Indicators
- Fat-to-protein ratio (FPR) and β-hydroxybutyrate (BHB): indicators of metabolic balance
- Indicators of udder health (SCC, DSCC, and lactose): connecting udder inflammation to welfare status
- Milk yield and total plate count (TPC): indicators of productivity and hygiene
- Milk urea nitrogen (MUN): a nutritional management metric
4.3. Multivariate Insights: PCA and Clustering
5. Conclusions
6. Limitations
7. Implications for Practice and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biomarkers Definitions Working Group. Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Djokovic, R.; Cincovic, M.; Ilic, Z.; Kurcubic, V.; Andjelic, B.; Petrovic, M.; Lalic, N.; Jasovic, B. Relationships Between Contents of Biochemical Metabolites in Blood and Milk in Dairy Cows During Transition and Mid Lactation. Int. J. Appl. Res. Vet. Med. 2019, 17, 1–9. [Google Scholar]
- Liu, P.; He, B.X.; Yang, X.L.; Hou, X.L.; Han, J.B.; Han, Y.H.; Nie, P.; Deng, H.F.; Du, X.H. Bioactivity Evaluation of Certain Hepatic Enzymes in Blood Plasma and Milk of Holstein Cows. Pak. Vet. J. 2012, 32, 601–604. [Google Scholar]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Gordon, A.W.; Mulligan, F.J.; Ferris, C.P. Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation. Animals 2021, 11, 3256. [Google Scholar] [CrossRef]
- Zschiesche, M.; Mensching, A.; Sharifi, A.R.; Hummel, J. The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis. Dairy 2020, 1, 259–268. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Januškevičius, V.; Šimonytė, I.; Baumgartner, W. In-Line Registered Milk Fat-to-Protein Ratio for the Assessment of Metabolic Status in Dairy Cows. Animals 2023, 13, 3293. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Ribelytė, I.; Bespalovaitė, A.; Bulvičiūtė, D.; Tolkačiovaitė, K.; Baumgartner, W. Impact of Heat Stress on the In-Line Registered Milk Fat-to-Protein Ratio and Metabolic Profile in Dairy Cows. Agriculture 2024, 14, 203. [Google Scholar] [CrossRef]
- Boonkum, W.; Teawyoneyong, W.; Chankitisakul, V.; Duangjinda, M.; Buaban, S. Impact of Heat Stress on Milk Yield, Milk Fat-to-Protein Ratio, and Conception Rate in Thai–Holstein Dairy Cattle: A Phenotypic and Genetic Perspective. Animals 2024, 14, 3026. [Google Scholar] [CrossRef]
- Sabbadin, S.; Magro, S.; Costa, A.; Lorenzi, V.; Fusi, F.; Bertocchi, L.; De Marchi, M. Bulk Milk Quality Differs across Welfare Levels in Italian Dairy Cattle Farms with Different Housing Systems. Ital. J. Anim. Sci. 2025, 24, 910–922. [Google Scholar] [CrossRef]
- Benedet, A.; Manuelian, C.L.; Zidi, A.; Penasa, M.; De Marchi, M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019, 13, 1676–1689. [Google Scholar] [CrossRef]
- Gross, J.J.; Bruckmaier, R.M. Review: Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal 2019, 13, s75–s81. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Kelton, D.F.; Duffield, T.F. Validation of a Test-Day Milk Test for β-Hydroxybutyrate for Identifying Cows with Hyperketonemia. J. Dairy Sci. 2019, 102, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Rijpert-Duvivier, A.; Veldman, H.; Steeneveld, W.; Jorritsma, R. Milk β-Hydroxybutyrate Metrics and Its Consequences for Surveillance of Hyperketonaemia on Commercial Dairy Farms. Front. Vet. Sci. 2023, 10, 1272162. [Google Scholar] [CrossRef]
- Pralle, R.S.; White, H.M. Symposium Review: Big Data, Big Predictions: Utilizing Milk Fourier-Transform Infrared and Genomics to Improve Hyperketonemia Management. J. Dairy Sci. 2020, 103, 3867–3873. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhao, X.; Zhang, S.; Chu, C.; Zhang, X.; Teng, Z. Milk metabolite profiling of dairy cows as influenced by mastitis. Front. Vet. Sci. 2024, 11, 1475397. [Google Scholar] [CrossRef]
- Aguilar, M.; Hanigan, M.D.; Tucker, H.A.; Jones, B.L.; Garbade, S.K.; McGilliard, M.L.; Stallings, C.C.; Knowlton, K.F.; James, R.E. Cow and Herd Variation in Milk Urea Nitrogen Concentrations in Lactating Dairy Cattle. J. Dairy Sci. 2012, 95, 7261–7268. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; van Duinkerken, G.; Bannink, A. A Review of Factors Influencing Milk Urea Concentration and Its Relationship with Urinary Urea Excretion in Lactating Dairy Cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef]
- Munyaneza, N.; Niyukuri, J.; Hachimi, Y.E. Milk Urea Nitrogen as an Indicator of Nitrogen Metabolism Efficiency in Dairy Cows: A Review. Theriogenol. Insight 2017, 7, 145–159. [Google Scholar] [CrossRef]
- Webb, E.C.; de Bruyn, E. Effects of Milk Urea Nitrogen (MUN) and Climatological Factors on Reproduction Efficiency of Holstein Friesian and Jersey Cows in the Subtropics. Animals 2021, 11, 3068. [Google Scholar] [CrossRef]
- Afshar, O.; Mohammadi, M.; Ghavi Hossein-Zadeh, N.; Salimi, A. Influence of Different Concentrations of Milk Urea Nitrogen on the Reproductive Performance of Holstein Cows. Trop. Anim. Health Prod. 2024, 56, 374. [Google Scholar] [CrossRef]
- Damm, M.; Holm, C.; Blaabjerg, M.; Bro, M.N.; Schwarz, D. Differential Somatic Cell Count—A Novel Method for Routine Mastitis Screening in the Frame of Dairy Herd Improvement Testing Programs. J. Dairy Sci. 2017, 100, 4926–4940. [Google Scholar] [CrossRef]
- Kirkeby, C.; Toft, N.; Schwarz, D.; Farre, M.; Nielsen, S.S.; Zervens, L.; Hechinger, S.; Halasa, T. Differential Somatic Cell Count as an Additional Indicator for Intramammary Infections in Dairy Cows. J. Dairy Sci. 2020, 103, 1759–1775. [Google Scholar] [CrossRef]
- Kirkeby, C.; Schwarz, D.; Denwood, M.; Farre, M.; Nielsen, S.S.; Gussmann, M.; Toft, N.; Halasa, T. Dynamics of Somatic Cell Count (SCC) and Differential SCC during and following Intramammary Infections. J. Dairy Sci. 2021, 104, 3427–3438. [Google Scholar] [CrossRef]
- Zecconi, A.; Vairani, D.; Cipolla, M.; Rizzi, N.; Zanini, L. Assessment of Subclinical Mastitis Diagnostic Accuracy by Differential Cell Count in Individual Cow Milk. Ital. J. Anim. Sci. 2019, 18, 460–465. [Google Scholar] [CrossRef]
- Zecconi, A.; Meroni, G.; Sora, V.; Mattina, R.; Cipolla, M.; Zanini, L. Total and Differential Cell Counts as a Tool to Identify Intramammary Infections in Cows after Calving. Animals 2021, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Pegolo, S.; Giannuzzi, D.; Bisutti, V.; Tessari, R.; Gelain, M.E.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Trevisi, E.; Ajmone Marsan, P.; et al. Associations between differential somatic cell count and milk yield, quality, and technological characteristics in Holstein cows. J. Dairy Sci. 2021, 104, 4822–4836. [Google Scholar] [CrossRef]
- Fonseca, L.F.L.; Kurban, G.; Roy, J.-P.; Santschi, D.E.; Molgat, J.-F.; Dufour, S. Usefulness of differential somatic cell count for udder health. J. Dairy Sci. 2025, in press. [Google Scholar] [CrossRef]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited Review: Milk Lactose—Current Status and Future Challenges in Dairy Cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Costa, A.; Bovenhuis, H.; Egger-Danner, C.; Fuerst-Waltl, B.; Boutinaud, M.; Guinard-Flament, J.; Obritzhauser, W.; Visentin, G.; Penasa, M. Mastitis Has a Cumulative and Lasting Effect on Milk Yield and Lactose Content in Dairy Cows. J. Dairy Sci. 2025, 108, 635–650. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Jonike, V.; Baumgartner, W.; Paulauskas, A. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals 2021, 11, 1736. [Google Scholar] [CrossRef]
- Televičius, M.; Juozaitiene, V.; Malašauskienė, D.; Antanaitis, R.; Rutkauskas, A.; Urbutis, M.; Baumgartner, W. Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows. Agriculture 2021, 11, 38. [Google Scholar] [CrossRef]
- Kayano, M.; Itoh, M.; Kusaba, N.; Hayashiguchi, O.; Kida, K.; Tanaka, Y.; Kawamoto, K.; Gröhn, Y.T. Associations of the First Occurrence of Pathogen-Specific Clinical Mastitis with Milk Yield and Milk Composition in Dairy Cows. J. Dairy Res. 2018, 85, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Džermeikaitė, K.; Krištolaitytė, J.; Anskienė, L.; Girdauskaitė, A.; Arlauskaitė, S.; Šertvytytė, G.; Lembovičiūtė, G.; Baumgartner, W.; Antanaitis, R. Milk Lactose and Inflammatory Marker Changes: Early Indicators of Metabolic and Inflammatory Stress in Early Lactation Dairy Cattle. Agriculture 2025, 15, 1205. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Girdauskaitė, A.; Arlauskaitė, S.; Tolkačiovaitė, K.; Baumgartner, W. The relation between milk lactose concentration and cow behaviour. Animals 2024, 14, 836. [Google Scholar] [CrossRef] [PubMed]
- Velthuis, A.G.J.; van Asseldonk, M.A.P.M. Process Audits versus Product Quality Monitoring of Bulk Milk. J. Dairy Sci. 2011, 94, 235–249. [Google Scholar] [CrossRef]
- Ginestreti, J.; Strano, R.M.; Lorenzi, V.; Fusi, F.; Angelucci, A.; Ferrara, G.; Galletti, G.; Bergagna, S.; Bolzoni, G.; Zanardi, G.; et al. Bulk Tank Milk Quality Data Is Unlikely to Give Useful Information about Dairy Cow Welfare at Herd Level. J. Dairy Res. 2020, 87, 208–211. [Google Scholar] [CrossRef]
- Stocco, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Herd and animal factors affecting variability of somatic cell and bacterial counts in dairy cows. Animals 2022, 12, 45. [Google Scholar] [CrossRef]
- de Vries, M.; Bokkers, E.A.M.; van Schaik, G.; Engel, B.; Dijkstra, T.; de Boer, I.J.M. Exploring the Value of Routinely Collected Herd Data for Estimating Dairy Cattle Welfare. J. Dairy Sci. 2014, 97, 715–730. [Google Scholar] [CrossRef]
- de Vries, M.; Bokkers, E.A.M.; van Schaik, G.; Engel, B.; Dijkstra, T.; de Boer, I.J.M. Improving the Time Efficiency of Identifying Dairy Herds with Poorer Welfare in a Population. J. Dairy Sci. 2016, 99, 8282–8296. [Google Scholar] [CrossRef]
- Otten, N.D.; Rousing, T.; Houe, H.; Thomsen, P.T.; Sørensen, J.T. Comparison of Animal Welfare Indices in Dairy Herds Based on Different Sources of Data. Anim. Welf. 2016, 25, 207–215. [Google Scholar] [CrossRef]
- Coignard, M.; Guatteo, R.; Veissier, I.; Lehébel, A.; Hoogveld, C.; Mounier, L.; Bareille, N. Does Milk Yield Reflect the Level of Welfare in Dairy Herds? Vet. J. 2014, 199, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Heirbaut, S.; Jing, X.P.; Stefańska, B.; Pruszyńska-Oszmałek, E.; Ampe, B.; Umstätter, C.; Vandaele, L.; Fievez, V. Combination of Milk Variables and On-Farm Data as an Improved Diagnostic Tool for Metabolic Status Evaluation in Dairy Cattle During the Transition Period. J. Dairy Sci. 2024, 107, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Cattle; Welfare Quality Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- INRAE. Welfare Quality® Scoring System. Available online: https://www1.clermont.inrae.fr/wq/?simu=on (accessed on 7 March 2025).
- The Parliament of Romania. Law no 138/2022 for amending supplementing Law no 205/2004 regarding the protection of animals. Monit. Of. 2022, 484, 2022. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- de Almeida, A.M.; Zachut, M.; Hernández-Castellano, L.E.; Šperanda, M.; Gabai, G.; Mobasheri, A. Biomarkers of Fitness and Welfare in Dairy Animals: Healthy Living. J. Dairy Res. 2019, 86, 379–387. [Google Scholar] [CrossRef]
- Kirchner, M.K.; Ferris, C.; Abecia, L.; Yanez-Ruiz, D.R.; Pop, S.; Voicu, I.; Dragomir, C.; Winckler, C. Welfare state of dairy cows in three European low-input and organic systems. Org. Agric. 2014, 4, 309–311. [Google Scholar] [CrossRef]
- Popescu, S.; Lazar, E.A.; Blaga Petrean, A.; Mitrănescu, E.; Hegedus, C.; Neagu, D. The main welfare issues of dairy cows in small farms from Romania. Rev. Rom. Med. Vet. 2024, 34, 53–58. [Google Scholar]
- Nielsen, B.H. Dirty cows: Influence of housing on the occurrence of cow cleanliness problems. Animal 2009, 3, 185–191. [Google Scholar] [CrossRef]
- Whay, H.R.; Main, D.C.J.; Green, L.E.; Webster, A.J.F. Assessment of the welfare of dairy cattle using animal-based measurements: Direct observations and investigation of farm records. Vet. Rec. 2003, 153, 197–202. [Google Scholar] [CrossRef]
- Bruijnis, M.R.; Hogeveen, H.; Stassen, E.N. Assessing economic consequences of foot disorders in dairy cattle using a dynamic stochastic simulation model. J. Dairy Sci. 2012, 95, 4862–4874. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Evaluation of five lactation curve models fitted for fat: Protein ratio of milk and daily energy balance. J. Dairy Sci. 2010, 93, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Džermeikaitė, K.; Krištolaitytė, J.; Sutkevičienė, N.; Vilkonienė, T.; Vaičiulienė, G.; Rekešiūtė, A.; Girdauskaitė, A.; Arlauskaitė, S.; Bajcsy, Á.C.; Antanaitis, R. Relationships Among In-Line Milk Fat-to-Protein Ratio, Metabolic Profile, and Inflammatory Biomarkers During Early Stage of Lactation in Dairy Cows. Vet. Sci. 2025, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Toni, F.; Vincenti, L.; Grigoletto, L.; Ricci, A.; Schukken, Y.H. Early Lactation Ratio of Fat and Protein Percentage in Milk Is Associated with Health, Milk Production, and Survival. J. Dairy Sci. 2011, 94, 1772–1783. [Google Scholar] [CrossRef]
- Koeck, A.; Jamrozik, J.; Schenkel, F.S.; Moore, R.K.; Lefebvre, D.M.; Kelton, D.F.; Miglior, F. Genetic Analysis of Milk β-Hydroxybutyrate and Its Association with Fat-to-Protein Ratio, Body Condition Score, Clinical Ketosis, and Displaced Abomasum in Early First Lactation of Canadian Holsteins. J. Dairy Sci. 2014, 97, 7286–7292. [Google Scholar] [CrossRef]
- Beaver, A.; Proudfoot, K.L.; von Keyserlingk, M.A. Symposium Review: Considerations for the Future of Dairy Cattle Housing: An Animal Welfare Perspective. J. Dairy Sci. 2020, 103, 5746–5758. [Google Scholar] [CrossRef]
- Broderick, G.A.; Clayton, M.K. A Statistical Evaluation of Animal and Nutritional Factors Influencing Concentrations of Milk Urea Nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Boldt, A.; Spiekers, H.; Mohr, E.; Losand, B. Relationship between Milk Constituents from Milk Testing and Health, Feeding, and Metabolic Data of Dairy Cows. J. Dairy Sci. 2020, 103, 10175–10194. [Google Scholar] [CrossRef]
- Linstädt, J.; Thöne-Reineke, C.; Merle, R. Animal-Based Welfare Indicators for Dairy Cows and Their Validity and Practicality: A Systematic Review of the Existing Literature. Front. Vet. Sci. 2024, 11, 1429097. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Coleman, G.J. Human–Livestock Interactions: The Stockperson and the Productivity and Welfare of Intensively Farmed Animals; CABI: Wallingford, UK, 2011. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific report on the effects of farming systems on dairy cow welfare disease. EFSA J. 2009, 1143, 1143r. [Google Scholar] [CrossRef]



| Milk Biomarker | Mean ± SD | Median (Min–Max) |
|---|---|---|
| Fat (g/100 g) | 3.95 ± 0.42 | 3.92 (3.06–4.81) |
| Protein (g/100 g) | 3.57 ± 0.32 | 3.54 (2.90–4.26) |
| FPR | 1.10 ± 0.10 | 1.11 (0.92–1.34) |
| Casein (g/100 g) | 2.84 ± 0.25 | 2.83 (2.30–3.44) |
| Lactose (g/100 g) | 4.76 ± 0.14 | 4.76 (4.44–5.01) |
| Urea (mg/dL) | 22.75 ± 10.02 | 22.80 (5.77–44.79) |
| Acetone (mmol/L) | 0.01 ± 0.02 | 0.00 (0.00–0.09) |
| BHB (mmol/L) | 0.03 ± 0.04 | 0.02 (0.00–0.19) |
| DSCC (%) | 60.81 ± 14.88 | 62.30 (30.00–86.30) |
| SCC (×1000/mL) | 480.55 ± 237.10 | 452.60 (82.41–953.40) |
| TPC (×1000/mL) | 247.24 ± 146.04 | 95.00 (10.00–2321.00) |
| Milk yield (L) | 11.41 ± 3.08 | 11.00 (7.00–25.00) |
| Principle and Criteria | Mean ± SD | Median (Min–Max) |
|---|---|---|
| Good feeding * | 51.89 ± 27.93 | 43.61 (13.26–100.00) |
| Absence of prolonged hunger | 49.81 ± 33.39 | 49.99 (7.05–100.00) |
| Absence of prolonged thirst | 73.15 ± 31.84 | 100.00 (12.12–100.00) |
| Good housing * | 54.87 ± 17.08 | 60.40 (18.02–82.75) |
| Comfort around resting | 40.86 ± 16.52 | 45.12 (8.64–72.62) |
| Ease of movement | 80.62 ± 30.24 | 100.00 (34.00–100.00) |
| Good health * | 19.88 ± 10.59 | 17.16 (9.31–55.04) |
| Absence of diseases | 10.46 ± 18.29 | 4.22 (0.00–100.00) |
| Absence of injuries | 65.36 ± 16.79 | 67.17 (33.46–99.20) |
| Absence of pain induced by management procedures * | 43.92 ± 24.22 | 28.00 (20.00–100.00) |
| Appropriate behaviour * | 27.36 ± 11.13 | 24.46 (13.18–59.87) |
| Expression of other behaviours | 11.89 ± 15.09 | 0.00 (0.00–67.15) |
| Expression of social behaviours | 96.30 ± 2.87 | 96.19 (86.83–100.00) |
| Good human–animal relationship | 60.04 ± 21.27 | 59.59 (25.87–100.00) |
| Positive emotional state | 30.48 ± 15.40 | 28.60 (6.61–67.94) |
| Measure | Mean ± SD | Median (Min–Max) |
|---|---|---|
| Duration of lying down movements (seconds) | 4.99 ± 1.23 | 5.25 (2.50–7.20) |
| Lying down movements with collisions (%) | 19.89 ± 17.11 | 17.00 (0.00–76.60) |
| Lying cows which lie partly outside the lying area (%) | 1.55 ± 2.97 | 0.00 (0.00–13.30) |
| Cows with dirty flanks and upper legs (%) | 55.39 ± 31.75 | 50.00 (5.00–100.00) |
| Cows with dirty lower legs (%) | 95.70 ± 10.64 | 100.00(56.00–100.00) |
| Cows with dirty udders (%) | 77.13 ± 25.75 | 86.25 (12.50–100.00) |
| Very lean cows (%) | 19.41 ± 19.43 | 8.88 (0.00–64.40) |
| Non-lame cows (%) | 84.87 ± 12.72 | 88.10 (50.00–100.00) |
| Severely lame cows (%) | 3.32 ± 4.05 | 2.30 (0.00–15.30) |
| Moderately lame cows (%) | 11.81 ± 10.64 | 7.70 (0.00–40.00) |
| Cows with at least one hairless patch and no lesion/swelling (%) | 27.78 ± 20.36 | 21.30 (3.30–75.90) |
| Cows with at least one lesion/swelling (%) | 9.50 ± 6.16 | 8.30 (0.00–24.10) |
| Cows with diarrhoea (%) | 22.87 ± 21.71 | 16.40 (0.00–79.40) |
| Cows with increased respiratory rate (%) | 6.64 ± 5.43 | 5.50 (0.00–29.70) |
| Cows with nasal discharge (%) | 4.07 ± 4.32 | 3.20 (0.00–17.20) |
| Cows with no integument alteration, no hairless patch, and no lesion (%) | 62.72 ± 24.12 | 67.70 (0.00–96.70) |
| Cows with ocular discharge (%) | 4.12 ± 5.74 | 1.90 (0.00–27.80) |
| Cows with vulvar discharge (%) | 2.78 ± 4.64 | 1.30 (0.00–23.80) |
| Mastitis (%) | 32.34 ± 22.49 | 32.10 (0.44–100.00) |
| Downer cows (%) | 4.41 ± 3.79 | 4.40 (0.00–20.00) |
| Mortality (%) | 6.07 ± 7.38 | 2.50 (0.00–28.60) |
| Cows that can be approached between 50 cm and 1 m (%) | 21.00 ± 19.28 | 15.00 (0.00–69.70) |
| Cows that can be approached by 50 cm but not touched (%) | 41.26 ± 24.87 | 34.50 (0.00–90.80) |
| Cows that can be touched (%) | 33.86 ± 32.59 | 18.70 (0.00–100.00) |
| Cows that cannot be approached (%) | 3.87 ± 5.85 | 0.00 (0.00–19.30) |
| Frequency of displacements/cow per hour | 0.05 ± 0.05 | 0.05 (0.00–0.20) |
| Frequency of butts/cow per hour | 0.04 ± 0.03 | 0.04 (0.00–0.10) |
| Descriptor | Mean ± SD | Median (Min—Max) |
|---|---|---|
| Tendency to be active | 85.95 ± 17.23 | 93.00 (45.00–110.00) |
| Tendency to be agitated | 36.97 ± 13.11 | 35.00 (20.00–75.00) |
| Tendency to be apathetic | 30.59 ± 8.32 | 30.00 (20.00–55.00) |
| Tendency to be bored | 60.97 ± 17.50 | 60.00 (30.00–100.00) |
| Tendency to be calm | 77.43 ± 16.00 | 78.00 (40.00–110.00) |
| Tendency to be content | 75.19 ± 18.44 | 75.00 (30.00–110.00) |
| Tendency to be distressed | 38.65 ± 15.18 | 35.00 (20.00–80.00) |
| Tendency to be fearful | 43.35 ± 17.29 | 40.00 (20.00–80.00) |
| Tendency to be friendly | 71.89 ± 15.68 | 75.00 (45.00–100.00) |
| Tendency to be frustrated | 42.51 ± 17.80 | 40.00 (20.00–79.00) |
| Tendency to be happy | 75.08 ± 17.78 | 75.00 (40.00–100.00) |
| Tendency to be indifferent | 55.68 ± 13.69 | 55.00 (25.00–80.00) |
| Tendency to be inquisitive | 43.97 ± 20.41 | 37.00 (10.00–100.00) |
| Tendency to be irritable | 37.51 ± 14.95 | 35.00 (20.00–80.00) |
| Tendency to be lively | 75.03 ± 17.98 | 75.00 (30.00–100.00) |
| Tendency to be playful | 67.11 ± 18.16 | 70.00 (20.00–96.00) |
| Tendency to be positively occupied | 67.59 ± 23.82 | 70.00 (20.00–105.00) |
| Tendency to be relaxed | 79.41 ± 15.96 | 75.00 (50.00–110.00) |
| Tendency to be sociable | 74.95 ± 16.97 | 75.00 (40.00–105.00) |
| Tendency to be uneasy | 31.68 ± 10.03 | 30.00 (20.00–65.00) |
| Biomarker/Production Trait | Associated Welfare Parameter | rs | p-Value adj. |
|---|---|---|---|
| Fat-to-protein ratio (FPR) | Good feeding | 0.68 | <0.001 |
| Absence of prolonged hunger | 0.78 | <0.001 | |
| Absence of diseases | 0.66 | <0.001 | |
| Good human–animal relationship | 0.66 | <0.001 | |
| Very lean cows | −0.78 | <0.001 | |
| Diarrhoea | −0.79 | <0.001 | |
| β-hydroxybutyrate (BHB) (mmol/L) | Comfort around resting | −0.53 | 0.01 |
| Absence of injuries | −0.51 | 0.014 | |
| Lesions/swelling | 0.44 | 0.046 | |
| Dystocia | −0.64 | <0.001 | |
| Milk yield (L) | Good housing | 0.55 | 0.006 |
| Good health | 0.48 | 0.022 | |
| Ease of movement | 0.44 | 0.045 | |
| Content behaviour | 0.44 | 0.042 | |
| Mortality | −0.47 | 0.026 | |
| Udder dirtiness | −0.54 | 0.007 | |
| SCC (×1000/mL) | Good health | −0.53 | 0.01 |
| Absence of diseases | −0.57 | 0.004 | |
| Positive emotional state | −0.44 | 0.043 | |
| Mastitis prevalence | 0.51 | 0.013 | |
| Udder dirtiness | 0.56 | 0.005 | |
| Lameness | 0.55 | 0.006 | |
| DSCC (%) | Good housing | −0.6 | <0.002 |
| Good health | −0.58 | 0.003 | |
| Absence of injuries | −0.6 | 0.002 | |
| Calmness (QBA) | −0.55 | 0.01 | |
| Relaxation (QBA) | −0.62 | 0.008 | |
| Happiness (QBA) | −0.57 | 0.004 | |
| Sociability (QBA) | −0.56 | 0.009 | |
| Lactose (g/100 g) | Good health | 0.49 | 0.02 |
| Inquisitive behaviour | 0.49 | 0.02 | |
| Calm (QBA) | 0.48 | 0.026 | |
| Happy (QBA) | 0.47 | 0.027 | |
| Content (QBA) | 0.44 | 0.045 | |
| Relaxed (QBA) | 0.43 | 0.047 | |
| Fat (g/100 g) | Absence of disease | 0.47 | 0.026 |
| Good human–animal relationship | 0.5 | 0.017 | |
| Diarrhoea | −0.61 | 0.001 | |
| Distress behaviour | −0.49 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babiciu, D.E.; Beteg, F.I.; Cenariu, M.; Blaga Petrean, A.; Mârza, S.M.; Lazar, E.A.; Popescu, S. Integrative Multivariate Analysis of Milk Biomarkers, Productive Performance, and Animal Welfare Indicators in Dairy Cows. Animals 2025, 15, 3202. https://doi.org/10.3390/ani15213202
Babiciu DE, Beteg FI, Cenariu M, Blaga Petrean A, Mârza SM, Lazar EA, Popescu S. Integrative Multivariate Analysis of Milk Biomarkers, Productive Performance, and Animal Welfare Indicators in Dairy Cows. Animals. 2025; 15(21):3202. https://doi.org/10.3390/ani15213202
Chicago/Turabian StyleBabiciu, Daniela Elena, Florin Ioan Beteg, Mihai Cenariu, Anamaria Blaga Petrean, Sorin Marian Mârza, Eva Andrea Lazar, and Silvana Popescu. 2025. "Integrative Multivariate Analysis of Milk Biomarkers, Productive Performance, and Animal Welfare Indicators in Dairy Cows" Animals 15, no. 21: 3202. https://doi.org/10.3390/ani15213202
APA StyleBabiciu, D. E., Beteg, F. I., Cenariu, M., Blaga Petrean, A., Mârza, S. M., Lazar, E. A., & Popescu, S. (2025). Integrative Multivariate Analysis of Milk Biomarkers, Productive Performance, and Animal Welfare Indicators in Dairy Cows. Animals, 15(21), 3202. https://doi.org/10.3390/ani15213202

