EyeInvaS: Lowering Barriers to Public Participation in Invasive Alien Species Monitoring Through Deep Learning
Simple Summary
Abstract
1. Introduction
2. Data and Methods
2.1. Dataset Construction and Preprocessing
2.1.1. Original Dataset
2.1.2. Multi-Scale and Multi-Background Synthetic Dataset
2.1.3. Data Augmentation
2.2. Model Development and Performance Evaluation
2.2.1. Model Selection and Training Strategy
2.2.2. Evaluation Metrics
2.3. EyeInvaS: An Intelligent Recognition System for IAS
- Data storage: Responsible for storing structured information, including invasive species images, taxonomic labels, and biological trait metadata.
- AI Service: Composed of general web services (based on SpringBoot) and the AI model service (built with PyTorch (2.5.1) and Flask (3.1.0)). These components communicate through RESTful APIs, ensuring modularity and extensibility.
- Functional modules: Integrates key functional modules such as image acquisition, IAS recognition, data sharing, location tagging, and knowledge diffusion. These modules were designed based on a user survey identifying public priorities in invasive species detection.
- User interaction: Represented by the EyeInvaS mobile application, which supports visual recognition of invasive species and serves as the main user interface. The app is built using the Jetpack MVVM architecture to improve code maintainability and device compatibility. It incorporates Mapbox for geolocation and spatial visualization.
3. Results and Applications
3.1. Results
3.1.1. Model Performance Comparison
3.1.2. Model Explainability and Prediction Visualization
3.1.3. Effects of Target Scale and Background Complexity
3.2. Application Scenarios
3.2.1. Functional Modules of the EyeInvaS App
- AI-based Image Recognition: Users can take photos or upload existing images for recognition. A built-in framing guide helps users compose images that meet the model’s optimal input conditions. The system returns the predicted species name and confidence score.
- Species Information: Users can access detailed information about the identified species, including taxonomy, ecological impact, geographic distribution, and recommended management strategies, enhancing public knowledge and awareness.
- Data Sharing: Users may add time and location metadata to their observations and upload them to the database, enabling both personal record-keeping and crowdsourced data aggregation.
- Geotagging: Integrated with Mapbox, this feature visualizes uploaded observations as geospatial points, making spatial patterns and invasion hotspots easily interpretable.
3.2.2. Case Study: Monitoring Solidago canadensis in Huai’an, China
4. Discussion
4.1. Dataset Expansion and Model Generalization
4.2. Spatial Scaling via UAV Integration
4.3. Policy Interfaces and Institutional Integration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Class | Family | Genus | Species Common Name | Species Scientific Name | Number of Images |
|---|---|---|---|---|---|
| C-1 | Asteraceae | Ageratina | Crofton weed | Ageratina adenophora | 48 |
| C-2 | Asteraceae | Ageratum | Billygoat weed | Ageratum conyzoides | 205 |
| C-3 | Amaranthaceae | Alternanthera | alligator weed | Alternanthera philoxeroides | 141 |
| C-4 | Amaranthus palmeri | Amaranthus | Dioecious amaranth | Amaranthus palmeri | 25 |
| C-5 | Amaranthaceae | Amaranthus | Spiny amaranth | Amaranthus spinosus | 75 |
| C-6 | Asteraceae | Ambrosia | Common ragweed | Ambrosia artemisiifolia | 53 |
| C-7 | Asteraceae | Ambrosia | Great ragweed | Ambrosia trifida | 48 |
| C-8 | Basellaceae | Anredera | Madeira vine | Anredera cordifolia | 121 |
| C-9 | Poaceae | Avena | Common wild oat | Avena fatua | 53 |
| C-10 | Asteraceae | Bidens | Hitch hikers | Bidens pilosa | 142 |
| C-11 | Cabombaceae | Cabomba | Carolina fanwort | Cabomba caroliniana | 63 |
| C-12 | Poaceae | Cenchrus | Spiny burr grass | Cenchrus longispinus | 62 |
| C-13 | Asteraceae | Chromolaena | Siam weed | Chromolaena odorata | 75 |
| C-14 | Pontederiaceae | Pontederia | Common water hyacinth | Pontederia crassipes | 266 |
| C-15 | Asteraceae | Erigeron | Canadian horseweed | Erigeron canadensis | 39 |
| C-16 | Asteraceae | Erigeron | White horseweed | Erigeron sumatrensis | 36 |
| C-17 | Asteraceae | Flaveria | Coastal plain yellowtops | Flaveria bidentis | 121 |
| C-18 | Convolvulaceae | Ipomoea | Messina creeper | Ipomoea cairica | 283 |
| C-19 | Asteraceae | Cyclachaena | Giant sumpweed | Cyclachaena xanthiifolia | 19 |
| C-20 | Verbenaceae | Lantana | Wild sage | Lantana camara | 592 |
| C-21 | Asteraceae | Lactuca | Prickly lettuce | Lactuca serriola | 53 |
| C-22 | Asteraceae | Mikania | Bitter vine | Mikania micrantha | 39 |
| C-23 | Fabaceae | Mimosa | Flowering tree | Mimosa bimucronata | 97 |
| C-24 | Asteraceae | Parthenium | Whitetop weed | Parthenium hysterophorus | 14 |
| C-25 | Phytolaccaceae | Phytolacca | American pokeweed | Phytolacca americana | 504 |
| C-26 | Araceae | Pistia | Water cabbage | Pistia stratiotes | 67 |
| C-27 | Asteraceae | Praxelis | False boneset | Praxelis clematidea | 85 |
| C-28 | Cucurbitaceae | Sicyos | Star-cucumber | Sicyos angulatus | 24 |
| C-29 | Solanaceae | Solanum | Buffalobur nightshade | Solanum rostratum | 40 |
| C-30 | Asteraceae | Solidago | Canada goldenrod | Solidago canadensis | 527 |
| C-31 | Poaceae | Sorghum | Johnson grass | Sorghum halepense | 14 |
| C-32 | Poaceae | Sporobolus | Smooth cordgrass | Sporobolus alterniflorus | 73 |
| C-33 | Asteraceae | Xanthium | Spiny cocklebur | Xanthium spinosum | 28 |
| C-34 | Tortricidae | Cydia | Apple worm | Cydia pomonella | 26 |
| C-35 | Curculionidae | Dendroctonus | Red turpentine beetle | Dendroctonus valens | 22 |
| C-36 | Erebidae | Hyphantria | Fall webworm | Hyphantria cunea | 78 |
| C-37 | Chrysomelidae | Leptinotarsa | Colorado potato beetle | Leptinotarsa decemlineata | 58 |
| C-38 | Agromyzidae | Liriomyza | Vegetable leaf miner | Liriomyza sativae | 21 |
| C-39 | Brachyceridae | Lissorhoptus | Rice water weevil | Lissorhoptrus oryzophilus | 30 |
| C-40 | Matsucoccidae | Matsucoccus | Japanese pine bast scale | Matsucoccus matsumurae | 9 |
| C-41 | Pseudococcidae | Oracella | Loblolly pine mealybug | Oracella acuta | 105 |
| C-42 | Pseudococcidae | Phenacoccus | Cotton mealybug | Phenacoccus solenopsis | 47 |
| C-43 | Curculionidae | Rhynchophorus | Red palm weevil | Rhynchophorus ferrugineus | 47 |
| C-44 | Formicidae | Solenopsis | Red imported fire ant | Solenopsis invicta | 111 |
| C-45 | Noctuidae | Spodoptera | Fall armyworm | Spodoptera frugiperda | 254 |
| C-46 | Gelechiidae | Tuta | South american tomato pinworm | Tuta absoluta | 27 |
| C-47 | Achatinidae | Lissachatina | Giant African land snail | Lissachatina fulica | 138 |
| C-48 | Ampullariidae | Pomacea | Golden apple snail | Pomacea canaliculata | 166 |
| C-49 | Lepisosteidae | Atractosteus | Alligator gar | Atractosteus spatula | 317 |
| C-50 | Loricariidae | Pterygoplichthys | Amazon sailfin catfish | Pterygoplichthys pardalis | 77 |
| C-51 | Cichlidae | Coptodon | Redbelly tilapia | Coptodon zillii | 44 |
| C-52 | Ranidae | Lithobates | American bullfrog | Lithobates catesbeianus | 144 |
| C-53 | Chelydridae | Macrochelys | Alligator snapping turtle | Macrochelys temminckii | 106 |
| C-54 | Emydidae | Trachemys | Red-eared slider | Trachemys scripta elegans | 250 |
| Input Image | Grad-CAM | Guided Grad-CAM | Input Image | Grad-CAM | Guided Grad-CAM |
|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

References
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- IPBES. Thematic Assessment Report on Invasive Alien Species and Their Control, 4th ed.; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar]
- Venette, R.C.; Hutchison, W.D. Invasive Insect Species: Global Challenges, Strategies & Opportunities. Front. Insect Sci. 2021, 1, 650520. [Google Scholar] [CrossRef]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinctions. Biol. Lett. 2016, 12, 20150623. [Google Scholar] [CrossRef]
- Valiente-Banuet, A.; Aizen, M.A.; Alcántara, J.M.; Arroyo, J.; Cocucci, A.; Galetti, M.; García, M.B.; García, D.; Gómez, J.M.; Jordano, P.; et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 2015, 29, 299–307. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.-C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.-M.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Turbelin, A.J.; Cuthbert, R.N.; Essl, F.; Haubrock, P.J.; Ricciardi, A.; Courchamp, F. Biological invasions are as costly as natural hazards. Perspect. Ecol. Conser. 2023, 21, 143–150. [Google Scholar] [CrossRef]
- Vilà, M.; Dunn, A.M.; Essl, F.; GÓmez-DÍaz, E.; Hulme, P.E.; Jeschke, J.M.; NÚÑez, M.A.; Ostfeld, R.S.; Pauchard, A.; Ricciardi, A.; et al. Viewing emerging human infectious epidemics through the lens of invasion biology. Bioscience 2021, 71, 722–740. [Google Scholar] [CrossRef]
- Rishan, S.T.; Kline, R.J.; Rahman, M.S. Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding. Environ. Adv. 2023, 12, 100370. [Google Scholar] [CrossRef]
- Thomas, A.C.; Tank, S.; Nguyen, P.L.; Ponce, J.; Sinnesael, M.; Goldberg, C.S. A system for rapid eDNA detection of aquatic invasive species. Environ. DNA 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Lopatin, J.; Dolos, K.; Kattenborn, T.; Fassnacht, F.E. How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote Sens. Ecol. Conserv. 2019, 5, 302–317. [Google Scholar] [CrossRef]
- Clavijo McCormick, A.; Effah, E.; Najar-Rodriguez, A. Ecological aspects of volatile organic compounds emitted by exotic invasive plants. Front. Ecol. Evol. 2023, 11, 1059125. [Google Scholar] [CrossRef]
- Crall, A.W.; Jordan, R.; Holfelder, K.; Newman, G.J.; Graham, J.; Waller, D.M. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 2012, 22, 745–764. [Google Scholar] [CrossRef]
- Aristeidou, M.; Herodotou, C.; Ballard, H.L.; Young, A.N.; Miller, A.E.; Higgins, L.; Johnson, R.F. Exploring the participation of young citizen scientists in scientific research: The case of iNaturalist. PLoS ONE 2021, 16, e0245682. [Google Scholar] [CrossRef]
- Wallace, R.D.; Bargeron, C.T. Identifying Invasive Species in Real Time: Early Detection and Distribution Mapping System (EDDMapS) and Other Mapping Tools. In Invasive Species and Global Climate Change; Ziska, L.H., Ed.; CABI: Wallingford, UK, 2022; pp. 225–238. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Binta Islam, S.; Valles, D.; Hibbitts, T.J.; Ryberg, W.A.; Walkup, D.K.; Forstner, M.R.J. Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images. Animals 2023, 13, 1526. [Google Scholar] [CrossRef]
- Goodwin, M.; Halvorsen, K.T.; Jiao, L.; Knausgård, K.M.; Martin, A.H.; Moyano, M.; Oomen, R.A.; Rasmussen, J.H.; Sørdalen, T.K.; Thorbjørnsen, S.H. Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES J. Mar. Sci. 2022, 79, 319–336. [Google Scholar] [CrossRef]
- Lopez-Vazquez, V.; Lopez-Guede, J.M.; Chatzievangelou, D.; Aguzzi, J. Deep learning based deep-sea automatic image enhancement and animal species classification. J. Big Data 2023, 10, 37. [Google Scholar] [CrossRef]
- Sahu, K.; Minz, S. Adaptive Segmentation with Intelligent ResNet and LSTM–DNN for Plant Leaf Multi-disease Classification Model. Sens. Imaging 2023, 24, 22. [Google Scholar] [CrossRef]
- Reddy, S.R.G.; Varma, G.P.S.; Davuluri, R.L. Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision. Ann. Data. Sci. 2024, 11, 243–272. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 2261–2269. [Google Scholar]
- Ferreira, R.E.P.; Lee, Y.J.; Dórea, J.R.R. Using pseudo-labeling to improve performance of deep neural networks for animal identification. Sci. Rep. 2023, 13, 13875. [Google Scholar] [CrossRef]
- Jia, Y.; Li, S.S.; Guo, X.; Lei, B.; Hu, J.Q.; Xu, X.H.; Zhang, W. Selfee, self-supervised features extraction of animal behaviors. eLife 2022, 11, e76218. [Google Scholar] [CrossRef]
- Gonçalves, C.; Santana, P.; Brandão, T.; Guedes, M. Automatic detection of Acacia longifolia invasive species based on UAV-acquired aerial imagery. Inf. Process. Agric. 2022, 9, 276–287. [Google Scholar] [CrossRef]
- Cruz, C.; McGuinness, K.; Perrin, P.M.; O’Connell, J.; Martin, J.R.; Connolly, J. Improving the mapping of coastal invasive species using UAV imagery and deep learning. Int. J. Remote Sens. 2023, 44, 5713–5735. [Google Scholar] [CrossRef]
- Bergamo, T.F.; de Lima, R.S.; Kull, T.; Ward, R.D.; Sepp, K.; Villoslada, M. From UAV to PlanetScope: Upscaling fractional cover of an invasive species Rosa rugosa. J. Environ. Manag. 2023, 336, 117693. [Google Scholar] [CrossRef] [PubMed]






| Taxonomic Group | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| plants | 0.93 | 0.97 | 0.92 | 0.95 |
| insects | 0.93 | 0.99 | 0.92 | 0.95 |
| mollusks | 0.95 | 1 | 0.95 | 0.97 |
| fishes | 0.98 | 1 | 0.97 | 0.98 |
| amphibians | 1 | 1 | 1 | 1 |
| reptiles | 0.97 | 1 | 0.96 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhou, J.; Wu, W.; Xu, C.; Ji, Y. EyeInvaS: Lowering Barriers to Public Participation in Invasive Alien Species Monitoring Through Deep Learning. Animals 2025, 15, 3181. https://doi.org/10.3390/ani15213181
Chen H, Zhou J, Wu W, Xu C, Ji Y. EyeInvaS: Lowering Barriers to Public Participation in Invasive Alien Species Monitoring Through Deep Learning. Animals. 2025; 15(21):3181. https://doi.org/10.3390/ani15213181
Chicago/Turabian StyleChen, Hao, Jiaogen Zhou, Wenbiao Wu, Changhui Xu, and Yanzhu Ji. 2025. "EyeInvaS: Lowering Barriers to Public Participation in Invasive Alien Species Monitoring Through Deep Learning" Animals 15, no. 21: 3181. https://doi.org/10.3390/ani15213181
APA StyleChen, H., Zhou, J., Wu, W., Xu, C., & Ji, Y. (2025). EyeInvaS: Lowering Barriers to Public Participation in Invasive Alien Species Monitoring Through Deep Learning. Animals, 15(21), 3181. https://doi.org/10.3390/ani15213181

























