From Science to Innovation in Aquatic Animal Nutrition: A Global TRL-Based Assessment of Insect-Derived Feed Technologies via Scientific Publications and Patents
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- AQUACULTURE:
- SUBJECT AREA (AGRI) AND (aqua?ultur* OR acuicultur*)
- FEED:
- feed* OR aliment* OR nourritur* OR essen*
- INSECTS:
- inse?t* OR lepidoptera* OR hymenoptera* OR hexapod* OR entomolog* OR diptera* OR coleoptera* OR bug* OR beetle* OR arthropoda* OR arthropod* OR cockroach* OR roach* OR periplaneta* OR orthopteran* OR “domestic* inse?t*” OR blattodea* OR blattid* OR blattellidae* OR blattaria* OR barata* OR cucaracha* OR cafard* OR kakerlake*
- PESTS OR PARASITES:
- pest* OR parasit*
- INSECTS:
- (INSECT OR LEPIDOPTERA OR HYMENOPTERA OR HEXAPOD OR ENTOMOLOGY OR DIPTERA OR COLEOPTERA OR BUG OR BEETLE OR ARTHROPODA OR ARTHROPOD OR COCKROACH OR ROACH OR PERIPLANETA OR ORTHOPTERAN OR DOMESTIC INSECT OR BLATTODEA OR BLATTID OR BLATTELLIDAE OR BLATTARIA)/TI/AB/OBJ/ADB/ICLM
- PESTS OR PARASITES:
- PEST* OR PARASIT*
3. Results and Discussion
3.1. Aquatic Organisms
3.2. Annual Evolution of Articles, Patents in General and Active Patents for Exportation
3.3. Global Distribution of Articles, Patents and Potential Patent Markets
3.4. Patent Holders and Their Technologies
3.5. Technologies Description
- Niche themes: genes and bacterial processes;
- Motor themes: geographic regions and environments, and risks associated with water pollutants and chemical exposure;
- Emerging themes: cloning and molecular techniques;
- Basic themes: enterprises and economics, laboratory procedures, genetics, metabolomics, biotechnology, environment, ecology, sustainability, and health.
- Cluster 1: enterprises and economics;
- Cluster 2: laboratory procedures;
- Cluster 3: genetics, metabolomics and biotechnology focusing on reproduction, fertilization, gender, growth, and mortality.
3.6. Future Tendencies and Opportunities
- Harmonization of regulations across major international markets;
- Expansion and scaling of production infrastructure;
- Development of standardized quality metrics specific to insect-based feeds).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APR | Asia and Pacific Regional Patent Office |
| BSF | Black soldier fly |
| CAGR | Compound Annual Growth Rate |
| DCFSA | Joint Declaration with a Focus on Food Security |
| EPO | European Patent Office |
| FAO | Food and Agriculture Organization of the United Nations |
| IPC | International Patent Classification |
| LCA | Life cycle assessments |
| PCT | Patent Cooperation Treaty of the World Intellectual Property Organization |
| SDG | Sustainable Development Goal |
| TRL | Technology Readiness Level |
References
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 18 July 2025).
- United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 18 July 2025).
- Fincham, G. “A World Not Our Own to Define”: Ecological Solutions to Global Catastrophe in the Works of Barry Lopez. Engl. Acad. Rev. 2024, 41, 33–46. [Google Scholar] [CrossRef]
- Joseph, J.A. The Ethical Interface of Sustainable Prosperity in the Teachings of Pope Francis. J. Dharma 2021, 46, 279–294. [Google Scholar]
- Silveira, E.A.; Barcelo, R.; Cruz Lamas, G.; Paulo de Oliveira Rodrigues, P.; Santana Chaves, B.; de Paula Protásio, T.; Rousset, P.; Ghesti, G. Biofuel from Agro-Industrial Residues as Sustainable Strategy for CO2 Mitigation: Statistical Optimization of Pequi Seeds Torrefaction. Energy Convers. Manag. 2024, 304, 118222. [Google Scholar] [CrossRef]
- Dutra, R.C.; Couto, G.O.; Péres, E.U.X.; Oliveira, J.S.; Suarez, P.A.Z.; Ghesti, G.F. Towards a Sustainable Waste to Eco-Friendly Grease Pathway: A Biorefinery Proposal for the Silk and Food Industries. Waste Biomass Valorization 2025, 16, 1763–1779. [Google Scholar] [CrossRef]
- Instituto de Pesquisa Econômica Aplicada—IPEA Conheça Os BRICS. Available online: https://www.ipea.gov.br/forumbrics/pt-BR/conheca-os-brics.html (accessed on 28 August 2025).
- BRICS Países Do BRICS Aprovam Declaração Conjunta Com Foco Em Segurança Alimentar. Available online: https://brics.br/pt-br/noticias/paises-do-brics-aprovam-declaracao-conjunta-com-foco-em-seguranca-alimentar (accessed on 28 August 2025).
- Food and Agriculture Organization of the United Nations—FAO Blue Transformation—Roadmap 2022–2030. Available online: https://openknowledge.fao.org/items/467191e5-111b-4191-a4d3-843e491fd418 (accessed on 28 August 2025).
- Food and Agriculture Organization of the United Nations—FAO Global Fisheries and Aquaculture Production Reaches a New Record High. Available online: https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en (accessed on 28 August 2025).
- Food and Agriculture Organization of the United Nations—FAO The State of World Fisheries and Aquaculture 2024. Available online: https://openknowledge.fao.org/items/06690fd0-d133-424c-9673-1849e414543d (accessed on 17 September 2025).
- Tariq, M.R.; Liu, S.; Wang, F.; Wang, H.; Mo, Q.; Zhuang, Z.; Zheng, C.; Liang, Y.; Liu, Y.; ur Rehman, K.; et al. Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review. Insects 2025, 16, 750. [Google Scholar] [CrossRef]
- Pereira, R.d.S.; Souza, L.P. de Panorama Da Política de Inovação Das ICTs Públicas Da Região Norte: Bioeconomia Como Diretriz Estratégica. Cadencia Prospecção 2024, 17, 870–884. [Google Scholar] [CrossRef]
- Center for Management and Strategic Studies—CGEE Opportunities and Challenges of the Bioeconomy: Support for the Brazilian STI Strategy in the Bioeconomy. Available online: https://www.gov.br/mma/pt-br/composicao/sbc/comissao-nacional-de-bioeconomia/reunioes/4deg-reuniao-cnbio/informe_capitulo_contexto_pndbio.pdf (accessed on 28 August 2025).
- Organisation for Economic Co-Operation and Development Meeting Policy Challenges for a Sustainable Bioeconomy. Available online: https://www.oecd.org/en/publications/policy-challenges-facing-a-sustainable-bioeconomy_9789264292345-en.html (accessed on 28 August 2025).
- Ferreira, A.G.; Braga, P.R.S. Mapeamento Tecnológico Sobre as Técnicas de Obtenção de Óleo de Resíduos de Peixe. Cadencia Prospecção 2019, 12, 1516. [Google Scholar] [CrossRef]
- Zanzot, A.; Copelotti, E.; Sezzi, E.; Mancini, S. Organic Edible Insects—What Would It Take? Animals 2025, 15, 2393. [Google Scholar] [CrossRef]
- Hancz, C.; Sultana, S.; Nagy, Z.; Biró, J. The Role of Insects in Sustainable Animal Feed Production for Environmentally Friendly Agriculture: A Review. Animals 2024, 14, 1009. [Google Scholar] [CrossRef]
- Toral, P.G.; Renna, M.; Frutos, P.; Gasco, L.; Hervás, G. Insect Fat as Feed: Potential to Modify the Fatty Acid Composition of Animal-Derived Foods. Anim. Nutr. 2025, 22, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Maulu, S.; Langi, S.; Hasimuna, O.J.; Missinhoun, D.; Munganga, B.P.; Hampuwo, B.M.; Gabriel, N.N.; Elsabagh, M.; Van Doan, H.; Abdul Kari, Z.; et al. Recent Advances in the Utilization of Insects as an Ingredient in Aquafeeds: A Review. Anim. Nutr. 2022, 11, 334–349. [Google Scholar] [CrossRef] [PubMed]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Selvaraj, V.; Won, E. Transforming Aquaculture with Insect-Based Feed: Restraining Factors. Anim. Front. 2024, 14, 24–27. [Google Scholar] [CrossRef]
- Hameed, A.; Majeed, W.; Naveed, M.; Ramzan, U.; Bordiga, M.; Hameed, M.; Ur Rehman, S.; Rana, N. Success of Aquaculture Industry with New Insights of Using Insects as Feed: A Review. Fishes 2022, 7, 395. [Google Scholar] [CrossRef]
- Yadav, N.K.; Deepti, M.; Patel, A.B.; Kumar, P.; Angom, J.; Debbarma, S.; Singh, S.K.; Deb, S.; Lal, J.; Vaishnav, A.; et al. Dissecting Insects as Sustainable Protein Bioresource in Fish Feed for Aquaculture Sustainability. Discov. Food 2025, 5, 47. [Google Scholar] [CrossRef]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- Okata, J.A. Maggots to the Rescue: Innovative Food Waste Solution May Help Wild Fish Populations Too. Available online: https://www.theguardian.com/environment/2024/oct/11/maggots-to-the-rescue-food-waste-wild-fish? (accessed on 29 August 2025).
- Sánchez-Velázquez, J.; Peña-Herrejón, G.A.; Aguirre-Becerra, H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals 2024, 14, 765. [Google Scholar] [CrossRef]
- Hasan, I.; Rimoldi, S.; Saroglia, G.; Terova, G. Sustainable Fish Feeds with Insects and Probiotics Positively Affect Freshwater and Marine Fish Gut Microbiota. Animals 2023, 13, 1633. [Google Scholar] [CrossRef] [PubMed]
- Innovafeed Ltd. Innovafeed. Available online: https://innovafeed.com/en (accessed on 28 August 2025).
- Rimoldi, S.; Gini, E.; Iannini, F.; Gasco, L.; Terova, G. The Effects of Dietary Insect Meal from Hermetia illucens Prepupae on Autochthonous Gut Microbiota of Rainbow Trout (Oncorhynchus mykiss). Animals 2019, 9, 143. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Yao, H. Comprehensive Resource Utilization of Waste Using the Black Soldier Fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae). Animals 2019, 9, 349. [Google Scholar] [CrossRef]
- Boakye-Yiadom, K.A.; Ilari, A.; Duca, D. Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly (Hermetia illucens L.). Sustainability 2022, 14, 10456. [Google Scholar] [CrossRef]
- Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.; Alagawany, M.; Naiel, M.A.E.; Dawood, M.A.O.; Yilmaz, S.; Liu, Q. The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry. Animals 2021, 11, 811. [Google Scholar] [CrossRef]
- Soares Araújo, R.R.; dos Santos Benfica, T.A.R.; Ferraz, V.P.; Moreira Santos, E. Nutritional Composition of Insects Gryllus Assimilis and Zophobas Morio: Potential Foods Harvested in Brazil. J. Food Compos. Anal. 2019, 76, 22–26. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Athanassiou, C.G. The Superworm, Zophobas Morio (Coleoptera:Tenebrionidae): A ‘Sleeping Giant’ in Nutrient Sources. J. Insect Sci. 2021, 21, 13. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, L.; Li, H.; Xu, X.; Yang, Z. Use of Housefly (Musca domestica L0.) Larvae to Bioconversion Food Waste for Animal Nutrition and Organic Fertilizer. Environ. Sci. Pollut. Res. 2021, 28, 48921–48928. [Google Scholar] [CrossRef] [PubMed]
- KP, G.; AN, D.; VD, R.; RK, T. Effect of Locally Generated Food Waste on Bioconversion and Nutrient Parameters of Black Soldier Fly Larvae, Hermetia illucens L. J. Entomol. Zool. Stud. 2022, 10, 108–116. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Pang, Y.; Cang, S.; Wu, G.; Fan, B.; Liu, W.; Tan, H.; Luo, G. Performance of Feeding Black Soldier Fly (Hermetia illucens) Larvae on Shrimp Carcasses: A Green Technology for Aquaculture Waste Management and Circular Economy. Sci. Total Environ. 2024, 928, 172491. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.; Basak, P. Review on Application of Silkworm Pupae in Human and Animal Nutrition. J. Pharmacogn. Phytochem. 2024, 13, 767–774. [Google Scholar] [CrossRef]
- Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. [Google Scholar] [CrossRef]
- Malenica, D.; Kass, M.; Bhat, R. Sustainable Management and Valorization of Agri-Food Industrial Wastes and By-Products as Animal Feed: For Ruminants, Non-Ruminants and as Poultry Feed. Sustainability 2022, 15, 117. [Google Scholar] [CrossRef]
- Ochoa, I.; Valderrama, E.; Ayquipa, E.M.; Cárdenas, L.A.; Zea, D.; Huamani, Z.; Castellaro, G. Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru. Animals 2025, 15, 2054. [Google Scholar] [CrossRef]
- NASA The TRL Scale as a Research & Innovation Policy Tool. NASA EARTO Recommendations. Available online: https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf (accessed on 5 August 2025).
- Nesta, L.; Patel, P. National Patterns of Technology Accumulation: Use of Patent Statistics. In Handbook of Quantitative Science and Technology Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 531–551. [Google Scholar]
- Quintella, C.M.; Pires, E.A.; Santos, W.P.C. dos Brazil’s Food Technology: A Pre-Pandemic Assessment to Achieve Zero Hunger SDG2 Goal, Benchmarking against USA. World Pat. Inf. 2023, 75, 102240. [Google Scholar] [CrossRef]
- Quintella, C.M.; Hanna, S.A.; Santos, S.C. dos Brazil’s Biotechnology Assessment of Potential to Achieve Sustainable Development Goals, Benchmarking against the USA. World Pat. Inf. 2024, 77, 102275. [Google Scholar] [CrossRef]
- Quintella, C.M. Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023). Sustainability 2025, 17, 2896. [Google Scholar] [CrossRef]
- Raghuvaran, N.; Varghese, T.; Prasana, J.; Brighty, R.J.A.; Sethupathy, A.M.; Sudarshan, S.; Alrashdi, Y.B.A.; Ibrahim, A.E.; El Deeb, S. Current Status and Global Research Trend Patterns of Insect Meal in Aquaculture from Scientometric Perspective: (2013–2022). Aquac. Nutr. 2024, 2024, 5466604. [Google Scholar] [CrossRef]
- Bibliometrix Biblioshiny. Available online: https://www.bibliometrix.org/home/index.php/layout/biblioshiny (accessed on 28 August 2025).
- Schmoch, U. IPC and Technology Concordance Table. Available online: https://www.wipo.int/meetings/en/doc_details.jsp?doc_id=117672 (accessed on 28 August 2025).
- Rodrigues, D.P.; Calado, R.; Pinho, M.; Domingues, M.D.R.; Vázquez, J.A.; Ameixa, O.M.C.C. Growth Rate Prediction, Performance, and Biochemical Enhancement of Black Soldier Fly (Hermetia illucens) Fed with Marine By-Products and Co-Products: A Potential Value-Added Resource for Marine Aquafeeds. Insects 2025, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Atchamou, J.B.O.; Rodrigue, T.; Kpogue, D.N.S.; Ogoudele, M.; Djissou, A.; Aboh, B.A.; Sohou, Z.; Ndong, D.; Fall, J.; Mensah, G.A. Impact of Different Organic Substrates on the Productivity and Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens). Eur. J. Nutr. Food Saf. 2024, 16, 240–251. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, S.; Luo, Y.; Tang, G.; Zou, X.; Xie, K.; Niu, W.; Li, X.; Xiang, J.; Zhang, L.; et al. Fermented Black Soldier Fly Larvae as a Sustainable Replacement for Marine Fish in Asian Swamp Eel Diets. Vet. World 2025, 18, 1002–1013. [Google Scholar] [CrossRef]
- He, J.; Ke, K.; Sun, H.; Hu, L.; Zhao, X.; Wang, W.; Zhao, Q. Diet Analysis of Neptunea cumingii Using Metabarcoding. Biodivers. Sci. 2025, 33, 24403. [Google Scholar] [CrossRef]
- Dean, H.K. The Use of Polychaetes (Annelida) as Indicator Species of Marine Pollution: A Review. Int. J. Trop. Biol. Conserv. 2008, 56, 11–38. [Google Scholar]
- Martinelli, J.C.; Casendino, H.R.; Spencer, L.H.; Alma, L.; King, T.L.; Padilla-Gamiño, J.L.; Wood, C.L. Evaluating Treatments for Shell-Boring Polychaete (Annelida: Spionidae) Infestations of Pacific Oysters (Crassostrea gigas) in the US Pacific Northwest. Aquaculture 2022, 561, 738639. [Google Scholar] [CrossRef]
- Spencer, L.H.; Martinelli, J.C.; King, T.L.; Crim, R.; Blake, B.; Lopes, H.M.; Wood, C.L. The Risks of Shell-boring Polychaetes to Shellfish Aquaculture in Washington, USA: A Mini-review to Inform Mitigation Actions. Aquac. Res. 2021, 52, 438–455. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Lundebye, A.-K.; Tibon, J.; Sindre, H.; Nilsen, H.; Hagemann, A.; Sele, V. Aquaculture Sludge as Feed for Black Soldier Fly: Transfer of Chemical and Biological Contaminants and Nutrients. Waste Manag. 2024, 187, 39–49. [Google Scholar] [CrossRef]
- Khan, J.A.; Guo, X.; Pichner, R.; Aganovic, K.; Heinz, V.; Hollah, C.; Miert, S.V.; Verheyen, G.R.; Juadjur, A.; Rehman, K.U. Evaluation of Nutritional and Techno-Functional Aspects of Black Soldier Fly High-Protein Extracts in Different Developmental Stages. Animal 2025, 19, 101463. [Google Scholar] [CrossRef]
- Bullon, N.; Alfaro, A.C.; Guo, J.; Copedo, J.; Nguyen, T.V.; Seyfoddin, A. Expanding the Menu for New Zealand Farmed Abalone: Dietary Inclusion of Insect Meal and Grape Marc (Effects on Gastrointestinal Microbiome, Digestive Morphology, and Muscle Metabolome). N. Z. J. Mar. Freshw. Res. 2025, 59, 31–60. [Google Scholar] [CrossRef]
- Webb, J.L.; Vandenbor, J.; Pirie, B.; Robinson, S.M.C.; Cross, S.F.; Jones, S.R.M.; Pearce, C.M. Effects of Temperature, Diet, and Bivalve Size on the Ingestion of Sea Lice (Lepeophtheirus salmonis) Larvae by Various Filter-Feeding Shellfish. Aquaculture 2013, 406–407, 9–17. [Google Scholar] [CrossRef]
- Ling, S.-L.Y.; Shafiee, M.; Longworth, Z.; Vatanparast, H.; Tabatabaei, M.; Liew, H.J. Black Soldier Fly Larvae Meal (BSFLM) as an Alternative Protein Source in Sustainable Aquaculture Production: A Scoping Review of Its Comprehensive Impact on Shrimp and Prawn Farming. Anim. Feed Sci. Technol. 2025, 319, 116174. [Google Scholar] [CrossRef]
- Toma, M.; Bavestrello, G.; Enrichetti, F.; Costa, A.; Angiolillo, M.; Cau, A.; Andaloro, F.; Canese, S.; Greco, S.; Bo, M. Mesophotic and Bathyal Echinoderms of the Italian Seas. Diversity 2024, 16, 753. [Google Scholar] [CrossRef]
- Emerson, L.C.; Holmes, C.J.; Cáceres, C.E. Prey Choice by a Freshwater Copepod on Larval Aedes Mosquitoes in the Presence of Alternative Prey. J. Vector Ecol. 2021, 46, 200–206. [Google Scholar] [CrossRef]
- Russell, M.C.; Qureshi, A.; Wilson, C.G.; Cator, L.J. Size, Not Temperature, Drives Cyclopoid Copepod Predation of Invasive Mosquito Larvae. PLoS ONE 2021, 16, e0246178. [Google Scholar] [CrossRef]
- CAFS Chinese Academy of Fishery Sciences. Available online: https://www.scsfri.ac.cn/english/index.htm (accessed on 28 August 2025).
- Ynsect. Available online: https://www.ynsect.com/about-us/ (accessed on 23 October 2025).
- The Japan Ship Owners’ Mutual Protection & Indemnity Association Japan P&I News. Available online: https://www.piclub.or.jp/wp-content/uploads/2023/10/No.1244_China%EF%BC%8DAn-Update-on-the-Distribution-on-Major-Fishery-Farms-along-the-Coast-of-China.pdf (accessed on 28 August 2025).
- Ganesan, A.R.; Mohan, K.; Kandasamy, S.; Surendran, R.P.; Kumar, R.; Rajan, D.K.; Rajarajeswaran, J. Food Waste-Derived Black Soldier Fly (Hermetia illucens) Larval Resource Recovery: A Circular Bioeconomy Approach. Process Saf. Environ. Prot. 2024, 184, 170–189. [Google Scholar] [CrossRef]
- Siva Raman, S.; Stringer, L.C.; Bruce, N.C.; Chong, C.S. Opportunities, Challenges and Solutions for Black Soldier Fly Larvae-Based Animal Feed Production. J. Clean. Prod. 2022, 373, 133802. [Google Scholar] [CrossRef]
- Meijer, N.; Safitri, R.A.; Tao, W.; Hoek-Van den Hil, E.F. Review: European Union Legislation and Regulatory Framework for Edible Insect Production—Safety Issues. Animal 2025, 19, 101468. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials Ingredient Definitions Committee Report. Available online: https://www.aafco.org/wp-content/uploads/2024/04/6.-Minutes.Ingredient-Definitions-Committee-Report-Jan.2024.pdf (accessed on 27 October 2025).
- Abro, Z.; Macharia, I.; Mulungu, K.; Subramanian, S.; Tanga, C.M.; Kassie, M. The Potential Economic Benefits of Insect-Based Feed in Uganda. Front. Insect Sci. 2022, 2, 968042. [Google Scholar] [CrossRef] [PubMed]
- Auzins, A.; Leimane, I.; Reissaar, R.; Brobakk, J.; Sakelaite, I.; Grivins, M.; Zihare, L. Assessing the Socio-Economic Benefits and Costs of Insect Meal as a Fishmeal Substitute in Livestock and Aquaculture. Animals 2024, 14, 1461. [Google Scholar] [CrossRef]
- Sogari, G.; Bellezza Oddon, S.; Gasco, L.; van Huis, A.; Spranghers, T.; Mancini, S. Review: Recent Advances in Insect-Based Feeds: From Animal Farming to the Acceptance of Consumers and Stakeholders. Animal 2023, 17, 100904. [Google Scholar] [CrossRef] [PubMed]
- Almgren, R.; Skobelev, D. Evolution of Technology and Technology Governance. J. Open Innov. Technol. Mark. Complex. 2020, 6, 22. [Google Scholar] [CrossRef]






| Insects | Aquaculture | Feed | Active Patents | Exportation Patents | No. Patents |
|---|---|---|---|---|---|
| AND | 79,268 | ||||
| AND | AND | 1297 | |||
| AND | AND | AND | 218 | ||
| AND | AND | AND | AND | 78 | |
| AND | AND | AND | AND | AND | 15 |
| Aquatic Organism | IPC Codes | Article Keywords |
|---|---|---|
| Bivalve mollusks, e.g., oysters or mussels | A01K61/54 | “shellfish bivalve*” OR oyster* OR mussel* |
| Crustacean mollusks, e.g., lobsters or shrimps | A01K61/59 | “shellfish crustacean*” OR lobsters OR shrimps |
| Gastropod mollusks, e.g., abalones or turban snails | A01K61/51 | “shellfish gastropod*” OR abalones OR “turban snails” |
| Annelids, e.g., lugworms or Eunice | A01K61/40 | Annelid* OR lugworm* OR Eunice* |
| Mollusks in general | A01K61/50 | shellfish* OR “shellfish bivalve*” OR oyster* OR mussel* OR “shellfish crustacean*” OR lobsters OR shrimps |
| Sponges, sea urchins, or sea cucumbers | A01K61/30 | sponge* OR “sea urchin*” OR “sea cucumber*” |
| Fish in general | A01K61/10 | fish* |
| Aquatic Organism | Aquaculture in General | Insects Feed Aquaculture | ||||
|---|---|---|---|---|---|---|
| TRL 3 | TRL 4–5 | TRL 3 → 4–5 Conversion Rate (%) | TRL 3 | TRL 4–5 | TRL 3 → 4–5 Conversion Rate (%) | |
| Bivalve mollusks, e.g., oysters or mussels | 3469 | 2480 | 71% | 7 | 4 | 57% |
| Crustacean mollusks, e.g., lobsters or shrimps | 5680 | 6058 | 107% | 44 | 66 | 150% |
| Gastropod mollusks, e.g., abalones or turban snails | 673 | 864 | 128% | 4 | 9 | 225% |
| Annelids, e.g., lugworms or Eunice | 131 | 651 | 497% | 5 | 6 | 120% |
| Mollusks in general | 10,290 | 9548 | 93% | 62 | 77 | 124% |
| Sponges, sea urchins, or sea cucumbers | 5962 | 842 | 14% | 3 | 2 | 67% |
| Fish in general | 33,367 | 8998 | 27% | 394 | 77 | 20% |
| Parent Organization | Country of Origin | Active Patents | Total Patents |
|---|---|---|---|
| CAFS—Chinese Academy of Fisheries Sciences | China | 5 | 9 |
| Anshun Branch | China | 3 | 3 |
| Guizhou Lvyi Natural Enemy Technology | China | 3 | 3 |
| Guizhou Research Institute of Chemical Industry | China | 3 | 3 |
| Innovafeed | France | 3 | 3 |
| Republic of Korea (National Institute of Fisheries Science) | South Korea | 3 | 3 |
| Ynsect | France | 2 | 3 |
| Anhui Linghang Animal Health Product | China | 2 | 2 |
| Gansu Agricultural Science Institute | China | 2 | 2 |
| Guilin Li River Ecological Science & Technology Development | China | 2 | 2 |
| Hainan University | China | 2 | 2 |
| Shangyu Snake Hot Runner | China | 2 | 2 |
| Sichuan Academy of Agricultural Sciences | China | 2 | 2 |
| Yangling Agricultural Technology Exhibition Center | China | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintella, C.M.; Ghesti, G.F.; Salgado, R.; Mata, A.M.A.T. From Science to Innovation in Aquatic Animal Nutrition: A Global TRL-Based Assessment of Insect-Derived Feed Technologies via Scientific Publications and Patents. Animals 2025, 15, 3174. https://doi.org/10.3390/ani15213174
Quintella CM, Ghesti GF, Salgado R, Mata AMAT. From Science to Innovation in Aquatic Animal Nutrition: A Global TRL-Based Assessment of Insect-Derived Feed Technologies via Scientific Publications and Patents. Animals. 2025; 15(21):3174. https://doi.org/10.3390/ani15213174
Chicago/Turabian StyleQuintella, Cristina M., Grace Ferreira Ghesti, Ricardo Salgado, and Ana M. A. T. Mata. 2025. "From Science to Innovation in Aquatic Animal Nutrition: A Global TRL-Based Assessment of Insect-Derived Feed Technologies via Scientific Publications and Patents" Animals 15, no. 21: 3174. https://doi.org/10.3390/ani15213174
APA StyleQuintella, C. M., Ghesti, G. F., Salgado, R., & Mata, A. M. A. T. (2025). From Science to Innovation in Aquatic Animal Nutrition: A Global TRL-Based Assessment of Insect-Derived Feed Technologies via Scientific Publications and Patents. Animals, 15(21), 3174. https://doi.org/10.3390/ani15213174

