Impact of Oxidative Stress and Antioxidants on Semen Quality in Dogs
Simple Summary
Abstract
1. Introduction
- -
- The review of current literature about enzymatic and non-enzymatic antioxidants in sperm cells and seminal plasma of dogs, including proteomic aspects,
- -
- Disorders of semen quality leading to infertility related to disturbances in pro- and antioxidative balance in dogs,
- -
- The summary of studies on antioxidant supplementation of dogs and extenders for canine semen,
- -
- Limitations of current data and perspectives for the future in dogs.
2. Materials and Methods
3. Antioxidant System in Semen of Dogs
4. Impact of Oxidative Stress on Semen Quality and Fertility in Male Dogs
5. Effects of Antioxidant Supplementation of Dogs on Semen Quality and Fertility
6. Effects of Antioxidant Supplementation to Semen Extenders on Antioxidant Status, Semen Quality, and Fertility in Male Dogs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ribeiro, J.C.; Braga, P.C.; Martins, A.D.; Silva, B.M.; Alves, M.G.; Oliveira, P.F. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants 2021, 10, 1441. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Durairajanayagam, D.; Halabi, J.; Peng, J.; Vazquez-Levin, M. Proteomics, Oxidative Stress and Male Infertility. Reprod. Biomed. Online 2014, 29, 32–58. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K. Oxidative Stress and Male Infertility—A Clinical Perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Pizzi, G.; Giussani, E.; Pecile, A.; Mazzola, S.M.; Bronzo, V.; Fusi, E. First Evidence of Cotinine in Canine Semen Reveals Tobacco Smoke Exposure. Vet. Sci. 2024, 11, 598. [Google Scholar] [CrossRef]
- Burgio, M.; Forte, L.; Prete, A.; Maggiolino, A.; De Palo, P.; Aiudi, G.G.; Rizzo, A.; Carbonari, A.; Lacalandra, G.M.; Cicirelli, V. Effects of Heat Stress on Oxidative Balance and Sperm Quality in Dogs. Front. Vet. Sci. 2024, 11, 1445058. [Google Scholar] [CrossRef]
- Usuga, A.; Rojano, B.A.; Duque, J.C.; Mesa, C.; Restrepo, O.; Gomez, L.M.; Restrepo, G. Dry Food Affects the Oxidative/Antioxidant Profile of Dogs. Vet. Med. Sci. 2023, 9, 687–697. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Cassani, P.; Beconi, M.T.; O’Flaherty, C. Relationship between Total Superoxide Dismutase Activity with Lipid Peroxidation, Dynamics and Morphological Parameters in Canine Semen. Anim. Reprod. Sci. 2005, 86, 163–173. [Google Scholar] [CrossRef]
- Strzezek, R.; Koziorowska-Gilun, M.; Kowalówka, M.; Strzezek, J. Characteristics of Antioxidant System in Dog Semen. Pol. J. Vet. Sci. 2009, 12, 55–60. [Google Scholar]
- Koziorowska-Gilun, M.; Strzezek, R. Molecular Forms of Selected Antioxidant Enzymes in Dog Semen—Electrophoretical Identification. Pol. J. Vet. Sci. 2011, 14, 29–33. [Google Scholar] [CrossRef]
- Angrimani, D.S.R.; Lucio, C.F.; Veiga, G.A.L.; Silva, L.C.G.; Regazzi, F.M.; Nichi, M.; Vannucchi, C.I. Sperm Maturation in Dogs: Sperm Profile and Enzymatic Antioxidant Status in Ejaculated and Epididymal Spermatozoa. Andrologia 2014, 46, 814–819. [Google Scholar] [CrossRef]
- Angrimani, D.S.R.; Losano, J.D.A.; Lucio, C.F.; Veiga, G.A.L.; Pereda, M.C.; Nichi, M.; Vannucchi, C.I. Role of Residual Cytoplasm on Oxidative Status during Sperm Maturation in Dogs. Anim. Reprod. Sci. 2014, 151, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Kankofer, M.; Kolm, G.; Aurich, J.; Aurich, C. Activity of Glutathione Peroxidase, Superoxide Dismutase and Catalase and Lipid Peroxidation Intensity in Stallion Semen during Storage at 5 °C. Theriogenology 2005, 63, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Reeves, G.; Hetherington, L.; Müller, J.; Baur, I.; Aitken, R.J. Identification of Gene Products Present in Triton X-100 Soluble and Insoluble Fractions of Human Spermatozoa Lysates Using LC-MS/MS Analysis. Proteom.-Clin. Appl. 2007, 1, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.; Martínez-Heredia, J.; Estanyol, J.M. Proteomics in the Study of the Sperm Cell Composition, Differentiation and Function. Syst. Biol. Reprod. Med. 2008, 54, 23–36. [Google Scholar] [CrossRef]
- Aquino-Cortez, A.; Pinheiro, B.Q.; Lima, D.B.C.; Silva, H.V.R.; Mota-Filho, A.C.; Martins, J.A.M.; Rodriguez-Villamil, P.; Moura, A.A.; Silva, L.D.M. Proteomic Characterization of Canine Seminal Plasma. Theriogenology 2017, 95, 178–186. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Arangasamy, A.; Kastelic, J.P. Sperm and Seminal Plasma Proteomics of High- versus Low-Fertility Holstein Bulls. Theriogenology 2019, 126, 41–48. [Google Scholar] [CrossRef]
- Gouletsou, P.G.; Tsangaris, G.T.; Katsarou, E.I.; Bourganou, M.V.; Barbagianni, M.S.; Venianaki, A.P.; Bouroutzika, E.; Anagnostopoulos, A.K.; Fthenakis, G.C.; Katsafadou, A.I. Proteomics Evaluation of Semen of Clinically Healthy Beagle-Breed Dogs. Vet. Sci. 2022, 9, 697. [Google Scholar] [CrossRef]
- Kawakami, E.; Takemura, A.; Sakuma, M.; Takano, M.; Hirano, T.; Hori, T.; Tsutsui, T. Superoxide Dismutase and Catalase Activities in the Seminal Plasma of Normozoospermic and Asthenozoospermic Beagles. J. Vet. Med. Sci. 2007, 69, 133–136. [Google Scholar] [CrossRef]
- Neagu, V.R.; García, B.M.; Rodríguez, A.M.; Ferrusola, C.O.; Bolaños, J.M.G.; Fernández, L.G.; Tapia, J.A.; Peña, F.J. Determination of Glutation Peroxidase and Superoxide Dismutase Activities in Canine Seminal Plasma and Its Relation with Sperm Quality and Lipid Peroxidation Post Thaw. Theriogenology 2011, 75, 10–16. [Google Scholar] [CrossRef]
- Juyena, N.S.; Stelletta, C. Seminal Plasma: An Essential Attribute to Spermatozoa. J. Androl. 2012, 33, 536–551. [Google Scholar] [CrossRef]
- Paradiso Galatioto, G.; Gravina, G.L.; Angelozzi, G.; Sacchetti, A.; Innominato, P.F.; Pace, G.; Ranieri, G.; Vicentini, C. May Antioxidant Therapy Improve Sperm Parameters of Men with Persistent Oligospermia after Retrograde Embolization for Varicocele? World J. Urol. 2008, 26, 97–102. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Rajasekaran, M.; Hellstrom, W.J.; Sikka, S.C. Antioxidant Potential of Human Serum Albumin: Role in the Recovery of High Quality Human Spermatozoa for Assisted Reproductive Technology. J. Androl. 1998, 19, 412–419. [Google Scholar] [CrossRef]
- von der Kammer, H.; Scheit, K.H.; Weidner, W.; Cooper, T.G. The Evaluation of Markers of Prostatic Function. Urol. Res. 1991, 19, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Domosławska, A.; Zdunczyk, S.; Franczyk, M.; Kankofer, M.; Janowski, T. Selenium and Vitamin E Supplementation Enhances the Antioxidant Status of Spermatozoa and Improves Semen Quality in Male Dogs with Lowered Fertility. Andrologia 2018, 50, e13023. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agarwal, A.; Mohanty, G.; Hamada, A.J.; Gopalan, B.; Willard, B.; Yadav, S.; du Plessis, S. Proteomic Analysis of Human Spermatozoa Proteins with Oxidative Stress. Reprod. Biol. Endocrinol. 2013, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Santiago, B.V.; Monteiro, G.A.; Bittencourt, R.; Arduino, F.; Ovidio, P.P.; Jordão-Junior, A.A.; Araújo, J.P.; Lopes, M.D. Evaluation of Sperm DNA Peroxidation in Fertile and Subfertile Dogs. Reprod. Domest. Anim. 2012, 47, 208–209. [Google Scholar] [CrossRef]
- Vieira, N.d.M.G.; Losano, J.D.d.A.; Angrimani, D.d.S.R.; Kawai, G.K.V.; Bicudo, L.d.C.; Rui, B.R.; da Silva, B.d.C.S.; Assumpção, M.E.O.D.A.; Nichi, M. Induced Sperm Oxidative Stress in Dogs: Susceptibility against Different Reactive Oxygen Species and Protective Role of Seminal Plasma. Theriogenology 2018, 108, 39–45. [Google Scholar] [CrossRef]
- da Rosa Filho, R.R.; Angrimani, D.S.R.; Brito, M.M.; Nichi, M.; Vannucchi, C.I.; Lucio, C.F. Susceptibility of Epididymal Sperm against Reactive Oxygen Species in Dogs. Anim. Biotechnol. 2021, 32, 92–99. [Google Scholar] [CrossRef]
- Del Prete, C.; Ciani, F.; Tafuri, S.; Pasolini, M.P.; Della Valle, G.; Palumbo, V.; Abbondante, L.; Calamo, A.; Barbato, V.; Gualtieri, R.; et al. Effect of Superoxide Dismutase, Catalase, and Glutathione Peroxidase Supplementation in the Extender on Chilled Semen of Fertile and Hypofertile Dogs. J. Vet. Sci. 2018, 19, 667–675. [Google Scholar] [CrossRef]
- de la Fuente-Lara, A.; Hesser, A.; Christensen, B.; Gonzales, K.; Meyers, S. Effects from Aging on Semen Quality of Fresh and Cryopreserved Semen in Labrador Retrievers. Theriogenology 2019, 132, 164–171. [Google Scholar] [CrossRef]
- Domoslawska, A.; Zdunczyk, S.; Franczyk, M.; Kankofer, M.; Janowski, T. Total Antioxidant Capacity and Protein Peroxidation Intensity in Seminal Plasma of Infertile and Fertile Dogs. Reprod. Domest. Anim. 2018, 54, 252–257. [Google Scholar] [CrossRef]
- Kobayashi, M.; Tsuzuki, C.; Kobayashi, M.; Tsuchiya, H.; Yamashita, Y.; Ueno, K.; Onozawa, M.; Kobayashi, M.; Kawakami, E.; Hori, T. Effect of Supplementation with the Reduced Form of Coenzyme Q10 on Semen Quality and Antioxidant Status in Dogs with Poor Semen Quality: Three Case Studies. J. Vet. Med. Sci. 2021, 83, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Hatamoto, L.K.; Baptista Sobrinho, C.A.; Nichi, M.; Barnabe, V.H.; Barnabe, R.C.; Cortada, C.N.M. Effects of Dexamethasone Treatment (to Mimic Stress) and Vitamin E Oral Supplementation on the Spermiogram and on Seminal Plasma Spontaneous Lipid Peroxidation and Antioxidant Enzyme Activities in Dogs. Theriogenology 2006, 66, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Domoslawska-Wyderska, A.; Orzołek, A.; Zduńczyk, S.; Rafalska, A. Nitric Oxide Production by Spermatozoa and Sperm Characteristics in Dogs with Benign Prostatic Hyperplasia. Pol. J. Vet. Sci. 2023, 26, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Abah, K.O.; Ligocka-Kowalczyk, Z.; Partyka, A.; Prochowska, S.; Fontbonne, A.; Niżański, W. Exploring the Characters of Sperm Lipid Peroxidation, Enzymatic Antioxidant Activity, and Spermatozoa Zona Binding Capacity with Aging in Dogs. Sci. Rep. 2025, 15, 30976. [Google Scholar] [CrossRef]
- Darin Bennett, A.; Poulous, A.; White, I.G. The Phospholipids and Phospholipid Bound Fatty Acids and Aldehydes of Dog and Fowl Spermatozoa. J. Reprod. Fertil. 1974, 41, 471–474. [Google Scholar] [CrossRef]
- Memon, M.A. Common Causes of Male Dog Infertility. Theriogenology 2007, 68, 322–328. [Google Scholar] [CrossRef]
- Cunto, M.; Ballotta, G.; Zambelli, D. Benign Prostatic Hyperplasia in the Dog. Anim. Reprod. Sci. 2022, 247, 107096. [Google Scholar] [CrossRef]
- Dearakhshandeh, N.; Mogheiseh, A.; Nazifi, S.; Ahrari Khafi, M.S.; Abbaszadeh Hasiri, M.; Golchin-Rad, K. Changes in the Oxidative Stress Factors and Inflammatory Proteins Following the Treatment of BPH-Induced Dogs with an Anti-Proliferative Agent Called Tadalafil. J. Vet. Pharmacol. Ther. 2019, 42, 665–672. [Google Scholar] [CrossRef]
- Domoslawska, A.; Zduńczyk, S.; Kankofer, M.; Bielecka, A. Oxidative Stress Biomarkers in Dogs with Benign Prostatic Hyperplasia. Ir. Vet. J. 2022, 75, 21. [Google Scholar] [CrossRef]
- Rijsselaere, T.; Maes, D.; Hoflack, G.; De Kruif, A.; Van Soom, A. Effect of Body Weight, Age and Breeding History on Canine Sperm Quality Parameters Measured by the Hamilton-Thorne Analyser. Reprod. Domest. Anim. 2007, 42, 143–148. [Google Scholar] [CrossRef]
- Pintus, E.; Ros-Santaella, J.L. Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals. Antioxidants 2021, 10, 1154. [Google Scholar] [CrossRef]
- Brito, M.M.; Angrimani, D.d.S.R.; Rui, B.R.; Kawai, G.K.V.; Losano, J.D.A.; Vannucchi, C.I. Effect of Senescence on Morphological, Functional and Oxidative Features of Fresh and Cryopreserved Canine Sperm. Aging Male 2020, 23, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, E.; Kobayashi, M.; Hori, T.; Kaneda, T. Therapeutic Effects of Vitamin E Supplementation in 4 Dogs with Poor Semen Quality and Low Superoxide Dismutase Activity in Seminal Plasma. J. Vet. Med. Sci. 2016, 77, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, A.A.; Da Cunha, I.C.N.; Ederli, B.B.; Albernaz, A.P.; Quirino, C.R. Effect of Daily Food Supplementation with Essential Fatty Acids on Canine Semen Quality. Reprod. Domest. Anim. 2009, 44, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Risso, A.L.; Pellegrino, F.J.; Corrada, Y.; Marmunti, M.; Gavazza, M.; Palacios, A.; Relling, A.E. Effect of Fish Oil and Vitamin E on Sperm Lipid Peroxidation in Dogs. J. Nutr. Sci. 2017, 6, 4–7. [Google Scholar] [CrossRef]
- Kirchhoff, K.T.; Failing, K.; Goericke-Pesch, S. Effect of Dietary Vitamin E and Selenium Supplementation on Semen Quality in Cairn Terriers with Normospermia. Reprod. Domest. Anim. 2017, 52, 945–952. [Google Scholar] [CrossRef]
- Alonge, S.; Melandri, M.; Leoci, R.; Lacalandra, G.M.; Caira, M.; Aiudi, G.G. The Effect of Dietary Supplementation of Vitamin E, Selenium, Zinc, Folic Acid, and N-3 Polyunsaturated Fatty Acids on Sperm Motility and Membrane Properties in Dogs. Animals 2019, 9, 34. [Google Scholar] [CrossRef]
- Gattuso, D.T.; Polisca, A.; Interlandi, C.D.; Rizzo, M.; Tabbì, M.; Giudice, E.; Cristarella, S.; Rifici, C.; Quartuccio, M.; Zappone, V. Influence of Dietary Supplementation with Lepidium meyenii (Maca) on Sperm Quality in Dogs. Front. Vet. Sci. 2024, 11, 1375146. [Google Scholar] [CrossRef]
- Zappone, V.; Gattuso, D.T.; Quartuccio, M.; Pettina, G.; Cavallo, C.; Tomasello, M.; Tomasella, C.; Donato, G.; Troisi, A.; Caspanello, T. Effects of Oral Black Maca (Lepidium meyenii) Supplementation on Semen Quality and Refrigerated Storage Stability in Subfertile and Normofertile Dogs: A Study on Sperm Parameters and Testosterone Levels. Vet. Q. 2025, 45, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Forte, L.; Burgio, M.; Rizzo, A.; Maggiolino, A.; Carbonari, A.; De Palo, P.; Lacalandra, G.M.; Cicirelli, V. Heat Stress on Sperm Quality in Dogs: Effect of Natural Antioxidant Supplementation. Front. Vet. Sci. 2025, 12, 1603458. [Google Scholar] [CrossRef] [PubMed]
- Minciullo, P.L.; Inferrera, A.; Navarra, M.; Calapai, G.; Magno, C.; Gangemi, S. Oxidative Stress in Benign Prostatic Hyperplasia: A Systematic Review. Urol. Int. 2015, 94, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Potiris, A.; Moustakli, E.; Trismpioti, E.; Drakaki, E.; Mavrogianni, D.; Matsas, A.; Zikopoulos, A.; Sfakianakis, A.; Tsakiridis, I.; Dagklis, T.; et al. From Inflammation to Infertility: How Oxidative Stress and Infections Disrupt Male Reproductive Health. Metabolites 2025, 15, 267. [Google Scholar] [CrossRef]
- Serhiienko, V.; Koshevoy, V.; Naumenko, S.; Kotyk, B.; Ilina, O.; Shchepetilnikov, Y.; Makhotina, D.; Marakhovskyi, I. Oxidative Stress Markers, Antioxidant Balance, and Protein Metabolism in Dogs with Acute Prostatitis. World’s Vet. J. 2025, 15, 167–175. [Google Scholar] [CrossRef]
- Kim, S.H.; Yu, D.H.; Kim, Y.J. Effects of Cryopreservation on Phosphatidylserine Translocation, Intracellular Hydrogen Peroxide, and DNA Integrity in Canine Sperm. Theriogenology 2010, 73, 282–292. [Google Scholar] [CrossRef]
- Singh, V.K.; Atreja, S.K.; Kumar, R.; Chhillar, S.; Singh, A.K. Assessment of Intracellular Ca 2+, CAMP and 1,2-Diacylglycerol in Cryopreserved Buffalo (Bubalus bubalis) Spermatozoa on Supplementation of Taurine and Trehalose in the Extender. Reprod. Domest. Anim. 2012, 47, 584–590. [Google Scholar] [CrossRef]
- Lucio, C.F.; Regazzi, F.M.; Silva, L.C.G.; Angrimani, D.S.R.; Nichi, M.; Vannucchi, C.I. Oxidative Stress at Different Stages of Two-Step Semen Cryopreservation Procedures in Dogs. Theriogenology 2016, 85, 1568–1575. [Google Scholar] [CrossRef]
- Michael, A.; Alexopoulos, C.; Pontiki, E.; Hadjipavlou-Litina, D.; Saratsis, P.; Boscos, C. Effect of Antioxidant Supplementation on Semen Quality and Reactive Oxygen Species of Frozen-Thawed Canine Spermatozoa. Theriogenology 2007, 68, 204–212. [Google Scholar] [CrossRef]
- Michael, A.J.; Alexopoulos, C.; Pontiki, E.A.; Hadjipavlou-Litina, D.J.; Saratsis, P.; Ververidis, H.N.; Boscos, C.M. Effect of Antioxidant Supplementation in Semen Extenders on Semen Quality and Reactive Oxygen Species of Chilled Canine Spermatozoa. Anim. Reprod. Sci. 2009, 112, 119–135. [Google Scholar] [CrossRef]
- Filho, R.R.; Vieira, N.; Brito, M.; Losano, J.; Kawai, G.; Mendes, C.; Rui, B.; Nagai, K.; Alves, Á.; Frias, H.; et al. Effects of Nonenzymatic and Enzymatic Antioxidants in Cryopreserved Canine Semen Extended with Docosahexaenoic Acid. Clin. Theriogenology 2025, 17, 1–10. [Google Scholar] [CrossRef]
- Chatdarong, K.; Chaivechakarn, A.; Thuwanut, P.; Ponglowhapan, S. Effects of Cold Storage Prior to Freezing on Superoxide Dismutase, Glutathione Peroxidase Activities, Level of Total Reactive Oxygen Species and Sperm Quality in Dogs. Reprod. Domest. Anim. 2012, 47, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Varesi, S.; Vernocchi, V.; Morselli, M.G.; Luvoni, G.C. DNA Integrity of Fresh and Frozen Canine Epididymal Spermatozoa. Reprod. Biol. 2014, 14, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rodriguez, J.A.; Carbajal, F.J.; Martinez-De-Anda, R.; Alcantar-Rodriguez, A. Melatonin Added to Freezing Diluent Improves Canine (Bulldog) Sperm Cryosurvival. Reprod. Fertil. 2020, 1, 11–19. [Google Scholar] [CrossRef]
- Divar, M.R.; Azari, M.; Mogheiseh, A.; Ghahramani, S. Supplementation of Melatonin to Cooling and Freezing Extenders Improves Canine Spermatozoa Quality Measures. BMC Vet. Res. 2022, 18, 86. [Google Scholar] [CrossRef]
- Ogata, K.; Sasaki, A.; Kato, Y.; Takeda, A.; Wakabayashi, M.; Sarentonglaga, B.; Yamaguchi, M.; Hara, A.; Fukumori, R.; Nagao, Y. Frozen-Thawed Canine Spermatozoa for Transcervical Insemination. J. Reprod. Dev. 2015, 61, 116–122. [Google Scholar] [CrossRef]
- Lucio, C.F.; Silva, L.C.G.; Regazzi, F.M.; Angrimani, D.S.R.; Nichi, M.; Assumpção, M.E.O.; Vannucchi, C.I. Effect of Reduced Glutathione (GSH) in Canine Sperm Cryopreservation: In Vitro and in Vivo Evaluation. Cryobiology 2016, 72, 135–140. [Google Scholar] [CrossRef]
- Angrimani, D.S.R.; Nichi, M.; Brito, M.M.; Kawai, G.K.V.; Rui, B.R.; Losano, J.D.A.; Vieira, N.M.G.; Francischini, M.C.P.; Cruz, D.S.G.; Queiroz-Hazarbassanov, N.; et al. The Use of Reduced Glutathione (GSH) as Antioxidant for Cryopreserved Sperm in Dogs. Arq. Bras. Med. Vet. e Zootec. 2018, 70, 419–428. [Google Scholar] [CrossRef]
- Andersen, A.H.; Thinnesen, M.; Failing, K.; Goericke-Pesch, S. Effect of Reduced Glutathione (GSH) Supplementation to Tris-Egg Yolk Extender on Chilled Semen Variables of Dogs. Anim. Reprod. Sci. 2018, 198, 145–153. [Google Scholar] [CrossRef]
- Aparnak, P.; Saberivand, A. Effects of Curcumin on Canine Semen Parameters and Expression of Nox5 Gene in Cryopreserved Spermatozoa. Vet. Res. Forum 2019, 10, 221–226. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Myoinositol Supplementation of Freezing Medium Improves the Quality-Related Parameters of Dog Sperm. Animals 2019, 9, 1038. [Google Scholar] [CrossRef]
- Abdillah, D.A.; Setyawan, E.M.N.; Oh, H.J.; Ra, K.; Lee, S.H.; Kim, M.J.; Lee, B.C. Iodixanol Supplementation during Sperm Cryopreservation Improves Protamine Level and Reduces Reactive Oxygen Species of Canine Sperm. J. Vet. Sci. 2019, 20, 79–86. [Google Scholar] [CrossRef]
- Setyawan, E.M.N.; Kim, M.J.; Oh, H.J.; Kim, G.A.; Jo, Y.K.; Lee, S.H.; Choi, Y.B.; Lee, B.C. Spermine Reduces Reactive Oxygen Species Levels and Decreases Cryocapacitation in Canine Sperm Cryopreservation. Biochem. Biophys. Res. Commun. 2016, 479, 927–932. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Fang, X.; Bang, S.; Shin, S.T.; Cho, J. The Effect of Astaxanthin Supplementation on the Post-Thaw Quality of Dog Semen. Reprod. Domest. Anim. 2020, 55, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Qamar, A.Y.; Tanga, B.M.; Fang, X.; Cho, J. Resveratrol Supplementation into Extender Protects against Cryodamage in Dog Post-Thaw Sperm. J. Vet. Med. Sci. 2021, 83, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Sakurai, D.; Yoshihara, T.; Tsuchida, M.; Harakawa, S.; Suzuki, H. Effect of Quercetin on the Motility of Cryopreserved Canine Spermatozoa. Cryobiology 2020, 96, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.Y.; Fang, X.; Bang, S.; Kim, M.J.; Cho, J. Effects of Kinetin Supplementation on the Post-Thaw Motility, Viability, and Structural Integrity of Dog Sperm. Cryobiology 2020, 95, 90–96. [Google Scholar] [CrossRef]
- Grandhaye, J.; Partyka, A.; Ligocka, Z.; Dudek, A.; Niżański, W.; Jeanpierre, E.; Estienne, A.; Froment, P. Metformin Improves Quality of Post-Thaw Canine Semen. Animals 2020, 10, 287. [Google Scholar] [CrossRef]
- Sheikholeslami, S.A.; Soleimanzadeh, A.; Rakhshanpour, A.; Shirani, D. The Evaluation of Lycopene and Cysteamine Supplementation Effects on Sperm and Oxidative Stress Parameters during Chilled Storage of Canine Semen. Reprod. Domest. Anim. 2020, 55, 1229–1239. [Google Scholar] [CrossRef]
- Shakouri, N.; Soleimanzadeh, A.; Rakhshanpour, A.; Bucak, M.N. Antioxidant Effects of Supplementation of 3,4-Dihydroxyphenyl Glycol on Sperm Parameters and Oxidative Markers Following Cryopreservation in Canine Semen. Reprod. Domest. Anim. 2021, 56, 1004–1014. [Google Scholar] [CrossRef]
- Usuga, A.; Tejera, I.; Gómez, J.; Restrepo, O.; Rojano, B.; Restrepo, G. Cryoprotective Effects of Ergothioneine and Isoespintanol on Canine Semen. Animals 2021, 11, 2757. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Wang, R.; Ma, Y.; Bu, Y.; Hu, M.; Zhang, S. Effect of Procyanidin on Canine Sperm Quality during Chilled Storage. Vet. Sci. 2022, 9, 588. [Google Scholar] [CrossRef]
- Michael, A.J.; Alexopoulos, C.; Pontiki, E.A.; Hadjipavlou-Litina, D.J.; Saratsis, P.; Ververidis, H.N.; Boscos, C.M. Effect of N-Acetyl-L-Cysteine Supplementation in Semen Extenders on Semen Quality and Reactive Oxygen Species of Chilled Canine Spermatozoa. Reprod. Domest. Anim. 2010, 45, 201–207. [Google Scholar] [CrossRef]
- Al-Dean, S.L.M.S.; Hammoud, S.S. Study the Different Antioxidants Effects on Serum Quality in Dogs. South East. Eur. J. Public Health 2024, 1–9. [Google Scholar] [CrossRef]
| Oxidative Stress Variables | Semen Quality Variables |
|---|---|
| Lower SOD and CAT in seminal plasma in asthenozoospermic dogs than in normospermic dogs. | Asthenozoospermia (percentage of actively motile sperm less than 50%) [19]. |
| SOD and GPx activity in seminal plasma, lipid peroxidation of sperm. | Positive correlation of SOD activity with sperm motility and negative correlation of GPx activity with sperm viability post-thaw. An individual effect on sperm lipid peroxidation [20]. |
| No differences between subfertile and fertile dogs in sperm DNA peroxidation measured by 8-hydroxy-2′-deoxyguanosine concentration. | Low sperm count and/or more than 30% of total sperm pathology in subfertile dogs [27]. |
| Ejaculated and epididymal semen samples (with or without seminal plasma) were incubated with ROS generation systems (superoxide anion [O2−], hydrogen peroxide [H2O2], and hydroxyl radical [OH−] and malondialdehyde [MDA]). | In ejaculated semen, H2O2 reduced mitochondrial membrane potential, integrity of plasma, and acrosome membrane integrity and sperm kinetics in the absence of seminal plasma. OH− reduced mitochondrial activity and increased DNA fragmentation independent of the absence or presence of seminal plasma. O2− decreased the mitochondrial activity in the absence of seminal plasma [28]. Corpus and cauda epididymal sperm were highly susceptible to the deleterious effects of H2O2, OH−, and MDA. Epididymal canine sperm are relatively resistant to O2− damage [29]. |
| Higher serum ROS level and oxidative stress index in hypofertile than in fertile dogs. | Low volume and sperm motility, increased morphological alteration in hypofertile dogs [30]. |
| No differences in sperm ROS production between fertile and subfertile dog. | Lower viability and percentage of normal sperm in frozen-thawed semen in subfertile dogs than in fertile dog [31]. |
| Lower TAC, higher contents of protein peroxidation markers in seminal plasma in infertile than in fertile dogs. | Low sperm concentration, total sperm count, motility parameters, and the percentage of sperm with normal morphology in infertile dogs [32]. |
| Low SOD activity in seminal plasma in dogs with poor semen quality. | Low total number of sperm and percentage of progressively motile sperm in semen [33]. |
| Increased TBARS level in seminal plasma after treatment with dexamethasone. | Reduced ejaculate volume and increased sperm morphological abnormalities [34]. |
| Increased serum TBARS and ROS, decreased SOD, CA, GPx, and TAC in dogs under heat stress. | Decreased sperm concentration, motility, velocity, morphology, and viability [5]. |
| A higher proportion of sperm producing NO in BPH dogs than in healthy dogs. | Decreased motility parameters and the percentage of normal sperm [35]. |
| No differences in sperm lipid peroxidation and activities of SOD, CAT, and GPx in seminal plasma and sperm. | Lower total motility, sperm concentration, total sperm count, membrane integrity, and zona binding capacity in senile dogs compared to mature dogs [36]. |
| Antioxidant | Supplementation | Effects |
|---|---|---|
| Vitamin E | 500 mg per os for 10 days in 5 dogs with oxidation stress induced by dexamethasone treatment 50 mg per os for 4 weeks in 4 dogs with poor semen quality | Antioxidant status: reduced lipid peroxidation (decreased TBARS in seminal plasma). Semen quality: increased sperm motility, vigor, and concentration, and decreased percentage of major sperm defects. Fertility: n.a. [34]. Antioxidant status: increased seminal plasma SOD activity. Semen quality: enhanced sperm motility and total sperm number. Fertility: n.a. [45]. |
| Essential fatty acids (omega 3, 6, and 9) and vitamin E | Food supplemented with linoleic acid (omega 3)—7.2 mg per body weight (BW), linolenic acid (omega 6)—25 mg ⁄kg, oleic acid (omega 9)—10.1 mg⁄kg, and vitamin E—1 UI/kg for 60 days in 8 healthy dogs. | Antioxidant status: n.a. Semen quality: increased ejaculate volume and cell vigor, and decreased the number of morphologically abnormal sperm. Fertility: n.a. [46]. |
| Vitamin C and E | 500 mg vitamin C and 500 mg vitamin E per os for 60 days in 5 fertile and 6 subfertile dogs | Antioxidant status: no effect on sperm DNA peroxidation. Semen quality: n.a. Fertility: n.a. [27]. |
| Fish oil or fish oil and vitamin E | 54 mg fish oil/kg metabolic body weight or 54 mg fish oil/kg metabolic BW plus 400 mg vitamin E for 60 days | Antioxidant status: decreased lipid peroxidation in sperm samples peroxidized by adding ascorbate–Fe2+. Semen quality: increased percentage of motile sperm, total sperm count, total sperm viability, and total morphologically normal sperm.Fertility: n.a. [47]. |
| Se and vitamin E | Se (0,6 mg/kg organic Se yeast) and vitamin E (5 mg/kg) for a period of 60 days in 10 dogs with lowered fertility. Se (0.6 mg/kg organic Se yeast) and vitamin E (5 mg/kg) for a period of 60 days in 4 infertile dogs. | Antioxidant status: increased serum concentration of Se and vitamin E, and GSH-Px-activity and TAC in the spermatozoa. Semen quality: increased concentration of sperm, motility indicators, and percentages of normal morphology and live sperm. Fertility: n.a. [25]. Antioxidant status: increased serum concentration of Se and vitamin E. Semen quality: increased motility parameters, percentages of live and normal morphology sperm. Fertility: 4 bitches became pregnant after AI [32]. |
| Se, vitamin E or Se + vitamin E | 0.1 mg Se, 100 mg vitamin E, or 0.1 mg Se plus 100 mg vitamin E in 3 normospermic dogs each. | Antioxidant status: high variation in GSH-Px in blood and seminal plasma. Semen quality: decreased percentage of sperm head defects. Fertility: n.a. [48]. |
| Fish oil | Fish oil 54 mg/kg metabolic BW for 120 days in 5 healthy dogs. | Antioxidant status: n.a. Semen quality: increased percentage of motile sperm, total sperm count, total sperm viability, and total morphologically normal sperm. Fertility: n.a. [47]. |
| Complex of vitamin E, zinc, selenium, folic acid, and n-3 polyunsaturated fatty acids | Vitamin E (5 mg/kg BW), zinc (3 mg/kg BW), Se (0.007 mg/kg BW), folic acid (0.625 mg/kg BW). Refined fish oil (25% DHA and 10% eicosapentaenoic acid [EPA]) in 14 normospermic dogs for 90 days. | Antioxidant status: n.a. Semen quality: total sperm count, progressive motility, functional membrane integrity, and sperm viability. Fertility: n.a. [49]. |
| Ubiquinol | 100 mg of ubiquinol orally once daily for 12 weeks in three dogs with poor semen quality. | Antioxidant status: increased seminal plasma SOD activity Semen quality: improved sperm motility and reduced morphologically abnormal sperm.Fertility: n.a. [33]. |
| Extract from Maca (Lepidium meyenii) | 75 mg/kg for 62 days in 12 subfertile and 12 fertile dogs for 62 days. 75 mg/kg for 62 days in 10 subfertile and 10 fertile dogs for 62 days. | Antioxidant status: n.a. Semen quality: increased ejaculate volume, total sperm count, total and progressive motility, and sperm morphology in subfertile dogs. Fertility: n.a. [50]. Antioxidant status: n.a. Semen quality: increased ejaculate volume, concentration, motility, morphology, and sperm membrane integrity in subfertile and fertile dogs. Better preservation of semen quality during storage at 5 °C [51]. |
| Extract from Loblolly pine (Pinus taeda) lignin | 50 mg/kg/day orally in 20 healthy dogs for 120 days. | Antioxidant status: Semen quality: higher progressive sperm motility and a greater percentage of rapid-movement sperm. Fertility: n.a. [52]. |
| Antioxidant | Supplementation | Effects |
|---|---|---|
| vitamin C NAC taurine CAT vitamin E vitamin B16 | 1.5 mM 1.5 mM 0.6 mM 300 U/mL 0.3 mM 0.3 mM | Antioxidant status: no effect on ROS production. Semen quality: most pronounced effect of CAT on semen quality—increased post-thaw motility, percentages of rapid motile and viable sperm. B16 addition had adverse effects on semen quality. Fertility: n.a. [59]. |
| vitamin C NAC taurine CAT vitamin E vitamin B16 | 0.5 mM 0.5 mM 0.2 mM 100 U/mL 0.1 mM 0.1 mM | Antioxidant status: no effect on ROS production. Semen quality: the most pronounced effect of vitamin E and B16 on semen quality—increased motility, percentages of rapid motile and viable sperm after short and long-term cold storage. Fertility: n.a. [60]. |
| Vitamin E plus DHA CAT plus DHA Vitamin E plus CAT plus DHA | 0.6 mM vitamin E plus 5 µM DHA 300 U/mL CAT plus 5 µM DHA 0.6 mM vitamin E plus 300 U/mL CAT plus 5 µM DHA | Antioxidant status: lower levels of oxidative stress in treatment groups. Semen quality: improved sperm motility characteristics after addition of vitamin E plus DHA. The CAT plus DHA group was harmful to sperm mitochondria. Fertility: n.a. [61]. |
| SOD plus GPx | 100 IU SOD plus 5 IU GPx | Antioxidant status: no effect on SOD and GPx activities during cold storage, decreased SOD activity in frozen-thawed samples after cold storage, and no differences in ROS levels. Semen quality: increased percentages of sperm viability and DNA integrity after cold storage and freezing-thawing. Fertility: n.a. [62]. |
| Combination of SOD, CAT, and GPx | 5 IU/mL of GPx, 15 IU/mL of CAT, and 15 IU/mL of SOD. | Antioxidant status: n.a. Semen quality: increased sperm motility and DNA integrity in semen of fertile and hypofertile dogs after 5 and 10 days of cooled storage. Fertility: n.a. [30]. |
| 1 mM | Antioxidant status: n.a. Semen quality: DNA fragmentation, motility, and acrosome integrity of epididymal sperm. Fertility: n.a. [63]. | |
| Melatonin | 0.0005, 0.002, and 0.0035 mol/L 1 and 2 mM | Antioxidant status: n.a. Semen quality: 0.002 and 0.0035 mmol/L decreased percentage of sperm having hyper-fluid membranes, increased percentages of intact acrosome, capacitated acrosome-intact, and acrosome-reacted of post-thaw sperm cooled to −5 °C before freezing. Fertility. n.a. [64]. Antioxidant status: Semen quality: increased motility, viability, acrosome, and DNA integrity during cooling storage. Increased post-thaw sperm DNA integrity. Fertility: n.a. [65]. |
| 2.5, 5, 7.5, and 10 mM | Antioxidant status: decreased lipid peroxidation (malondialdehyde concentration) after thawing in the 5 and 10 mM GSH groups. Semen quality: 5 and 10 mM GSH increased post-thaw motility, viability, and acrosome integrity. Fertility: AI with semen of the 5 mM GSH group in 4 bitches resulted in five puppies from two bitches [66]. | |
| 10 and 20 mM | Antioxidant status: increased TBARS after thawing in the GSH-20 group. Semen quality: 20 mM GSH promoted post-thaw sperm damage, especially to mitochondrial activity. A total of 10 mM GSH resulted in acrosome protection Fertility: Three bitches became pregnant after AI with semen cryopreserved in extender with 10 mM GSH [67]. | |
| GSH | 5, 7.5, 10 mM | Antioxidant status: no effect on TBARS. Semen quality: A total of 5 mM of GSH improved mitochondrial activity in chilled and thawed samples; higher concentrations (7.5 and 10 mM) decreased mitochondrial activity in chilled and thawed samples. Thawed samples of 10 mM of GSH had high DNA fragmentation rates. Fertility: n.a. [68]. |
| 5 and 10 mM | Antioxidant status: n.a. Semen quality: no general positive effect of GSH addition on values for chilled semen variables during storage for as long as 10 days. Fertility: n.a. [69]. | |
| Curcumin | 2.5 mM | Antioxidant status: increased TAC and mRNA expression of the NADPH oxidase 5 gene. Semen quality: increased sperm total count, motility, progressive motility, and DNA integrity. Lower percentage of abnormal sperm. Fertility: n.a. [70]. |
| Myo-inositol | 1 mg/mL | Antioxidant status: n.a. Semen quality: increased post-thaw dog sperm motility, viability, plasma membrane integrity, and chromatin integrity. Fertility: n.a. [71]. |
| Iodixanol | 1.5% | Antioxidant status: reduced ROS production. Semen quality: increased post-thaw motility and reduced cryocapacitation. Fertility: n.a. [72]. |
| Spermine | 5.0 mM | Antioxidant status: reduced ROS production. Semen quality: reduced apoptosis and cryocapacitation, increased post-thaw kinematic parameters, and membrane integrity of sperm. Fertility: n.a. [73]. |
| Astaxanthin | 1 µM | Antioxidant status: n.a. Semen quality: higher sperm counts with intact membranes, intact acrosome, active mitochondria, and normal chromatin. Fertility: n.a. [74]. |
| Resveratrol | 200 µM | Antioxidant status: n.a. Semen quality: increased post-thaw sperm motility and viability, higher numbers of sperm with an intact plasma membrane, active mitochondria, and structural integrity of acrosomes and chromatin. Fertility: n.a. [75]. |
| Quercetin | 5 mg/mL | Antioxidant status: n.a. Semen quality: increased motility of cryopreserved canine sperm after thawing. Fertility: three bitches became pregnant after AI [76]. |
| Kinetin | 5.0 mM | Antioxidant status: n.a. Semen quality: increased motility, viability, sperm counts with the intact plasma membrane, normal acrosomes, mitochondria, and chromatin. Fertility: n.a. [77]. |
| Metformin | 50 µM | Antioxidant status: reduced ROS production. Semen quality: increased post-thaw sperm motility. Fertility: n.a. [78]. |
| Lycopene | 250, 500, and 750 µg/mL | Antioxidant status: 500 µg/mL lycopene increased TAC and decreased MDA levels in chilled canine semen. Semen quality: 500 µg/mL lycopene increased motility characteristics, viability, and hypo-osmotic swelling test (HOST) percentages of canine semen preserved at 5 °C for 72 h. Fertility: n.a. [79]. |
| 3,4-dihydroxyphenyl glycol | 50 µg/mL | Antioxidant status: increased TAC, GPx, and GSH. Semen quality: increased post-thaw motility characteristics, plasma membrane integrity, and reduced DNA damage. Fertility: n.a. [80]. |
| Ergothioneine | 50, 100, and 150 mM | Antioxidant status: 100 mM reduced ROS production after thawing. Semen quality: 100 mM increased post-thaw motility characteristics and acrosome integrity. Fertility: n.a. [81]. |
| Isoespintanol | 20, 40, 60 mM | Antioxidant status: 40 and 60 mM reduced ROS production after thawing. Semen quality: 60 mM reduced morphological alterations and increased acrosome integrity of thawed canine spermatozoa. Fertility: n.a. [81]. |
| Procyanidin | 30 μg/mL | Antioxidant status: increased TAC levels and expression of SOD, CAT, and GPx genes in sperm. Semen quality: Increased plasma membrane integrity, acrosome integrity, and mitochondrial membrane potential of sperm stored at 4 °C. Fertility: n.a. [82]. |
| 0.5 mM | Antioxidant status: no effect on ROS production. Semen quality: increased motility of chilled canine sperm. Fertility: n.a. [83]. | |
| NAC | 0.35 mM | Antioxidant status: n.a. Semen quality: increased post-thaw motility, viability, and membrane integrity of canine sperm. Fertility: n.a. [84]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zduńczyk, S.; Domosławska, A.; Jamioł, M.; Kankofer, M. Impact of Oxidative Stress and Antioxidants on Semen Quality in Dogs. Animals 2025, 15, 3169. https://doi.org/10.3390/ani15213169
Zduńczyk S, Domosławska A, Jamioł M, Kankofer M. Impact of Oxidative Stress and Antioxidants on Semen Quality in Dogs. Animals. 2025; 15(21):3169. https://doi.org/10.3390/ani15213169
Chicago/Turabian StyleZduńczyk, Sławomir, Anna Domosławska, Monika Jamioł, and Marta Kankofer. 2025. "Impact of Oxidative Stress and Antioxidants on Semen Quality in Dogs" Animals 15, no. 21: 3169. https://doi.org/10.3390/ani15213169
APA StyleZduńczyk, S., Domosławska, A., Jamioł, M., & Kankofer, M. (2025). Impact of Oxidative Stress and Antioxidants on Semen Quality in Dogs. Animals, 15(21), 3169. https://doi.org/10.3390/ani15213169

