Dietary Supplementation with Protocatechuic Acid and a Complex Eucommia ulmoides Leaf Extract Differentially Enhanced Reproductive Performance and Modulated Gut Microbiota in Late-Pregnancy Sows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets and Reagents
2.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.3. Experimental Design
2.4. Reproductive Performance
2.5. Analysis of Colostrum Composition
2.6. Analysis of Serum Indexes
2.7. Analysis of Gut Microbiota
2.8. Statistical Analysis
3. Results
3.1. Calculation of Concentration of PCA in EU
3.2. Effect of PCA and EU on the Body Condition Score of Sows
3.3. Supplement of PCA and EU Differentially Enhanced Reproductive Performances, as Reflected by Litter Weight at Birth and the Number of Healthy Piglets
3.4. Supplementation with PCA and EU Differentially Increased Immunoglobulins in Colostrum
3.5. Effects of PCA and EU on the Redox Status, Inflammatory Cytokines, and Glucose Metabolism in Serum
3.6. Effects of PCA and EU on Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; He, J.; Zhang, L.; Liu, H.; Cao, M.; Lin, Y.; Xu, S.; Che, L.; Fang, Z.; Feng, B.; et al. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim. Microbiome 2024, 6, 34. [Google Scholar] [CrossRef]
- Hu, J.; Yan, P. Effects of backfat thickness on oxidative stress and inflammation of placenta in large white pigs. Vet. Sci. 2022, 9, 302. [Google Scholar] [CrossRef]
- Theil, P.K.; Farmer, C.; Feyera, T. Physiology and nutrition of late gestating and transition sows. J. Anim. Sci. 2022, 100, skac176. [Google Scholar] [CrossRef]
- Thornton, J.M.; Shah, N.M.; Lillycrop, K.A.; Cui, W.; Johnson, M.R.; Singh, N. Multigenerational diabetes mellitus. Front. Endocrinol. 2024, 14, 1245899. [Google Scholar] [CrossRef]
- Sun, Y.; Juan, J.; Xu, Q.; Su, R.; Hirst, J.; Yang, H. Increasing insulin resistance predicts adverse pregnancy outcomes in women with gestational diabetes mellitus. J. Diabetes 2020, 12, 438–446. [Google Scholar] [CrossRef]
- Inoue, R.; Tsukahara, T. Composition and physiological functions of the porcine colostrum. Anim. Sci. J. 2021, 92, e13618. [Google Scholar] [CrossRef] [PubMed]
- Gomes Fagundes, D.L.; Franca, E.L.; da Silva Fernandes, R.T.; Hara Cde, C.; Morceli, G.; Honorio-Franca, A.C.; Calderon Ide, M. Changes in T-cell phenotype and cytokines profile in maternal blood, cord blood and colostrum of diabetic mothers. J. Matern. Fetal Neonatal Med. 2016, 29, 998–1004. [Google Scholar] [PubMed]
- Renner, S.; Martins, A.; Streckel, E.; Braun-Reichhart, C.; Backman, M.; Prehn, C.; Klymiuk, N.; Bahr, A.; Blutke, A.; Landbrecht-Schessl, C. Mild maternal hyperglycemia in INS (C93S) transgenic pigs causes impaired glucose tolerance and metabolic alterations in neonatal offspring. Dis. Model. Mech. 2019, 12, dmm039156. [Google Scholar]
- Fujimori, M.; Franca, E.L.; Morais, T.C.; Fiorin, V.; de Abreu, L.C.; Honorio-Franca, A.C. Cytokine and adipokine are biofactors can act in blood and colostrum of obese mothers. Biofactors 2017, 43, 243–250. [Google Scholar] [CrossRef]
- Liang, T.; Jinglong, X.; Shusheng, D.; Aiyou, W. Maternal obesity stimulates lipotoxicity and up-regulates inflammatory signaling pathways in the full-term swine placenta. Anim. Sci. J. = Nihon Chikusan Gakkaiho 2018, 89, 1310–1322. [Google Scholar]
- Fu, Y.; Gou, W.; Wu, P.; Lai, Y.; Liang, X.; Zhang, K.; Shuai, M.; Tang, J.; Miao, Z.; Chen, J. Landscape of the gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health. Gut 2024, 73, 1302–1312. [Google Scholar] [CrossRef]
- Zheng, J.; Li, S.; He, J.; Liu, H.; Huang, Y.; Jiang, X.; Zhao, X.; Li, J.; Feng, B.; Che, L. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals 2024, 14, 1559. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Li, S.; Chang, Z.; Liu, H.; Zhang, D.; Wang, S.; Zhang, X.; Wang, J. Maternal malic acid may ameliorate oxidative stress and inflammation in sows through modulating gut microbiota and host metabolic profiles during late pregnancy. Antioxidants 2024, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xiong, W.; Ma, S.; Luo, J.; Ye, H.; Huang, S.; Li, F.; Xiang, X.e.; Chen, Q.; Gao, B. Konjac flour-mediated gut microbiota alleviates insulin resistance and improves placental angiogenesis of obese sows. Amb. Express 2023, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, X.; Cui, Y.; Wang, W.; Liu, H.; Li, Z.; Guo, Z.; Ma, S.; Li, D.; Wang, C. Consumption of dietary fiber from different sources during pregnancy alters sow gut microbiota and improves performance and reduces inflammation in sows and piglets. mSystems 2021, 6, 17. [Google Scholar] [CrossRef]
- Crusell, M.K.W.; Hansen, T.H.; Nielsen, T.; Allin, K.H.; Rühlemann, M.C.; Damm, P.; Vestergaard, H.; Rørbye, C.; Jørgensen, N.R.; Christiansen, O.B.; et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 2018, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Liang, X.; Wang, R.; Luo, H.; Liao, Y.; Chen, X.; Xiao, X.; Li, L. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front. Microbiol. 2022, 13, 1059227. [Google Scholar] [CrossRef]
- Carrión-López, M.; Madrid, J.; Martínez, S.; Hernández, F.; Orengo, J. Effects of the feeding level in early gestation on body reserves and the productive and reproductive performance of primiparous and multiparous sows. Res. Vet. Sci. 2022, 148, 42–51. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, Y.; Liu, Q.; Tang, Y.; Zhang, W.; Zheng, S.; Huang, W.; Yang, M.; He, Y.; Li, Z. Allicin in pregnancy diets modulates steroid metabolism in pregnant sows and placental sulphate metabolism promoting placental angiogenesis and foetal development. Animal 2024, 18, 101224. [Google Scholar] [CrossRef]
- Monari, S.; Ferri, M.; Salinitro, M.; Tassoni, A. New insights on primary and secondary metabolite contents of seven italian wild food plants with medicinal applications: A comparative study. Plants 2023, 12, 3180. [Google Scholar] [CrossRef]
- Duarte-Casar, R.; González-Jaramillo, N.; Bailon-Moscoso, N.; Rojas-Le-Fort, M.; Romero-Benavides, J.C. Five underutilized Ecuadorian fruits and their bioactive potential as functional foods and in metabolic syndrome: A review. Molecules 2024, 29, 2904. [Google Scholar] [CrossRef]
- Godyla-Jabłoński, M.; Raczkowska, E.; Jodkowska, A.; Kucharska, A.Z.; Sozański, T.; Bronkowska, M. Effects of anthocyanins on components of metabolic syndrome—A review. Nutrients 2024, 16, 1103. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yano, S.; Hisanaga, A.; He, X.; He, J.; Sakao, K.; Hou, D.X. Polyphenols from Lonicera caerulea L. berry attenuate experimental nonalcoholic steatohepatitis by inhibiting proinflammatory cytokines productions and lipid peroxidation. Mol. Nutr. Food Res. 2017, 61, 1600858. [Google Scholar] [CrossRef]
- Liu, M.; Tan, J.; He, Z.; He, X.; Hou, D.X.; He, J.; Wu, S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. Anim. Nutr. 2018, 4, 288–293. [Google Scholar] [CrossRef]
- Tan, J.; Hu, R.; Gong, J.; Fang, C.; Li, Y.; Liu, M.; He, Z.; Hou, D.; Zhang, H.; He, J.; et al. Protection against Metabolic Associated Fatty Liver Disease by Protocatechuic Acid. Gut Microbes 2023, 15, 2238959. [Google Scholar] [CrossRef]
- Hu, R.; He, Z.; Liu, M.; Tan, J.; Zhang, H.; Hou, D.-X.; He, J.; Wu, S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J. Anim. Sci. Biotechnol. 2020, 11, 92. [Google Scholar] [CrossRef]
- Guanglei, C.; Shuangshuang, X.; Chunxue, L.; Junbo, L.; Ifen, H.; Lili, Z.; Shuaipeng, G.; Bo, Z. Effects of silymarin supplementation in late pregnancy and lactation on reproductive performance, colostrum quality, blood biochemistry and inflammation levels of sows. Trop. Anim. Health Prod. 2025, 57, 66. [Google Scholar]
- Tianle, G.; Ran, L.; Liang, H.; Quanfang, H.; Hongmei, W.; Rui, Z.; Peiqiang, Y.; Xiaoling, Z.; Lingjie, H.; Yong, Z.; et al. Probiotic Lactobacillus rhamnosus GG improves insulin sensitivity and offspring survival via modulation of gut microbiota and serum metabolite in a sow model. J. Anim. Sci. Biotechnol. 2024, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D. Homeostasis model assessment : Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412. [Google Scholar] [CrossRef]
- Schoos, A.; Muro, B.B.D.; Carnevale, R.F.; Chantziaras, I.; Biebaut, E.; Janssens, G.P.J.; Maes, D. Relationship between piglets’ survivability and farrowing kinetics in hyper-prolific sows. Porc. Health Manag. 2023, 9, 37. [Google Scholar] [CrossRef]
- Riddersholm, K.V.; Bahnsen, I.; Bruun, T.S.; de Knegt, L.V.; Amdi, C. Identifying risk factors for low piglet birth weight, high within-litter variation and occurrence of intrauterine growth-restricted piglets in hyperprolific sows. Animals 2021, 11, 2731. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Gómez, M.; Garcia-Contreras, C.; Pesantez-Pacheco, J.L.; Torres-Rovira, L.; Heras-Molina, A.; Astiz, S.; Óvilo, C.; Isabel, B.; Gonzalez-Bulnes, A. Differential effects of litter size and within-litter birthweight on postnatal traits of fatty pigs. Animals 2020, 10, 870. [Google Scholar] [CrossRef]
- Gourley, K.M.; Calderon, H.I.; Woodworth, J.C.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D. Sow and piglet traits associated with piglet survival at birth and to weaning. J. Anim. Sci. 2020, 98, skaa187. [Google Scholar] [CrossRef]
- Bee, G. Dietary Conjugated Linoleic Acids Alter Adipose Tissue and Milk Lipids of Pregnant and Lactating Sows. J. Nutr. 2000, 130, 2292–2298. [Google Scholar] [CrossRef]
- Wu, F.; Li, P.L.; Bai, L.L.; Liu, H.; Lai, C.H.; Thacker, P.A.; Wang, F.L. Responses in colostrum production and immunoglobulin concentrations to conjugated linoleic acid fed to multiparous sows during late gestation. Anim. Feed. Sci. Technol. 2015, 210, 200–208. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, G.; Kebreab, E.; Yu, Q.; Li, J.; Zhang, X.; He, H.; Fang, R.; Dai, Q. Effects of dietary grape seed polyphenols supplementation during late gestation and lactation on antioxidant status in serum and immunoglobulin content in colostrum of multiparous sows1. J. Anim. Sci. 2019, 97, 2515–2523. [Google Scholar] [CrossRef]
- You, D.; Jung, B.C.; Villivalam, S.D.; Lim, H.-W.; Kang, S. JMJD8 is a novel molecular nexus between adipocyte-intrinsic inflammation and insulin resistance. Diabetes 2022, 71, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xiao, H.; Bao, H.; Li, M.; Xue, C.; Li, Y.; Wang, G.; Chen, S.; Huang, Y.; Zheng, L. Tissue distribution comparison of six active ingredients from an Eucommiae cortex extract between normal and spontaneously hypertensive rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 2049059. [Google Scholar] [CrossRef]
- Liu, H.; Meng, H.; Du, M.; Lv, H.; Wang, Y.; Zhang, K. Chlorogenic acid ameliorates intestinal inflammation by inhibiting NF-κB and endoplasmic reticulum stress in lipopolysaccharide-challenged broilers. Poult. Sci. 2024, 103, 103586. [Google Scholar] [CrossRef]
- Lyu, C.-C.; Ji, X.-Y.; Che, H.-Y.; Meng, Y.; Wu, H.-Y.; Zhang, J.-B.; Zhang, Y.-H.; Yuan, B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024, 10, e25004. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, M.; Wu, J.; Qiu, Y.; Xu, X.; Tian, C.; Hou, J.; Wang, L.; Gao, K.; Yang, X. Chlorogenic Acid Enhances the Intestinal Health of Weaned Piglets by Inhibiting the TLR4/NF-κB Pathway and Activating the Nrf2 Pathway. Int. J. Mol. Sci. 2024, 25, 9954. [Google Scholar] [CrossRef] [PubMed]
- Klobasa, F.; Werhahn, E.; Butler, J.E. Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Res. Vet. Sci. 1981, 31, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Socha-Banasiak, A.; Pierzynowski, S.; Woliński, J.; Grujic, D.; Goncharova, K. The pig as a model for premature infants—The importance of immunoglobulin supplementation for growth and development. J. Biol. Regul. Homeost. Agents 2017, 31, 87–92. [Google Scholar]
- Arevalo Sureda, E.; Zhao, X.; Artuso-Ponte, V.; Wall, S.-C.; Li, B.; Fang, W.; Uerlings, J.; Zhang, Y.; Schroyen, M.; Grelet, C. Isoquinoline alkaloids in sows’ diet reduce body weight loss during lactation and increase igg in colostrum. Animals 2021, 11, 2195. [Google Scholar] [CrossRef] [PubMed]
- Kho, A.R.; Choi, B.Y.; Lee, S.H.; Hong, D.K.; Lee, S.H.; Jeong, J.H.; Park, K.-H.; Song, H.K.; Choi, H.C.; Suh, S.W. Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int. J. Mol. Sci. 2018, 19, 1420. [Google Scholar] [CrossRef]
- Kamel, M.; Mauro, C.; Lidia, P.; Leyanis Herrera, L.; Maria, L.; Antonino, G.; Anna Maria, S.; Giuseppe, T.; Alessandro, Z.; Marialuisa, A.; et al. Histological Assessment of Intestinal Changes Induced by Liquid Whey-Enriched Diets in Pigs. Vet. Sci. 2025, 12, 716. [Google Scholar]
- Anna Maria, S.; Francesca, A.; Giuseppe, T.; Valentina, R.; Francesco, F.; Riccardo, A.C.; Andreu, P.; Giuseppe, P.; Alessandro, Z. Effect of a Co-Feed Liquid Whey-Integrated Diet on Crossbred Pigs’ Fecal Microbiota. Animals 2023, 13, 1750. [Google Scholar]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Qiu, Y.; Johnson, Z.; Gu, X.; Bohutskyi, P.; Chen, S. Dairy manure acidogenic fermentation at hyperthermophilic temperature enabled superior activity of thermostable hydrolytic enzymes linked to the genus Caldicoprobacter. Bioresour. Technol. 2024, 391, 129978. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, N.; Wu, C.; Zhang, X.; Wang, Q.; Huang, X.; Du, L.; Cao, Q.; Tang, J.; Zhou, C.; et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome 2018, 6, 135. [Google Scholar] [CrossRef] [PubMed]
- Declerck, I.; Sarrazin, S.; Dewulf, J.; Maes, D. Sow and piglet factors determining variation of colostrum intake between and within litters. Animal 2017, 11, 1336–1343. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; He, J.; Zhang, H.; Wu, S. Dietary Supplementation with Protocatechuic Acid and a Complex Eucommia ulmoides Leaf Extract Differentially Enhanced Reproductive Performance and Modulated Gut Microbiota in Late-Pregnancy Sows. Animals 2025, 15, 3166. https://doi.org/10.3390/ani15213166
Tan J, He J, Zhang H, Wu S. Dietary Supplementation with Protocatechuic Acid and a Complex Eucommia ulmoides Leaf Extract Differentially Enhanced Reproductive Performance and Modulated Gut Microbiota in Late-Pregnancy Sows. Animals. 2025; 15(21):3166. https://doi.org/10.3390/ani15213166
Chicago/Turabian StyleTan, Jijun, Jianhua He, Hongfu Zhang, and Shusong Wu. 2025. "Dietary Supplementation with Protocatechuic Acid and a Complex Eucommia ulmoides Leaf Extract Differentially Enhanced Reproductive Performance and Modulated Gut Microbiota in Late-Pregnancy Sows" Animals 15, no. 21: 3166. https://doi.org/10.3390/ani15213166
APA StyleTan, J., He, J., Zhang, H., & Wu, S. (2025). Dietary Supplementation with Protocatechuic Acid and a Complex Eucommia ulmoides Leaf Extract Differentially Enhanced Reproductive Performance and Modulated Gut Microbiota in Late-Pregnancy Sows. Animals, 15(21), 3166. https://doi.org/10.3390/ani15213166

