Multi-Omics Profiling Identifies Apolipoprotein E as an Important Regulator of Steroidogenesis in Bactrian Camel Poll Glands During the Breeding Season
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Total Cholesterol and Testosterone Measurement
2.3. Metabolite Sequencing
2.4. Bioinformatic Analysis of Data-Independent Acquisition (DIA) Proteomics
2.5. Hematoxylin and Eosin (H&E) Staining
2.6. Immunohistochemistry (IHC) and Immunofluorescence (IF) Staining
2.7. RNA Extraction, cDNA Synthesis and qRT-PCR
2.8. Western Blot
2.9. Statistical Analysis
3. Results
3.1. T-CHO and Testosterone Concentrations in Camel PGs During the Breeding Seasons
3.2. Identification of Steroid-Associated DEMs from Metabolomics in Camel PGs
3.3. Identification of Candidate DEPs Associated with Steroids Based on the GO Terms of DIA Proteomics
3.4. Identification of Pathways Interacting with APOE
3.5. Distribution, Expression Patterns, and Co-Localization Analysis of APOE and AR in Camel PGs
3.6. Relative Protein and mRNA Expression Levels of APOE and AR in Camel PGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PGs | Poll gland tissues |
| HSD3β | 3β-hydroxysteroid dehydrogenase |
| DEMs | Differentially expressed metabolites |
| DEPs | Differentially expressed proteins |
| T-CHO | Total cholesterol |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| DIA | Data-independent acquisition |
| GO | Gene Ontology |
| APOE | Apolipoprotein E |
| PPI | Protein–protein interaction |
| H&E | Hematoxylin and eosin |
| IHC | Immunohistochemistry |
| IF | Immunofluorescence |
| AR | Androgen receptor |
| CK7 | Cytokeratin 7 |
| CM-R | Chylomicron remnants |
References
- Ayorinde, F.; Wheeler, J.W.; Wemmer, C.; Murtaugh, J. Volatile components of the occipital gland secretion of the bactrian camel (Camelus bactrianus). J. Chem. Ecol. 1982, 8, 177–183. [Google Scholar] [CrossRef]
- The Bactrian Camels Genome Sequencing and Analysis Consortium. Genome sequences of wild and domestic bactrian camels. Nat. Commun. 2012, 3, 1202. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Siren, D.; Hasi, S.; Jambl, T.; Ji, R. Review of genetic diversity in Bactrian camel (Camelus bactrianus). Anim. Front. 2022, 12, 20–29. [Google Scholar] [CrossRef]
- Von Borell, E.; Dobson, H.; Prunier, A. Stress, behaviour and reproductive performance in female cattle and pigs. Horm. Behav. 2007, 52, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Padalino, B.; Monaco, D.; Lacalandra, G.M. Male camel behavior and breeding management strategies: How to handle a camel bull during the breeding season? Emir. J. Food Agric. 2015, 27, 338–349. [Google Scholar] [CrossRef]
- Tingari, M.; Rahma, B.; Saad, A. Studies on the poll glands of the one-humped camel in relation to reproductive activity. I. Seasonal morphological and histochemical changes. J. Anat. 1984, 138, 193–205. [Google Scholar]
- Yagil, R.; Etzion, Z. Hormonal and behavioural patterns in the male camel (Camelus dromedarius). J. Reprod. Fertil. 1980, 58, 61–65. [Google Scholar] [CrossRef]
- Stocco, D.M. A review of the characteristics of the protein required for the acute regulation of steroid hormone biosynthesis: The case for the steroidogenic acute regulatory (StAR) protein. Proc. Soc. Exp. Biol. Med. 1998, 217, 123–129. [Google Scholar] [CrossRef]
- Galano, M.; Li, Y.; Li, L.; Sottas, C.; Papadopoulos, V. Role of Constitutive STAR in Leydig Cells. Int. J. Mol. Sci. 2021, 22, 2021. [Google Scholar] [CrossRef]
- Stocco, D.M. StAR protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 2001, 63, 193–213. [Google Scholar] [CrossRef]
- Manna, P.R.; Bose, C.; Reddy, P.H. Downregulation of StAR driven neurosteroid biosynthesis as a distinctive feature in the brains of Alzheimer’s disease patients. Biochim. Biophys. Acta-Mol. Basis Dis. 2023, 1869, 166757. [Google Scholar] [CrossRef]
- Bosch, E.; Alviggi, C.; Lispi, M.; Conforti, A.; Hanyaloglu, A.C.; Chuderland, D.; Simoni, M.; Raine-Fenning, N.; Crepieux, P.; Kol, S.; et al. Reduced FSH and LH action: Implications for medically assisted reproduction. Hum. Reprod. 2021, 36, 1469–1480. [Google Scholar] [CrossRef]
- Siltari, A.; Riikonen, J.; Koskimaki, J.; Pakarainen, T.; Ettala, O.; Bostrom, P.; Seikkula, H.; Kotsar, A.; Tammela, T.; Helminen, M.; et al. Randomised double-blind phase 3 clinical study testing impact of atorvastatin on prostate cancer progression after initiation of androgen deprivation therapy: Study protocol. BMJ Open 2022, 12, e050264. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Yuan, B.; Zhang, B.; Chen, W.; Yuan, X.; Liu, X.; Gao, Y.; Zhang, Y.; Zhang, Q.; Zhao, X. Gas/Liquid Chromatography-Mass Spectrometry Analysis of Key Functional Substances Regulating Poll Gland Secretion in Male Camels During Seasonal Estrus. Animals 2023, 13, 2024. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Das, S.; Mal, G.; Alam, S.; Deotale, V.; Purohit, G.; Pathak, K.M.L. Pheromones in Poll Gland secretions of male dromedary camels (Camelus dromedarius) during the breeding season and their role in bio-stimulating sexual behavior changes in females. J. Livest. Sci. 2024, 15, 344–350. [Google Scholar] [CrossRef]
- Mohammed, A.; Almuyidi, A.; Almarri, H.; Alkhalifah, H.; Alhmad, A.; Alali, H.; AlHuwaish, O.; AlKhawaher, M. Unique Characteristics of Camel Body Systems: Adaptation to Harsh Conditions, Productive and Reproductive Performances: A Review. Indian J. Anim. Res. 2025, BF-1922, 1–10. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, Q.; Zhang, B.; Li, J.; Chen, W.; Zhao, Y.; Dong, W.; Zhang, Y.; Zhao, X.; Gao, Y. Exploring the Mechanism of H2S Synthesis in Male Bactrian Camel Poll Glands Based on Data Independent Acquisition Proteomics and Non-Targeted Metabolomics. Int. J. Mol. Sci. 2024, 25, 7700. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, T.; Bai, X.; An, X.; Dai, L.; Shi, J.; Zhang, Y.; Zhao, X.; Zhang, Q. Sulfur Amino Acid Metabolism and the Role of Endogenous Cystathionine-γ-lyase/H2S in Holstein Cows with Clinical Mastitis. Animals 2022, 12, 1451. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Du, S.; Luo, J.; Sun, X.; Jia, B.; Ge, J.; Dong, J.; Jiang, S.; Li, Z. Multipathway regulation for targeted atherosclerosis therapy using anti-miR-33-loaded DNA origami. ACS Nano 2024, 18, 5418–5433. [Google Scholar] [CrossRef]
- Song, K.; Yang, X.; An, G.; Xia, X.; Zhao, J.; Xu, X.; Wan, C.; Liu, T.; Zheng, Y.; Ren, S. Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models. Nat. Commun. 2022, 13, 7335. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Musa, Y.R.; Boller, S.; Puchalska, M.; Grosschedl, R.; Mittler, G. Comprehensive Proteomic Investigation of Ebf1 Heterozygosity in Pro-B Lymphocytes Utilizing Data Independent Acquisition. J. Proteome Res. 2018, 17, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bai, X.; Lin, T.; Wang, X.; Zhang, B.; Dai, L.; Shi, J.; Zhang, Y.; Zhao, X. HMOX1 Promotes Ferroptosis in Mammary Epithelial Cells via FTH1 and Is Involved in the Development of Clinical Mastitis in Dairy Cows. Antioxidants 2022, 11, 2221. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Kang, Y.; Li, L.; Zhao, G.; Sun, J.; Liu, Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J. Proteom. 2021, 233, 104079. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2013, 30, 523–530. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nacul, A.P.; Rezende, G.P.; Gomes, D.A.Y.; Maranhao, T.; Costa, L.O.B.F.; Dos Reis, F.M.; Maciel, G.A.R.; Damasio, L.C.V.d.C.; de Sa Rosa E Silva, A.C.J.; Lopes, V.M.; et al. Use of androgens at different stages of life: Reproductive period. Rev. Bras. Ginecol. Obstet. Rev. Fed. Bras. Soc. Ginecol. Obstet. 2021, 43, 988–994. [Google Scholar] [CrossRef]
- Chen, S.J.; Liu, W.J.; Yang, C.; Li, X.J.; Shen, X.; Jiang, D.L.; Huang, Y.M.; Tian, Y.B. Gonadotropin inhibitory hormone downregulates steroid hormone secretion and genes expressions in duck granulosa cells. Anim. Reprod. 2021, 18, e20210036. [Google Scholar] [CrossRef]
- Handelsman, D.J. History of androgens and androgen action. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101629. [Google Scholar] [CrossRef]
- Aslam, M.M.; Fan, K.-H.; Lawrence, E.; Bedison, M.A.; Snitz, B.E.; Dekosky, S.T.; Lopez, O.L.; Feingold, E.; Kamboh, M.I. Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer’s disease risk. Mol. Psychiatry 2023, 28, 4451–4462. [Google Scholar] [CrossRef]
- Farkas, M.H.; Swift, L.L.; Hasty, A.H.; Linton, M.F.; Fazio, S. The recycling of apolipoprotein E in primary cultures of mouse hepatocytes. Evidence for a physiologic connection to high density lipoprotein metabolism. J. Biol. Chem. 2003, 278, 9412–9417. [Google Scholar] [CrossRef]
- Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011, 10, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Heeren, J.; Grewal, T.; Laatsch, A.; Rottke, D.; Rinninger, F.; Enrich, C.; Beisiegel, U. Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J. Biol. Chem. 2003, 278, 14370–14378. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Li, D.; He, C.; He, K.; Xue, T.; Wan, L.; Zhang, C.; Liu, Q. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021, 109, 957–970.e8. [Google Scholar] [CrossRef] [PubMed]
- Shinohata, R.; Shibakura, M.; Arao, Y.; Watanabe, S.; Hirohata, S.; Usui, S. A high-fat/high-cholesterol diet, but not high-cholesterol alone, increases free cholesterol and apoE-rich HDL serum levels in rats and upregulates hepatic ABCA1 expression. Biochimie 2022, 197, 49–58. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Gu, Z.; Guo, L.; Liu, R.; Guo, Y.; Qin, N.; Yang, Y. Aged garlic oligosaccharides modulate host metabolism and gut microbiota to alleviate high-fat and high-cholesterol diet-induced atherosclerosis in ApoE−/− mice. Food Chem. 2025, 463, 141409. [Google Scholar] [CrossRef]
- Croston, G.E.; Milan, L.B.; Marschke, K.B.; Reichman, M.; Briggs, M.R. Androgen receptor-mediated antagonism of estrogen-dependent low density lipoprotein receptor transcription in cultured hepatocytes. Endocrinology 1997, 138, 3779–3786. [Google Scholar] [CrossRef]
- Melchinger, P.; Garcia, B.M. Mitochondria are midfield players in steroid synthesis. Int. J. Biochem. Cell Biol. 2023, 160, 106431. [Google Scholar] [CrossRef]
- Reyland, M.E.; Gwynne, J.T.; Forgez, P.; Prack, M.M.; Williams, D.L. Expression of the human apolipoprotein E gene suppresses steroidogenesis in mouse Y1 adrenal cells. Proc. Natl. Acad. Sci. USA 1991, 88, 2375–2379. [Google Scholar] [CrossRef]
- Galano, M.; Venugopal, S.; Papadopoulos, V. Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int. J. Mol. Sci. 2022, 23, 12115. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Zhang, B.; Li, J.; Zhang, Q. Multi-Omics Profiling Identifies Apolipoprotein E as an Important Regulator of Steroidogenesis in Bactrian Camel Poll Glands During the Breeding Season. Animals 2025, 15, 3147. https://doi.org/10.3390/ani15213147
Ma Q, Zhang B, Li J, Zhang Q. Multi-Omics Profiling Identifies Apolipoprotein E as an Important Regulator of Steroidogenesis in Bactrian Camel Poll Glands During the Breeding Season. Animals. 2025; 15(21):3147. https://doi.org/10.3390/ani15213147
Chicago/Turabian StyleMa, Qi, Bohao Zhang, Jianfu Li, and Quanwei Zhang. 2025. "Multi-Omics Profiling Identifies Apolipoprotein E as an Important Regulator of Steroidogenesis in Bactrian Camel Poll Glands During the Breeding Season" Animals 15, no. 21: 3147. https://doi.org/10.3390/ani15213147
APA StyleMa, Q., Zhang, B., Li, J., & Zhang, Q. (2025). Multi-Omics Profiling Identifies Apolipoprotein E as an Important Regulator of Steroidogenesis in Bactrian Camel Poll Glands During the Breeding Season. Animals, 15(21), 3147. https://doi.org/10.3390/ani15213147

