The Effects of FSH Versus GnRH Vaccination on Growth Performance and Meat Quality of Surgically Castrated Male Growing-Finishing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Feeding Management
2.2. Vaccine Preparation and Administration
2.3. Sample Collections
2.4. Determination of Growth Performance
2.5. Serum Biochemical Indicators
2.6. Meat Quality Determination
2.7. Antibody Titer Analysis
2.8. Statistical Analysis
3. Results
3.1. Changes in Serum Antibody Titers for FSH or GnRH Vaccination
3.2. The Impact of FSH or GnRH Vaccination on Growth Performance
3.3. The Impact of FSH Versus GnRH Vaccination on Carcass Traits
3.4. The Impact of FSH Versus GnRH Vaccination on Meat Quality
3.5. The Impact of FSH Vaccination on Serum Biochemical Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FSH | Follicle-stimulating hormone |
| GnRH | Gonadotropin-Releasing Hormone |
| LH | Luteinizing Hormone |
| ADG | Average daily gain |
| ADFI | Average daily feed intake |
| FCR | Feed conversion ratio |
| L* | Lightness |
| a* | Red-Green Chromaticity Component |
| b* | Blue-Yellow Chromaticity Component |
| TC | Total cholesterol |
| Glu | Glucose |
| HDL-C | High density lipoprotein cholesterol |
| TSH | Thyroid-stimulating hormone |
| UCP1 | Uncoupling protein 1 |
| C/EPBα | CCAAT/enhancer-binding protein alpha |
| LPL | Lipoprotein lipase |
| FASN | Fatty acid synthase |
References
- Bonneau, M. Use of entire males for pig meat in the European Union. Meat Sci. 1998, 49 (Suppl. 1), S257–S272. [Google Scholar] [CrossRef]
- Han, X.; Zhou, M.; Cao, X.; Du, X.; Meng, F.; Bu, G.; Kong, F.; Huang, A.; Zeng, X. Mechanistic insight into the role of immunocastration on eliminating skatole in boars. Theriogenology 2019, 131, 32–40. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, H.; Wu, K.; Shao, Y.; Han, W.; Cai, Z.; Xu, N.; Qi, M.; Zhao, C.; Wu, C. Body composition, serum lipid levels, and transcriptomic characterization in the adipose tissue of male pigs in response to sex hormone deficiency. Gene 2018, 646, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Squires, E.J.; Mandell, I.B.; de Lange, C.F.M. Age at castration (surgical or immunological) impacts carcass characteristics and meat quality of male pigs. Animal 2018, 12, 648–656. [Google Scholar] [CrossRef]
- Werner, D.; Hoeinghaus, K.; Meier-Dinkel, L.; Moerlein, D.; Brandt, H.; Weissmann, F.; Aulrich, K.; Baldinger, L.; Bussemas, R. Organic fattening of entire male pigs from two sire lines under two feeding strategies Part 2: Meat quality and boar taint. Landbauforsch.-J. Sustain. Org. Agric. Syst. 2020, 70, 75–82. [Google Scholar] [CrossRef]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Kragten, S.A.; Bee, G. Performances, meat quality and boar taint of castrates and entire male pigs fed a standard and a raw potato starch-enriched diet. Animal 2008, 2, 1707–1715. [Google Scholar] [CrossRef]
- D’Souza, D.N.; Mullan, B.P. The effect of genotype, sex and management strategy on the eating quality of pork. Meat Sci. 2002, 60, 95–101. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Colantoni, C.; Howard, K.; McCauley, I.; Jackson, P.; Long, K.A.; Lopaticki, S.; Nugent, E.A.; Simons, J.A.; Walker, J.; et al. Vaccination of boars with a GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. J. Anim. Sci. 2001, 79, 2524–2535. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Turkstra, J.A.; Jongbloed, A.W.; van Diepen, J.T.M.; Meloen, R.H.; Oonk, H.B.; Guo, D.Z.; van de Wiel, D.F.M. Performance and hormone levels of immunocastrated, surgically castrated and intact male pigs fed ad libitum high- and low-energy diets. Livest. Prod. Sci. 2002, 77, 1–11. [Google Scholar] [CrossRef]
- Han, X.; Zhou, Y.; Zeng, Y.; Sui, F.; Liu, Y.; Tan, Y.; Cao, X.; Du, X.; Meng, F.; Zeng, X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology 2017, 97, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Gispert, M.; Angels Oliver, M.; Velarde, A.; Suarez, P.; Perez, J.; Font i Furnols, M. Carcass and meat quality characteristics of immunocastrated male, surgically castrated male, entire male and female pigs. Meat Sci. 2010, 85, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Batorek, N.; Candek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330–1338. [Google Scholar] [CrossRef]
- Liu, P.; Ji, Y.; Yuen, T.; Rendina-Ruedy, E.; DeMambro, V.E.; Dhawan, S.; Abu-Amer, W.; Izadmehr, S.; Zhou, B.; Shin, A.C.; et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 2017, 546, 107–112. [Google Scholar] [CrossRef]
- Liu, X.-M.; Chan, H.C.; Ding, G.-L.; Cai, J.; Song, Y.; Wang, T.-T.; Zhang, D.; Chen, H.; Yu, M.K.; Wu, Y.-T.; et al. FSH regulates fat accumulation and redistribution in aging through the Gai/Ca2+/CREB pathway. Aging Cell 2015, 14, 409–420. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, G.; Wen, J.; Tong, W. Follicle-stimulating hormone promotes the transformation of cholesterol to estrogen in mouse adipose tissue. Biochem. Biophys. Res. Commun. 2018, 495, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Meng, F.; Cao, X.; Du, X.; Bu, G.; Kong, F.; Huang, A.; Zeng, X. FSH promotes fat accumulation by activating PPARy signaling in surgically castrated, but not immunocastrated, male pigs. Theriogenology 2021, 160, 10–17. [Google Scholar] [CrossRef]
- Han, X.; Guan, Z.; Xu, M.; Zhang, Y.; Yao, H.; Meng, F.; Zhuo, Y.; Yu, G.; Cao, X.; Du, X.; et al. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology 2020, 148, 103–111. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Oonk, H.B.; Turkstra, J.A.; Schaaper, W.M.; Erkens, J.H.; Schuitemaker-de Weerd, M.H.; van Nes, A.; Verheijden, J.H.; Meloen, R.H. New GnRH-like peptide construct to optimize efficient immunocastration of male pigs by immunoneutralization of GnRH. Vaccine 1998, 16, 1074–1082. [Google Scholar] [CrossRef]
- Han, X.; Ren, X.; Zeng, Y.; Zhou, Y.; Song, T.; Cao, X.; Du, X.; Meng, F.; Tan, Y.; Liu, Y.; et al. Physiological interactions between the hypothalamic-pituitary-gonadal axis and spleen in rams actively immunized against GnRH. Int. Immunopharmacol. 2016, 38, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Han, X.-F.; Cao, X.-H.; Tang, J.; Du, X.-G.; Zeng, X.-Y. Active immunization against GnRH reduces the synthesis of GnRH in male rats. Theriogenology 2013, 80, 1109–1116. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, M.; Wei, S.; Zhu, L.; Yan, R.; Jin, M.; Wang, Y. Variation of Meat Quality and Relationship to Gut Microbiota Among Different Pig Breeds. Microb. Biotechnol. 2025, 18, e70139. [Google Scholar] [CrossRef]
- Lebret, B.; Ecolan, P.; Bonhomme, N.; Méteau, K.; Prunier, A. Influence of production system in local and conventional pig breeds on stress indicators at slaughter, muscle and meat traits and pork eating quality. Animal 2015, 9, 1404–1413. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Gong, H.; Cui, L.; Zhang, W.; Ma, J.; Chen, C.; Ai, H.; Xiao, S.; Huang, L.; et al. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci. 2019, 150, 47–55. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, L.; Zhang, J.; Liu, X.; Zhang, Y.; Cai, L.; Zhang, W.; Cui, L.; Yang, J.; Ji, J.; et al. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci. 2020, 168, 108182. [Google Scholar] [CrossRef]
- Saintilan, R.; Sellier, P.; Billon, Y.; Gilbert, H. Genetic correlations between males, females and castrates for residual feed intake, feed conversion ratio, growth rate and carcass composition traits in Large White growing pigs. J. Anim. Breed. Genet. 2012, 129, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yang, M.; Dong, K.; Xu, M.; Liu, J.; Chen, Z.; Zhu, S.; Chen, W.; Yin, J.; Jin, K.; et al. A transcriptional landscape of 28 porcine tissues obtained by super deepSAGE sequencing. Bmc Genom. 2020, 21, 229. [Google Scholar] [CrossRef]
- Sun, L.; Peng, Y.; Sharrow, A.C.; Iqbal, J.; Zhang, Z.; Papachristou, D.J.; Zaidi, S.; Zhu, L.-L.; Yaroslavskiy, B.B.; Zhou, H.; et al. FSH directly regulates bone mass. Cell 2006, 125, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-L.; Blair, H.; Cao, J.; Yuen, T.; Latif, R.; Guo, L.; Tourkova, I.L.; Li, J.; Davies, T.F.; Sun, L.; et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 14574–14579. [Google Scholar] [CrossRef] [PubMed]
- Berg, F.; Gustafson, U.; Andersson, L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: A genetic explanation for poor thermoregulation in piglets. PLoS Genet. 2006, 2, e129. [Google Scholar] [CrossRef]
- Fyda, T.J.; Spencer, C.; Jastroch, M.; Gaudry, M.J. Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries. J. Exp. Biol. 2020, 223, jeb223974. [Google Scholar] [CrossRef]
- Noblet, J.; Shi, X.S.; Dubois, S. Effect of body weight on net energy value of feeds for growing pigs. J. Anim. Sci. 1994, 72, 648–657. [Google Scholar] [CrossRef]
- Main, R.G.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Determining an optimum lysine: Calorie ratio for barrows and gilts in a commercial finishing facility. J. Anim. Sci. 2008, 86, 2190–2207. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Sabatini, S.; Carli, F.; Gastaldelli, A. Hepatic glucose metabolism in the steatotic liver. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 319–334. [Google Scholar] [CrossRef]
- Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality—A review. Meat Sci. 2003, 64, 219–237. [Google Scholar] [CrossRef]
- Moore, A.M.; Novak, A.G.; Lehman, M.N. KNDy Neurons of the Hypothalamus and Their Role in GnRH Pulse Generation: An Update. Endocrinology 2023, 165, bqad194. [Google Scholar] [CrossRef]
- Clarke, H.; Dhillo, W.S.; Jayasena, C.N. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol. Metab. 2015, 30, 124–141. [Google Scholar] [CrossRef]
- Esbenshade, K.L. Passive immunization of the pig against gonadotropin releasing hormone during the follicular phase of the estrous cycle. Theriogenology 1991, 35, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.Y.; Turkstra, J.A.; Meloen, R.H.; Liu, X.Y.; Chen, F.Q.; Schaaper, W.M.; Oonk, H.B.; Guo, D.Z.; van de Wiel, D.F. Active immunization against gonadotrophin-releasing hormone in Chinese male pigs: Effects of dose on antibody titer, hormone levels and sexual development. Anim. Reprod. Sci. 2002, 70, 223–233. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Turkstra, J.A.; Tsigos, A.; Meloen, R.H.; Liu, X.Y.; Chen, F.Q.; Schaaper, W.M.; Oonk, H.B.; Guo, D.Z.; van de Wiel, D.F. Effects of active immunization against GnRH on serum LH, inhibin A, sexual development and growth rate in Chinese female pigs. Theriogenology 2002, 58, 1315–1326. [Google Scholar] [CrossRef] [PubMed]


| Ingredients | Composition, % | ||
|---|---|---|---|
| 25–50 kg | 50–75 kg | 75–130 kg | |
| Corn | 70.80 | 73.04 | 72.16 |
| Soybean Meal, CP 44% | 19.10 | 15.12 | 15.10 |
| Wheat Bran | 5.05 | 7.00 | 8.25 |
| Soybean oil | 1.90 | 1.80 | 1.70 |
| Dicalcium Phosphate | 0.91 | 0.88 | 0.80 |
| Limestone | 0.87 | 0.81 | 0.81 |
| Feed-grade Sodium Chloride | 0.30 | 0.35 | 0.35 |
| Choline Chloride, 50% | 0.10 | 0.15 | 0.15 |
| L-Lysine Hydrochloride, 98.5% | 0.54 | 0.49 | 0.40 |
| DL-Methionine, 99% | 0.08 | 0.05 | 0.03 |
| L-Threonine, 98.5% | 0.18 | 0.16 | 0.11 |
| L-Tryptophan, 98% | 0.04 | 0.02 | 0.01 |
| Mineral Premix 1 | 0.10 | 0.10 | 0.10 |
| Vitamin Premix 2 | 0.03 | 0.03 | 0.03 |
| Total, % | 100 | 100 | 100 |
| Items | Placebo-Immunized | GnRH-Immunized | FSH-Immunized | p-Value |
|---|---|---|---|---|
| ANOVA | ||||
| Sample Size, n | 8 | 8 | 8 | |
| 1–3 wk | ||||
| ADFI, kg/d | 1.85 ± 0.08 | 1.92 ± 0.04 | 1.85 ± 0.08 | 0.121 |
| ADG, g/d | 1047.66 ± 48.53 | 1045.05 ± 70.07 | 1018.75 ± 52.28 | 0.551 |
| FCR | 1.77 ± 0.10 | 1.84 ± 0.13 | 1.82 ± 0.05 | 0.343 |
| 4–6 wk | ||||
| ADFI, kg/d | 2.43 ± 0.07 | 2.45 ± 0.05 | 2.42 ± 0.08 | 0.590 |
| ADG, g/d | 1121.32 ± 51.99 | 1112.13 ± 69.40 | 1165.44 ± 66.12 | 0.218 |
| FCR | 2.17 ± 0.11 ab | 2.21 ± 0.16 a | 2.08 ± 0.11 b | 0.128 |
| 7–9 wk | ||||
| ADFI, kg/d | 3.44 ± 0.21 | 3.52 ± 0.13 | 3.48 ± 0.10 | 0.643 |
| ADG, g/d | 1395.83 ± 134.05 | 1434.52 ± 87.02 | 1482.14 ± 135.74 | 0.378 |
| FCR | 2.48 ± 0.16 | 2.46 ± 0.12 | 2.36 ± 0.19 | 0.332 |
| 10–12 wk | ||||
| ADFI, kg/d | 3.10 ± 0.05 | 3.09 ± 0.05 | 3.11 ± 0.07 | 0.796 |
| ADG, g/d | 724.61 ± 114.19 | 681.64 ± 126.09 | 777.35 ± 164.46 | 0.390 |
| FCR | 4.38 ± 0.74 | 4.70 ± 1.11 | 4.16 ± 0.90 | 0.551 |
| Overall | ||||
| ADFI, kg/d | 2.71 ± 0.07 | 2.74 ± 0.04 | 2.72 ± 0.06 | 0.529 |
| ADG, g/d | 1017.96 ± 71.18 | 1009.74 ± 24.79 | 1055.39 ± 71.13 | 0.288 |
| FCR | 2.67 ± 0.16 | 2.71 ± 0.05 | 2.58 ± 0.17 | 0.191 |
| Items | Placebo-Immunized | GnRH-Immunized | FSH-Immunized | p-Value |
|---|---|---|---|---|
| Sample Size, n | 6 | 6 | 6 | |
| Average body weight, kg | 131.50 ± 6.80 | 129.67 ± 3.01 | 131.67 ± 6.22 | 0.793 |
| Carcass weight, kg | 100.65 ± 4.40 | 100.13 ± 2.46 | 101.17 ± 4.11 | 0.893 |
| Dressing percentage, % | 76.58 ± 1.35 | 77.24 ± 1.71 | 76.86 ± 0.81 | 0.697 |
| Average Backfat, mm | 22.52 ± 2.69 | 22.32 ± 2.12 | 21.54 ± 2.82 | 0.785 |
| Ham and hip weight, kg | 16.42 ± 0.60 | 16.53 ± 1.31 | 17.73 ± 2.57 | 0.362 |
| Ham and hip rate, % | 33.12 ± 1.14 | 33.00 ± 2.10 | 35.17 ± 4.17 | 0.341 |
| Leaf fat weight, kg | 1.78 ± 0.45 | 1.72 ± 0.49 | 1.61 ± 0.31 | 0.775 |
| Leaf fat rate, % | 1.78 ± 0.49 | 1.71 ± 0.46 | 1.59 ± 0.27 | 0.722 |
| Right hemisomal weight, kg | 49.49 ± 2.40 | 50.17 ± 1.26 | 50.10 ± 1.90 | 0.798 |
| Head weight, kg | 7.91 ± 0.32 | 7.43 ± 0.33 | 7.73 ± 0.74 | 0.274 |
| Hoof weight, kg | 2.13 ± 0.08 a | 1.93 ± 0.12 b | 2.03 ± 0.18 ab | 0.061 |
| Gut weight, kg | 10.35 ± 1.40 | 9.71 ± 0.51 | 10.78 ± 1.97 | 0.442 |
| Longissimus dorsi weight, kg | 3.40 ± 0.35 | 3.38 ± 0.22 | 3.26 ± 0.29 | 0.708 |
| Psoas major weight, kg | 0.48 ± 0.06 | 0.45 ± 0.04 | 0.44 ± 0.01 | 0.295 |
| Ribeye area, cm2 | 75.65 ± 19.45 | 62.08 ± 8.50 | 66.66 ± 8.63 | 0.228 |
| Heart weight, kg | 0.45 ± 0.03 | 0.43 ± 0.03 | 0.47 ± 0.05 | 0.288 |
| Heart rate, % | 0.44 ± 0.04 | 0.43 ± 0.03 | 0.46 ± 0.05 | 0.391 |
| Liver weight, kg | 1.72 ± 0.10 | 1.78 ± 0.11 | 1.87 ± 0.12 | 0.683 |
| Liver rate, % | 1.30 ± 0.02 a | 1.38 ± 0.01 ab | 1.42 ± 0.01 b | 0.669 |
| Splenic organ weight, kg | 0.18 ± 0.02 | 0.17 ± 0.02 | 0.17 ± 0.01 | 0.518 |
| Splenic organ rate, % | 0.18 ± 0.02 | 0.17 ± 0.03 | 0.17 ± 0.01 | 0.613 |
| Lung weight, kg | 0.79 ± 0.29 | 0.79 ± 0.21 | 0.77 ± 0.17 | 0.982 |
| Lung rate, % | 0.78 ± 0.26 | 0.79 ± 0.23 | 0.76 ± 0.18 | 0.974 |
| Kidney weight, kg | 0.31 ± 0.03 | 0.31 ± 0.01 | 0.33 ± 0.02 | 0.169 |
| Kidney rate, % | 0.30 ± 0.03 | 0.31 ± 0.02 | 0.33 ± 0.02 | 0.152 |
| Items | Placebo-Immunized | GnRH-Immunized | FSH-Immunized | p-Value |
|---|---|---|---|---|
| ANOVA | ||||
| Sample Size, n | 6 | 6 | 6 | |
| Marble pattern score | 1.83 ± 0.41 | 1.67 ± 0.52 | 1.50 ± 0.55 | 0.521 |
| 45 min L* (%) | 82.14 ± 9.13 | 83.07 ± 4.54 | 86.30 ± 4.21 | 0.510 |
| 24 H L* (%) | 55.18 ± 1.84 | 54.90 ± 2.34 | 57.67 ± 5.32 | 0.348 |
| 24 H a* | 11.03 ± 0.68 | 10.58 ± 0.15 | 10.49 ± 1.02 | 0.634 |
| 24 H b* | 5.95 ± 0.80 | 6.71 ± 0.02 | 6.51 ± 0.36 | 0.239 |
| 48 H L* (%) | 51.43 ± 1.46 | 54.28 ± 2.29 | 52.62 ± 2.19 | 0.294 |
| 48 H a* | 10.09 ± 0.53 | 10.09 ± 0.39 | 10.81 ± 1.12 | 0.443 |
| 48 H b* | 5.54 ± 0.30 | 5.71 ± 0.52 | 6.04 ± 0.29 | 0.345 |
| 45 min pH | 6.02 ± 0.39 a | 6.37 ± 0.28 ab | 6.46 ± 0.37 b | 0.106 |
| 24 h pH | 5.27 ± 0.08 | 5.27 ± 0.05 | 5.25 ± 0.08 | 0.953 |
| 48 h pH | 5.33 ± 0.05 | 5.32 ± 0.07 | 5.39 ± 0.08 | 0.401 |
| Drip loss 24 h (%) | 1.82 ± 0.42 a | 2.66 ± 0.83 ab | 3.09 ± 0.75 b | 0.019 |
| Drip loss 48 h (%) | 4.65 ± 0.99 | 4.92 ± 0.50 | 4.18 ± 1.50 | 0.505 |
| Cooked meat rate (%) | 68.35 ± 2.33 | 67.09 ± 2.81 | 68.72 ± 2.73 | 0.545 |
| Cooking loss (%) | 31.65 ± 2.33 | 32.91 ± 2.81 | 31.28 ± 2.73 | 0.545 |
| Shear force (Kg) | 9.23 ± 2.13 a | 9.67 ± 2.41 ab | 12.87 ± 3.59 b | 0.077 |
| Moisture (%) | 72.04 ± 1.05 | 71.33 ± 1.43 | 72.00 ± 1.19 | 0.548 |
| Intramuscular fat (%) | 2.50 ± 0.64 | 2.54 ± 0.58 | 2.00 ± 0.91 | 0.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhou, J.; Lv, G.; Jiang, X.; Song, C.; Hua, L.; Wang, C.; Jin, C.; Wu, D.; Han, X.; et al. The Effects of FSH Versus GnRH Vaccination on Growth Performance and Meat Quality of Surgically Castrated Male Growing-Finishing Pigs. Animals 2025, 15, 3134. https://doi.org/10.3390/ani15213134
Wang G, Zhou J, Lv G, Jiang X, Song C, Hua L, Wang C, Jin C, Wu D, Han X, et al. The Effects of FSH Versus GnRH Vaccination on Growth Performance and Meat Quality of Surgically Castrated Male Growing-Finishing Pigs. Animals. 2025; 15(21):3134. https://doi.org/10.3390/ani15213134
Chicago/Turabian StyleWang, Ganchuan, Junhua Zhou, Gang Lv, Xuemei Jiang, Chenling Song, Lun Hua, Chunxi Wang, Chao Jin, De Wu, Xingfa Han, and et al. 2025. "The Effects of FSH Versus GnRH Vaccination on Growth Performance and Meat Quality of Surgically Castrated Male Growing-Finishing Pigs" Animals 15, no. 21: 3134. https://doi.org/10.3390/ani15213134
APA StyleWang, G., Zhou, J., Lv, G., Jiang, X., Song, C., Hua, L., Wang, C., Jin, C., Wu, D., Han, X., & Zhuo, Y. (2025). The Effects of FSH Versus GnRH Vaccination on Growth Performance and Meat Quality of Surgically Castrated Male Growing-Finishing Pigs. Animals, 15(21), 3134. https://doi.org/10.3390/ani15213134

