Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Comparison with Other Bats
2.2. Functional Annotation of Uncharacterized Proteins (UCPs)
2.3. Analysis of Interferon Regulatory Factor
2.4. New miRNA Identification
2.5. miRNA Target Prediction and Network Construction
2.6. Functional Enrichment of miRNA-Targeted Genes
2.7. Genomic Feature Analysis of miRNA-Targeted Genes
2.8. Network Entropy Analysis of Genes
3. Results
3.1. Protein Homolog Distribution
3.2. Function Annotation of UCPs
3.3. Similarity of Interferon Regulatory Factor in Mammals
3.4. Analysis of New miRNAs
3.5. miRNA Targets and Network Construction
3.6. Functional Enrichment Analysis of miRNA-Target Genes
3.7. Genomic Feature of miRNA-Targeted Genes
3.8. Network Entropy Influenced by Each Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chong-Guzmán, L.A.; Aréchiga-Ceballos, N.; Ballados-Gonzáles, G.G.; Miranda-Caballero, C.I.; Grostieta, E.; Aguilar-Domínguez, M.; Romero-Salas, D.; Hernández-Herrera, R.I.; San Martín-del Ángel, P.; Lammoglia-Villagómez, M.A. Leptospira interrogans Associated with the Common Vampire Bat (Desmodus rotundus) from the Neotropical Region of Mexico. Microbiol. Res. 2025, 16, 43. [Google Scholar] [CrossRef]
- Gonzalez, V.; Banerjee, A. Molecular, ecological, and behavioral drivers of the bat-virus relationship. Iscience 2022, 25, 104779. [Google Scholar] [CrossRef]
- Albuquerque, N.K.; Silva, S.P.; Aragão, C.F.; Cunha, T.C.A.; Paiva, F.A.; Coelho, T.F.; Cruz, A.C.R. Virome analysis of Desmodus rotundus tissue samples from the Amazon region. BMC Genom. 2024, 25, 34. [Google Scholar] [CrossRef]
- Kellner, M.J.; Monteil, V.M.; Zelger, P.; Pei, G.; Jiao, J.; Onji, M.; Nayak, K.; Zilbauer, M.; Balkema-Buschmann, A.; Dorhoi, A. Bat organoids reveal antiviral responses at epithelial surfaces. Nat. Immunol. 2025, 26, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Anderson, D.E.; Zhang, Q.; Tan, C.W.; Lim, B.L.; Luko, K.; Wen, M.; Chia, W.N.; Mani, S.; Wang, L.C. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 2019, 4, 789–799. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, B.; Wang, J.; Wei, X.; Liu, X.; Che, X.; Li, J.; Ng, W.L.; Wang, L.-F.; Li, Y. Increased viral tolerance mediates by antiviral RNA interference in bat cells. Cell Rep. 2024, 43, 114581. [Google Scholar] [CrossRef] [PubMed]
- Blumer, M.; Brown, T.; Freitas, M.B.; Destro, A.L.; Oliveira, J.A.; Morales, A.E.; Schell, T.; Greve, C.; Pippel, M.; Jebb, D.; et al. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. Sci. Adv. 2022, 8, eabm6494. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, M.; Zhang, X.; Yao, D. Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite-Host Interactions in Trypanosoma brucei. Insects 2022, 13, 968. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, Y.; Zhang, G.; Zhou, X.; Shang, H.; Li, L.; Xu, T. Action mechanisms and characteristics of miRNAs to regulate virus replication. Virology 2024, 590, 109966. [Google Scholar] [CrossRef]
- Selvaraj, D.; Mugunthan, S.P.; Chandra, H.M.; Govindasamy, C.; Al-Numair, K.S.; Balasubramani, R. In silico identification of novel and conserved microRNAs and targets in peppermint (Mentha piperita) using expressed sequence tags (ESTs). J. King Saud Univ.-Sci. 2023, 35, 102604. [Google Scholar]
- Zhu, C.; Yan, Y.; Feng, Y.; Sun, J.; Mu, M.; Yang, Z. Genome-Wide Analysis Reveals Key Genes and MicroRNAs Related to Pathogenic Mechanism in Wuchereria bancrofti. Pathogens 2024, 13, 1088. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Connor, R.; Feldgarden, M.; Fine, A.M.; Funk, K.; Hoffman, J. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025, 53, D20–D29. [Google Scholar] [CrossRef]
- Gonzalez, V.; Lobb, B.; Côté, J.; Bhuinya, A.; Tubb, A.G.; Nuthalapati, S.S.; Asavajaru, A.; Zhou, Y.; Misra, V.; Falzarano, D. Bat-specific adaptations in interferon signaling and GBP1 contribute to enhanced antiviral capacity. Nat. Commun. 2025, 16, 5735. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Q.; Xu, C.; Fu, F.; Shao, Q.; Fu, Y.; Wang, Z.; Ma, J.; Wang, H.; Yan, Y. Conserved function of bat IRF7 in activating antiviral innate immunity: Insights into the innate immune response in bats. Vet. Res. 2025, 56, 59. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Varenyk, Y.; Spicher, T.; Hofacker, I.L.; Lorenz, R. Modified RNAs and predictions with the ViennaRNA Package. Bioinformatics 2023, 39, btad696. [Google Scholar] [CrossRef]
- Franz, M.; Lopes, C.T.; Fong, D.; Kucera, M.; Cheung, M.; Siper, M.C.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape. js 2023 update: A graph theory library for visualization and analysis. Bioinformatics 2023, 39, btad031. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Nastou, K.; Koutrouli, M.; Kirsch, R.; Mehryary, F.; Hachilif, R.; Hu, D.; Peluso, M.E.; Huang, Q.; Fang, T. The STRING database in 2025: Protein networks with directionality of regulation. Nucleic Acids Res. 2025, 53, D730–D737. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.M.; Yao, R.A. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Ji, H.; Aihara, K.; Chen, L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 2016, 44, e164. [Google Scholar] [CrossRef]
- Kazakov, D.V.; Kruskop, S.V.; Kawai, K.; Gorban, A.A.; Gorobeyko, U.V. Phylogeography, morphometry and the species distribution modelling in Myotis longicaudatus (Chiroptera, Vespertilionidae) in the Eastern Palaearctic. Mammal Res. 2025, 70, 127–140. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hu, H.; Jiao, H.; Zhao, H. Genomic and functional insights into dietary diversification in New World leaf-nosed bats (Phyllostomidae). J. Syst. Evol. 2024, 62, 928–941. [Google Scholar] [CrossRef]
- Gerber-Tichet, E.; Blanchet, F.P.; Majzoub, K.; Kremer, E.J. Toll-like receptor 4–a multifunctional virus recognition receptor. Trends Microbiol. 2025, 33, 34–47. [Google Scholar] [CrossRef]
- Russ, E.; Mikhalkevich, N.; Iordanskiy, S. Expression of human endogenous retrovirus group K (HERV-K) HML-2 correlates with immune activation of macrophages and type I interferon response. Microbiol. Spectr. 2023, 11, e04438-22. [Google Scholar] [CrossRef] [PubMed]
- Priščáková, P.; Svoboda, M.; Feketová, Z.; Hutník, J.; Repiská, V.; Gbelcová, H.; Gergely, L. Syncytin-1, syncytin-2 and suppressyn in human health and disease. J. Mol. Med. 2023, 101, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Huang, G.; Wang, Z.; Wang, L.; Gao, Q. IRF7: Role and regulation in immunity and autoimmunity. Front. Immunol. 2023, 14, 1236923. [Google Scholar] [CrossRef]
- Letafati, A.; Najafi, S.; Mottahedi, M.; Karimzadeh, M.; Shahini, A.; Garousi, S.; Abbasi-Kolli, M.; Sadri Nahand, J.; Tamehri Zadeh, S.S.; Hamblin, M.R. MicroRNA let-7 and viral infections: Focus on mechanisms of action. Cell. Mol. Biol. Lett. 2022, 27, 14. [Google Scholar] [CrossRef]
- Zheng, Z.; Ke, X.; Wang, M.; He, S.; Li, Q.; Zheng, C.; Zhang, Z.; Liu, Y.; Wang, H. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J. Virol. 2013, 87, 5645–5656. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jin, Y.; Zeng, N.; Ruan, Q.; Qian, F. SOD2 facilitates the antiviral innate immune response by scavenging reactive oxygen species. Viral Immunol. 2017, 30, 582–589. [Google Scholar] [CrossRef]
- Koepke, L.; Gack, M.U.; Sparrer, K.M. The antiviral activities of TRIM proteins. Curr. Opin. Microbiol. 2021, 59, 50–57. [Google Scholar] [CrossRef]
- Liu, X.; Lai, C.; Wang, K.; Xing, L.; Yang, P.; Duan, Q.; Wang, X. A functional role of fibroblast growth factor receptor 1 (FGFR1) in the suppression of influenza A virus replication. PLoS ONE 2015, 10, e0124651. [Google Scholar]
- Thai, M.; Thaker, S.K.; Feng, J.; Du, Y.; Hu, H.; Ting Wu, T.; Graeber, T.G.; Braas, D.; Christofk, H.R. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat. Commun. 2015, 6, 8873. [Google Scholar] [CrossRef]
- Bulanova, D.; Ianevski, A.; Bugai, A.; Akimov, Y.; Kuivanen, S.; Paavilainen, H.; Kakkola, L.; Nandania, J.; Turunen, L.; Ohman, T. Antiviral properties of chemical inhibitors of cellular anti-apoptotic Bcl-2 proteins. Viruses 2017, 9, 271. [Google Scholar] [CrossRef]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Bio. 2009, 10, 682–696. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Sun, Y.; Park, J.-M.; Su, D.; Feng, X.; Keast, S.; Tang, M.; Huang, M.; Wang, C. RAD54L2-mediated DNA damage avoidance pathway specifically preserves genome integrity in response to topoisomerase 2 poisons. Sci. Adv. 2023, 9, eadi6681. [Google Scholar] [CrossRef] [PubMed]
- Tisoncik-Go, J.; Gale, M., Jr. Enhanced antiviral innate immunity supports the bat reservoir of Marburg virus: Antiviral responses. Nat. Immunol. 2025, 26, 812–813. [Google Scholar] [CrossRef] [PubMed]
- Clayton, E.; Munir, M. Fundamental characteristics of bat interferon systems. Front. Cell. Infect. Microbiol. 2020, 10, 527921. [Google Scholar] [CrossRef] [PubMed]
- Irving, A.T.; Zhang, Q.; Kong, P.-S.; Luko, K.; Rozario, P.; Wen, M.; Zhu, F.; Zhou, P.; Ng, J.H.; Sobota, R.M. Interferon regulatory factors IRF1 and IRF7 directly regulate gene expression in bats in response to viral infection. Cell Rep. 2020, 33, 108345. [Google Scholar] [CrossRef]
- Gutierrez, E.G.; Ortega, J. Uncovering selection pressures on the IRF gene family in bats’ immune system. Immunogenetics 2025, 77, 10. [Google Scholar] [CrossRef]
- Pei, G.; Balkema-Buschmann, A.; Dorhoi, A. Disease tolerance as immune defense strategy in bats: One size fits all? PLoS Pathog. 2024, 20, e1012471. [Google Scholar] [CrossRef] [PubMed]



| DRO Accession | Homolog Species | Our Annotation | Identity(%) | E-Value |
|---|---|---|---|---|
| XP_045053599.2 | mouse | PDZ and pleckstrin homology domains 1 | 57.21 | 0 |
| XP_071076900.1 | Rousettus aegyptiacus | neuronal-specific septin-3 isoform X1 | 69.84 | 0 |
| XP_024421750.2 | Phyllostomus discolor | nascent polypeptide-associated complex subunit alpha | 79.30 | 0 |
| XP_053775687.1 | Rousettus aegyptiacus | orofacial cleft 1 candidate gene 1 protein | 80.74 | 0 |
| XP_053784895.1 | Phyllostomus discolor | syncytin-1 | 94.25 | 0 |
| XP_045054974.2 | Pteropus vampyrus | PH domain-containing protein 1 | 76.39 | 8.34 × 10−166 |
| XP_053784149.1 | Myotis brandtii | proline-rich receptor-like protein kinase PERK9 | 80.26 | 3.66 × 10−152 |
| XP_053785850.1 | Miniopterus natalensis | endogenous retrovirus group K (ERVK) member 25 | 58.58 | 2.39 × 10−142 |
| XP_045047497.1 | Eptesicus fuscus | toll-like receptor 4 | 88.57 | 4.03 × 10−134 |
| XP_071076901.1 | Myotis lucifugus | kelch domain-containing protein 7B | 75.07 | 7.86 × 10−132 |
| XP_053786695.1 | Pteropus alecto | EF-hand calcium-binding domain-containing protein 3 | 53.98 | 9.15 × 10−132 |
| XP_024430562.2 | Myotis davidii | vesicle-associated membrane protein 7 | 90.34 | 1.05 × 10−118 |
| XP_024407409.2 | Rousettus aegyptiacus | mitotic spindle assembly checkpoint protein MAD2A | 90.45 | 2.24 × 10−116 |
| XP_024414427.2 | mouse | thioesterase superfamily member 7 | 77.39 | 1.72 × 10−113 |
| XP_045052948.3 | Hipposideros armiger | Polyadenylation specificity factor subunit 5 | 74.44 | 6.70 × 10−110 |
| XP_045051350.1 | Myotis brandtii | keratin-associated protein 10 | 97.84 | 5.94 × 10−93 |
| XP_045058910.2 | Hipposideros armiger | phospholipase A2 inhibitor | 69.49 | 9.20 × 10−82 |
| XP_053771141.1 | Myotis davidii | protein NYNRIN-like | 54.65 | 2.65 × 10−76 |
| XP_053779447.1 | Miniopterus natalensis | cyclic nucleotide-binding domain-containing protein 2 | 76.39 | 7.15 × 10−69 |
| XP_053773395.1 | Rousettus aegyptiacus | doublesex- and mab-3-related transcription factor C2 | 52.11 | 4.26 × 10−53 |
| XP_045053117.2 | Hipposideros armiger | sorbin and SH3 domain-containing protein 2 | 70.73 | 2.75 × 10−44 |
| XP_053766423.1 | Eptesicus fuscus | ribosomal protein L18 | 86.42 | 3.66 × 10−41 |
| XP_053779458.1 | Phyllostomus discolor | translation initiation factor IF-2 | 62.90 | 1.94 × 10−34 |
| XP_071075791.1 | Myotis brandtii | sperm acrosome membrane-associated protein 4 | 77.33 | 2.14 × 10−33 |
| XP_045044110.2 | Eptesicus fuscus | spermatid nuclear transition protein 3 | 74.19 | 7.99 × 10−29 |
| XP_071076697.1 | Pteropus vampyrus | vegetative cell wall protein gp1 | 82.55 | 1.90 × 10−22 |
| XP_053772343.1 | Hipposideros armiger | LIM domain only protein | 92.86 | 3.28 × 10−17 |
| XP_053769798.1 | Phyllostomus discolor | collagen alpha-1(I) chain-like | 85.00 | 3.23 × 10−15 |
| XP_045047205.2 | human | DMRT like family C1 | 68.18 | 9.33 × 10−9 |
| Species | IRF1 | IRF2 | IRF3 | IRF4 | IRF5 | IRF7 | IRF8 | IRF9 |
|---|---|---|---|---|---|---|---|---|
| Eptesicus fuscus | 93.9% | 95.1% | 83.1% | 97.3% | 93.7% | 73.7% | 92.5% | 87.5% |
| Hipposideros armiger | 95.4% | 97.5% | 82.4% | 96.3% | 93.4% | 72.5% | 93.9% | 80.9% |
| Miniopterus natalensis | 96.9% | 96.0% | 81.5% | 81.5% | 94.6% | 75.2% | 96.0% | 86.2% |
| Myotis brandtii | 94.8% | 98.7% | 81.5% | 97.8% | 91.9% | 28.8% | 95.1% | 83.8% |
| Myotis davidii | 93.9% | 45.3% | 79.8% | 97.8% | 91.5% | 28.6% | 95.3% | 83.8% |
| Myotis lucifugus | 94.8% | 49.5% | 81.0% | 37.7% | 92.3% | 26.4% | 95.1% | 83.0% |
| Phyllostomus discolor | 99.4% | 96.3% | 89.7% | 89.8% | 95.2% | 82.0% | 96.7% | 94.9% |
| Pteropus alecto | 96.7% | 97.8% | 82.4% | 96.9% | 92.8% | 70.1% | 95.1% | 86.6% |
| Pteropus vampyrus | 96.7% | 49.8% | 82.2% | 78.1% | 93.0% | 69.8% | 94.6% | 86.6% |
| Rousettus aegyptiacus | 44.6% | 96.4% | 78.6% | 97.1% | 92.2% | 70.1% | 95.1% | 85.9% |
| human | 94.8% | 96.4% | 79.5% | 42.9% | 87.1% | 64.3% | 91.3% | 78.9% |
| mouse | 83.7% | 91.7% | 68.6% | 39.5% | 86.9% | 58.2% | 89.7% | 64.1% |
| rat | 84.6% | 86.1% | 71.1% | 39.9% | 87.5% | 58.6% | 87.1% | 63.9% |
| All species average | 90.0% | 84.3% | 80.1% | 76.4% | 91.7% | 59.9% | 93.6% | 82.0% |
| miRNA | Sequence | Length | Mismatch | MFE | ED |
|---|---|---|---|---|---|
| dro-let-7-5p | TGAGGTAGTAGGTTGTATAGTTT | 23 | 0 | −23.3 | 9.55 |
| dro-miR-1271-3p | TGCCTGGCACACAGCAGGCAC | 21 | 0 | −28.6 | 3.82 |
| dro-miR-1291b | GGCCCTGAATCAAGGCCAGCAGT | 23 | 1 | −21.3 | 3.93 |
| dro-miR-1302 | TTGGGACATACTTATACTAAA | 21 | 0 | −20.9 | 2.22 |
| dro-miR-133a-5p | AGCTGGTAAAATGGAACCAAAT | 22 | 0 | −21.2 | 4.08 |
| dro-miR-2309 | GAGGGTGGTGGAAGGCAGGG | 20 | 1 | −27.0 | 4.81 |
| dro-miR-296-5p | GAGGGCCTCCCTCAACCCTG | 20 | 0 | −30.3 | 14.7 |
| dro-miR-3072 | GAAGGCTTCCTGGAGGGGG | 19 | 0 | −20.4 | 4.17 |
| dro-miR-3173 | GGCCTGCCTGTGTCCTCCT | 19 | 1 | −34.9 | 2.11 |
| dro-miR-3596 | TGAGGTAGTAGGTTGTGTGGTT | 22 | 0 | −25.3 | 4.20 |
| dro-miR-3620-5p | GGCCCAGCCCAGCCCAGCCC | 20 | 0 | −26.6 | 12.38 |
| dro-miR-544-5p | GAATCTGCCTTTTAACAAG | 19 | 0 | −22.5 | 5.59 |
| dro-miR-6732-3p | GGGAGGGGGAGGACAGGGTT | 20 | 1 | −22.4 | 4.58 |
| dro-miR-6736-5p | CTGGGTGAGGGCTTCTGTGG | 20 | 1 | −20.1 | 5.46 |
| dro-miR-6988-5p | GGGCCTCAGCTCACCACCC | 19 | 1 | −33.1 | 10.24 |
| dro-miR-7033-5p | CCAGGGGTCTGAGGGGCA | 18 | 1 | −22.4 | 6.91 |
| dro-miR-8839 | TTGGCAGAGCCAGGGTTCAA | 20 | 1 | −22.0 | 3.36 |
| dro-miR-9222 | TAGAAGTCCAAACTCAAGGTG | 21 | 1 | −21.2 | 8.38 |
| dro-miR-9993b-3p | TGGAGGCCCCAGCGAGAT | 18 | 0 | −20.5 | 13.67 |
| miRNA | Targeted Gene | Coding Protein | Binding Energy | Validated ID |
|---|---|---|---|---|
| dro-let-7c-5p | TUBB4A | NM_006087 | −25.7 | MIRT735640 |
| dro-let-7c-5p | ABT1 | NM_013375 | −23.4 | MIRT100093 |
| dro-let-7c-5p | CHST6 | NM_021615 | −24.9 | MIRT051817 |
| dro-miR-1271-3p | CPM | NM_198320 | −36.4 | MIRT514569 |
| dro-miR-1271-3p | LSM11 | NM_173491 | −32.3 | MIRT522699 |
| dro-miR-1271-3p | NT5C1B | NM_033253 | −30.7 | MIRT451045 |
| dro-miR-1302 | DNAL1 | NM_001201366 | −20.3 | MIRT688422 |
| dro-miR-1302 | SOD2 | NM_001322814 | −17.9 | MIRT525780 |
| dro-miR-133a-5p | RUNX3 | NM_004350 | −18.6 | MIRT561635 |
| dro-miR-133a-5p | NR3C1 | NM_001364184 | −18.5 | MIRT687439 |
| dro-miR-1587 | RNF4 | NM_001185009 | −33.8 | MIRT121369 |
| dro-miR-1587 | TRIM28 | NM_005762 | −33.6 | MIRT737922 |
| dro-miR-296-5p | ELAVL3 | NM_032281 | −37.6 | MIRT624037 |
| dro-miR-296-5p | FGFR1 | NM_001354368 | −32 | MIRT734669 |
| dro-miR-3620-5p | SLC12A7 | XM_047416640 | −37.1 | MIRT766116 |
| dro-miR-3620-5p | TAF8 | XM_017010241 | −35.5 | MIRT560359 |
| dro-miR-6732-3p | ALKBH4 | NM_017621 | −35.2 | MIRT648662 |
| dro-miR-6732-3p | TMEM9B | NM_001286094 | −31 | MIRT446991 |
| dro-miR-6736-5p | SPRYD4 | NM_207344 | −32.2 | MIRT607891 |
| dro-miR-6736-5p | FAM83F | NM_138435 | −30.5 | MIRT542970 |
| Category | Term | Count | Percent | p-Value |
|---|---|---|---|---|
| GOTERM_BP_DIRECT | angiogenesis involved in wound healing | 4 | 2.2% | 8.00 × 10−5 |
| GOTERM_BP_DIRECT | G1/S transition of mitotic cell cycle | 7 | 3.8% | 9.30 × 10−5 |
| GOTERM_BP_DIRECT | negative regulation of apoptotic process | 14 | 7.7% | 7.50 × 10−4 |
| GOTERM_MF_DIRECT | protein binding | 157 | 85.8% | 1.10 × 10−7 |
| GOTERM_MF_DIRECT | fibronectin binding | 4 | 2.2% | 2.60 × 10−3 |
| GOTERM_MF_DIRECT | molecular adaptor activity | 7 | 3.8% | 9.20 × 10−3 |
| GOTERM_MF_DIRECT | mRNA binding | 8 | 4.4% | 9.30 × 10−3 |
| GAD_DISEASE | aging and longevity | 2 | 1.1% | 2.10 × 10−2 |
| GAD_DISEASE_CLASS | Infection | 33 | 18.0% | 2.60 × 10−2 |
| KEGG_PATHWAY | Human papillomavirus infection | 13 | 7.1% | 3.00 × 10−4 |
| Node | Degree | Degree Distribution | Original Entropy | New Entropy | Entropy Change |
|---|---|---|---|---|---|
| MYC | 11 | 0.0104 | 1.2716 | 1.2154 | −0.0562 |
| BCL2 | 11 | 0.0104 | 1.2716 | 1.2311 | −0.0405 |
| UBA52 | 7 | 0.0208 | 1.2716 | 1.2471 | −0.0245 |
| KIF1B | 3 | 0.0885 | 1.2716 | 1.2486 | −0.0230 |
| THBS1 | 4 | 0.0573 | 1.2716 | 1.2496 | −0.0220 |
| STX16 | 4 | 0.0573 | 1.2716 | 1.2496 | −0.0220 |
| VAMP1 | 4 | 0.0573 | 1.2716 | 1.2496 | −0.0220 |
| RAD54L2 | 3 | 0.0885 | 1.2716 | 1.2506 | −0.0210 |
| DEK | 3 | 0.0885 | 1.2716 | 1.2514 | −0.0202 |
| CDC6 | 4 | 0.0573 | 1.2716 | 1.2518 | −0.0199 |
| FGFR1 | 3 | 0.0885 | 1.2716 | 1.2528 | −0.0188 |
| TRA2B | 4 | 0.0573 | 1.2716 | 1.2541 | −0.0176 |
| CDKN1B | 7 | 0.0208 | 1.2716 | 1.2544 | −0.0173 |
| GNL3L | 3 | 0.0885 | 1.2716 | 1.2546 | −0.0171 |
| CCNF | 2 | 0.1354 | 1.2716 | 1.2551 | −0.0166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Liu, T.; He, X.; Mu, M.; Yang, Z. Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat. Animals 2025, 15, 3063. https://doi.org/10.3390/ani15213063
Yan Y, Liu T, He X, Mu M, Yang Z. Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat. Animals. 2025; 15(21):3063. https://doi.org/10.3390/ani15213063
Chicago/Turabian StyleYan, Yicheng, Tianyi Liu, Xiaopeng He, Mingdao Mu, and Zhiyuan Yang. 2025. "Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat" Animals 15, no. 21: 3063. https://doi.org/10.3390/ani15213063
APA StyleYan, Y., Liu, T., He, X., Mu, M., & Yang, Z. (2025). Genome-Wide Identification of MicroRNAs and Immune-Related Proteins Provides Insights into Antiviral Adaptations in Common Vampire Bat. Animals, 15(21), 3063. https://doi.org/10.3390/ani15213063

