Comparison of the Life History of and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Collection and Adult Rearing
2.2. Larvae Rearing
2.3. Overwintering
2.4. Pre-Pupa and Pupa Incubation
2.5. Observation Criteria for Developmental Stages
2.6. Measurement of Adult Body Length
2.7. Measuring the Diameter of the Larval Burrow Entrance and Photographing the Larval Head and Pronotum
2.8. Data Analyses
3. Results and Discussion
3.1. Comparison of Developmental Periods by Developmental Stage of Eight Species of Tiger Beetles
3.2. Overwintering Requirements for Each Tiger Beetle Species
3.3. Comparison of Body Length of Reared-Type and Wild-Type Adult Tiger Beetles
3.4. Evaluation of Larval Burrow Entrance and Head with Pronotum for Habitat Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearson, D.L.; Cassola, F. A quantitative analysis of species descriptions of tiger beetles (Coleoptera: Cicindelidae), from 1758 to 2004, and notes about related developments in biodiversity studies. Coleopt. Bull. 2005, 59, 184–193. [Google Scholar] [CrossRef]
- Jaskuła, R.; Płóciennik, M. Water is needed to exist: Habitat preferences of tiger beetles (Coleoptera: Cicindelidae) in a desert country. Insects 2020, 11, 809. [Google Scholar] [CrossRef]
- Yamamoto, N.; Sota, T. Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle. Proc. R. Soc. B 2020, 287, 20202315. [Google Scholar] [CrossRef]
- Spomer, S.M.; Brewer, G.J.; Fritz, M.I.; Harms, R.R.; Klatt, K.A.; Johns, A.M.; Crosier, S.A.; Palmer, J.A. Determining optimum soil type and salinity for rearing the federally endangered Salt Creek tiger beetle, Cicindela (Ellipsoptera) nevadica lincolniana Casey (Coleoptera: Carabidae: Cicindelinae). J. Kans. Entomol. Soc. 2015, 88, 444–449. [Google Scholar] [CrossRef]
- Satoh, A.; Sota, T.; Ueda, T.; Enokido, Y.; Paik, J.C.; Hori, M. Evolutionary history of coastal tiger beetles in Japan based on a comparative phylogeography of four species. Mol. Ecol. 2004, 13, 3057–3069. [Google Scholar] [CrossRef]
- Bowley, J.L.; Heveran, C.; Weaver, D.K.; Adams, B.; Rohwer, M.; Willemssens, K.; Oberg, E.; Higley, L.G.; Peterson, R.K.D. Thermal profiles of Cicindelidia haemorrhagica (Coleoptera: Cicindelidae) activity in hot springs in Yellowstone National Park. Environ. Entomol. 2024, 53, 829–836. [Google Scholar] [CrossRef]
- Gerlach, J.; Samways, M.; Pryke, J. Terrestrial invertebrates as bioindicators: An overview of available taxonomic groups. J. Insect Conserv. 2013, 17, 831–850. [Google Scholar] [CrossRef]
- Knisley, C.B.; Gwiazdowski, R. Conservation strategies for protecting tiger beetles and their habitats in the United States: Studies with listed species (Coleoptera: Carabidae: Cicindelidae). Ann. Entomol. Soc. Am. 2021, 114, 293–301. [Google Scholar] [CrossRef]
- Knisley, C.B.; Hill, J.M.; Scherer, A.M. Translocation of threatened tiger beetle Cicindela dorsalis dorsalis (Coleoptera: Cicindelidae) to Sandy Hook, New Jersey. Ann. Entomol. Soc. Am. 2005, 98, 552–557. [Google Scholar] [CrossRef]
- Jenkins, S.; Clevenger, T. An Update of the Captive Management and Reintroduction of the Salt Creek Tiger Beetle, Cicindela nevadica lincolniana (Coleoptera: Carabidae) at Omaha’s Henry Doorly Zoo & Aquarium; Unpublished Report; Supervisor, Berniece Grewcock Butterfly & Insect Pavilion: Omaha, NE, USA, 2015. [Google Scholar]
- Cha, D.; Jung, J.-K. Captive propagation and observations of the endangered species Cicindela (Abroscelis) anchoralis (Coleoptera: Carabidae: Cicindelinae) in South Korea. Insect Conserv. Divers. 2024, 18, 731–742. [Google Scholar] [CrossRef]
- McGowan, P.J.K.; Traylor-Holzer, K.; Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 2017, 10, 361–366. [Google Scholar] [CrossRef]
- Woodworth, L.M.; Montgomery, M.E.; Briscoe, D.A.; Frankham, R. Rapid genetic deterioration in captive populations: Causes and conservation implications. Conserv. Genet. 2002, 3, 277–288. [Google Scholar] [CrossRef]
- Lewis, O.T.; Thomas, C.D. Adaptations to captivity in the butterfly Pieris brassicae (L.) and the implications for ex situ conservation. J. Insect Conserv. 2001, 5, 55–63. [Google Scholar] [CrossRef]
- Stuart, O.P.; Cleave, R.; Pearce, K.; Magrath, M.J.L.; Mikheyev, A.S. Gene flow stimulates recovery of reproductive fitness in a captive bred insect. Insect Conserv. Divers. 2024, 18, 743–756. [Google Scholar] [CrossRef]
- Jones, I.M.; Bourchier, R.S.; Smith, S.M. Long-term captive-rearing affects oviposition behavior and nymphal survival of a weed biological control agent. Biocontrol 2021, 162, 104727. [Google Scholar] [CrossRef]
- Freelance, C.B.; Magrath, M.J.L.; Elgar, M.A.; Wong, B.B.M. Long-term captivity is associated with changes to sensory organ morphology in a critically endangered insect. J. Appl. Ecol. 2022, 59, 504–513. [Google Scholar] [CrossRef]
- Kim, T.-H.; Paik, J.-C.; Jeong, K.-H. The beetles (Carabidae, Cicindelinae) of Korea. Korean J. Soil. Zool. 2005, 10, 1–15. [Google Scholar]
- Motschulsky, V. Nouveautés. Études Entomol. 1858, 6, 108–112. [Google Scholar]
- Chevrolat, L.A.A. Description de dix coléoptères de Chine, des environs de Macao, et provenant d’une acquisition faite chez M. Parsudaki, marchand naturaliste à Paris. Rev. Zool. Par La Société Cuvierienne 1845, 8, 95–99. [Google Scholar]
- Nakane, T. New or little-known Coleoptera from Japan and its adjacent regions, XII. Sci. Rep. Saikyo Univ. 1955, 2, 24–40. [Google Scholar]
- Lichtenstein, A.A.H. Catalogus Musei Zoologici Ditissimi Hamburgi. D. III. Februar 1796 Auctionis Lege Distrahendi. Sectio Tertia Continens Insecta; G.F. Schniebes: Hamburg, Germany, 1796; p. 224. [Google Scholar]
- Bates, H.W. On a collection of Coleoptera from Formosa, sent home by R. Swinhoe, Esq., H.B.M. Consul, Formosa. Proc. Zool. Soc. Lond. 1866, 34, 339–355. [Google Scholar]
- Horn, W. Coleoptera Adephaga. Fam. Carabidae, Subfam. Cicindelinae. In Genera Insectorum; Wytsman, P., Ed.; Fascicule 82A; Wytsman: Bruxelles, Belgium, 1908; Volume 13, pp. 1–104, pls. 1–5. [Google Scholar]
- Adams, M.F. Descriptio insectorum novorum Imperii Rossici, imprimis Caucasi et Siberiae. Mémoires De La Société Impériale Des Nat. De Moscou 1817, 5, 278–314. [Google Scholar]
- Motschulsky, V. Coléoptères rapportés de la Sibérie orientale et notamment des pays situés sur les bords du fleuve Amour par MM. Schrenck, Maack, Ditmar, Voznessenski, etc. Études Entomol. 1860, 9, 77–257. [Google Scholar]
- Suh, M.-H. Red Data Book of Republic of Korea Volume 8, Insecta II.; National Institute of Biological Resources: Incheon, Republic of Korea, 2023; pp. 1–134. [Google Scholar]
- Motschulsky, V. Insectes de la Sibérie rapportés d’un voyage fait en 1839 et 1840. Mémoires Présentés à L’académie Impériale Des Sci. De St.-Pétersbourg Par Divers. Savans Et Lus Dans Ses Assem. 1844, 5, 1–274. [Google Scholar]
- Faldermann, F. Coleopterorum ab illustrissimo Bungio in China boreali, Mongolia et montibus Altaicis collectorum, nec non ab ill. Turczaninoffio et Stschukino e provincia Irkutzk missorum illustrationes (continued). Mémoires Présentés à L’académie Impériale Des. Sci. De. St. -Pétersbourg Par. Divers. Savans Et. Lus. Dans Ses. Assem. 1835, 2, 337–464. [Google Scholar]
- Bates, H.W. On the geodephagous Coleoptera of Japan. Trans. Entomol. Soc. Lond. 1873, 2, 219–322. [Google Scholar] [CrossRef]
- De Geer, C. Mémoires Pour Servir à L’histoire des Insectes. Tome Quatrième; P. Hesselberg: Stockholm, Sweden, 1774; pp. xii + 456, 19 pls. [Google Scholar]
- Motschulsky, V. Catalogue des insectes rapportés des environs du fleuve Amour, depuis la Schilka jusqu’à Nikolaevsk, examinés et énumérés. Bull. De. La. Société Impériale Des. Nat. De. Moscou 1859, 32, 487–507. [Google Scholar]
- Fischer von Waldheim, G. Entomographia Imperii Rossici. Volumen I; Semen: Moscow, Russia, 1820; p. 25 pls. [Google Scholar]
- Chaudoir, M. Catalogue de la Collection de Cicindélètes de M. le Baron de Chaudoir; J. Nys: Bruxelles, Belgium, 1865; p. 64. [Google Scholar]
- Hori, M. The biology and population dynamics of the tiger beetle, Cicindela japonica (Thunberg). Physiol. Ecol. Jpn. 1982, 19, 77–212. [Google Scholar]
- Cornelisse, T.M.; Hafernik, J.E. Effects of soil characteristics and human disturbance on tiger beetle oviposition. Ecol. Entomol. 2009, 34, 495–503. [Google Scholar] [CrossRef]
- Brust, M.L.; Knisley, C.B.; Spomer, S.M.; Miwa, K. Observations of oviposition behavior among north American tiger beetle (Coleoptera: Carabidae: Cicindelinae) species and notes on mass rearing. Coleopt. Bull. 2012, 66, 309–314. [Google Scholar] [CrossRef]
- Poças, G.M.; Crosbie, A.E.; Mirth, C.K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 2022, 139, 104051. [Google Scholar] [CrossRef]
- Matsumura, K.; Yamamoto, Y.; Yoshimura, K.; Miyatake, T. Effect of temperature on sexual size dimorphism during the developmental period in the broad-horned flour beetle. J. Therm. Biol. 2024, 124, 103962. [Google Scholar] [CrossRef] [PubMed]
- Knisley, C.B.; Schultz, T.D. The Biology of Tiger Beetles and a Guide to the Species of the South Atlantic States; Virginia Museum of Natural History Special Publication: Martinsville, VA, USA, 1997; pp. 1–210. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Knisley, C.B.; Juliano, S.A. Survival, development, and size of larval tiger beetles: Effects of food and water. Ecology 1988, 69, 1983–1992. [Google Scholar] [CrossRef]
- Watanabe, K.; Sumikawa, T. Larval prey options for the endangered species Dytiscus sharpi (Coleoptera: Dytiscidae: Dytiscinae) for sustainable ex-situ conservation. J. Insect Conserv. 2023, 27, 895–905. [Google Scholar] [CrossRef]
- Pearson, D.L. Biology of Tiger Beetles. Annu. Rev. Entomol. 1988, 33, 123–147. [Google Scholar] [CrossRef]
- Gwiazdowski, R.A.; Gillespie, S.; Weddle, R.; Elkinton, J.S. Laboratory rearing of common and endangered species of North American tiger beetles (Coleoptera: Carabidae: Cicindelinae). Ann. Entomol. Soc. Am. 2011, 104, 534–542. [Google Scholar] [CrossRef]
- Horne, C.R.; Hirst, A.G.; Atkinson, D. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct. Ecol. 2018, 32, 948–957. [Google Scholar] [CrossRef]
- Kang, K.; Cai, Y.; Yue, L.; Zhang, W. Effects of different nutritional conditions on the growth and reproduction of Nilaparvata lugens (Stål). Front. Physiol. 2022, 12, 794721. [Google Scholar] [CrossRef] [PubMed]
Species | Adult Emergence Season | Habitats | Measurements | 1st-Instar Larvae | 2nd-Instar Larvae | 3rd-Instar Larvae | Pre-Pupa | Pupa |
---|---|---|---|---|---|---|---|---|
Cicindela transbaicalica | Spring–Fall | Riverine, brackish water zone, seashore | Developmental period (day) * | 11.38 ± 3.24 (16) | 11.06 ± 1.95 (16) | 13.70 ± 3.30 (10) | 10.30 ± 1.49 (10) | 15.30 ± 2.26 (10) |
Mortality (%) ** | - | - | 37.5 | 37.5 | 37.5 | |||
Cicindela gemmata | Spring–Fall | Riverine | Developmental period (day) | 11.86 ± 2.60 (14) † | 18.42 ± 3.18 (12) | 37.83 ± 21.89 (6) | 22.33 ± 9.67 (6) | 19.00 ± 1.63 (4) |
Mortality (%) | - | 14.3 | 57.1 | 57.1 | 71.4 | |||
Cicindela lewisii | Spring–Fall | Seashore | Developmental period (day) | 24.29 ± 6.55 (17) | 23.88 ± 5.04 (17) | 13.20 ± 1.93 (10) | 14.30 ± 4.30 (10) | 20.90 ± 1.37 (10) |
Mortality (%) | - | - | 41.2 | 41.2 | 41.2 | |||
Cicindela chinensis | Spring–Fall | Mountain path | Developmental period (day) | 16.50 ± 2.44 (20) | 31.25 ± 12.64 (20) | 43.50 ± 17.02 (4) | 15.00 ± 2.94 (4) | 20.25 ± 1.50 (4) |
Mortality (%) | - | - | 80 | 80 | 80 | |||
Cicindela elisae | Summer | Salt marsh, seashore | Developmental period (day) | 23.38 ± 6.39 (8) | 22.75 ± 3.49 (8) | 187.67 ± 12.86 (3) [80.67 ± 12.86] ‡ (3) | 11.00 ± 0.00 (3) | 15.00 ± 1.00 (3) |
Mortality (%) | - | - | 62.5 | 62.5 | 62.5 | |||
Cephalota chiloleuca | Summer | Salt marsh | Developmental period (day) | 45.18 ± 12.28 (11) | 47.00 ± 14.01 (9) | 209.50 ± 25.11 (6) [95.50 ± 25.11] (6) | 8.83 ± 0.98 (6) | 18.60 ± 3.13 (5) |
Mortality (%) | - | 18.2 | 45.5 | 45.5 | 54.5 | |||
Myriochila specularis | Summer | Riverine, brackish water zone, salt marsh | Developmental period (day) | 20.00 ± 4.24 (2) | 25.00 ± 2.83 (2) | 196.50 ± 10.61 (2) [82.50 ± 10.61] (2) | 8.50 ± 2.12 (2) | 18.50 ± 0.71 (2) |
Mortality (%) | - | - | - | - | - | |||
Chaetodera laetescripta | Summer | Riverine | Developmental period (day) | 19.94 ± 2.80 (18) | 24.89 ± 7.32 (18) | 243.38 ± 33.76 (8) [129.38 ± 33.76] (8) | 11.43 ± 1.40 (7) | 15.80 ± 2.05 (5) |
Mortality (%) | - | - | 55.5 | 61.1 | 72.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, D.; Jung, J.-K.; Knisley, C.B. Comparison of the Life History of and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle. Animals 2025, 15, 3032. https://doi.org/10.3390/ani15203032
Cha D, Jung J-K, Knisley CB. Comparison of the Life History of and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle. Animals. 2025; 15(20):3032. https://doi.org/10.3390/ani15203032
Chicago/Turabian StyleCha, Deokjea, Jong-Kook Jung, and C. Barry Knisley. 2025. "Comparison of the Life History of and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle" Animals 15, no. 20: 3032. https://doi.org/10.3390/ani15203032
APA StyleCha, D., Jung, J.-K., & Knisley, C. B. (2025). Comparison of the Life History of and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle. Animals, 15(20), 3032. https://doi.org/10.3390/ani15203032