Antimicrobial Susceptibility of Glaesserella parasuis to Macrolides and Characterization of erm(T)-Carrying Mobile Elements on Chromosome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Antimicrobial Susceptibility Testing
2.3. Genomic DNA Extraction and Whole-Genome Sequencing
2.4. Identification of Macrolide Resistance Genes and Mutations
2.5. Mobile Element Analysis
3. Results and Discussion
3.1. Antimicrobial Susceptibilities of Five Macrolides
3.2. Macrolide Resistance Genes and Mutations
3.3. Characterization of erm(T)-Carrying ICEs
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dickerman, A.; Bandara, A.B.; Inzana, T.J. Phylogenomic analysis of Haemophilus parasuis and proposed reclassification to Glaesserella parasuis, gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Aragon, V.; Cerdà-Cuéllar, M.; Fraile, L.; Mombarg, M.; Nofrarías, M.; Olvera, A.; Sibila, M.; Solanes, D.; Segalés, J. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains. Vet. Microbiol. 2010, 142, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Costa-Hurtado, M.; Barba-Vidal, E.; Maldonado, J.; Aragon, V. Update on Glässer’s disease: How to control the disease under restrictive use of antimicrobials. Vet. Microbiol. 2020, 242, 108595. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial resistance. J. Am. Med. Assoc. 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, A.J.M.; Tucker, A.W.; Navas, J.; Blanco, M.; Morris, S.J.; Gutiérrez-Martín, C.B. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Vet. Microbiol. 2007, 120, 184–191. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, X.; Zhao, Y.; Chen, P.; Zhang, X.; Chen, H.; Cai, X. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet. Microbiol. 2010, 141, 168–173. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, C.; Aragon, V.; Zhou, X.; Zou, M.; Wu, C.; Shen, Z. Investigation of Haemophilus parasuis from healthy pigs in China. Vet. Microbiol. 2019, 231, 40–44. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; Morrissey, I.; Rose, M.; Temmerman, R.; Klein, U.; Simjee, S.; El Garch, F. Antimicrobial susceptibility among respiratory tract pathogens isolated from diseased cattle and pigs from different parts of Europe. J. Appl. Microbiol. 2023, 134, lxad132. [Google Scholar] [CrossRef]
- Yang, S.S.; Sun, J.; Liao, X.P.; Liu, B.T.; Li, L.L.; Li, L.; Fang, L.X.; Huang, T.; Liu, Y.H. Co-location of the erm(T) gene and blaROB-1 gene on a small plasmid in Haemophilus parasuis of pig origin. J. Antimicrob. Chemother. 2013, 68, 1930–1932. [Google Scholar] [CrossRef]
- Gong, X.; Cui, Q.; Zhang, W.; Shi, Y.; Zhang, P.; Zhang, C.; Hu, G.; Sahin, O.; Wang, L.; Shen, Z. Genomic insight into the diversity of Glaesserella parasuis isolates from 19 countries. mSphere 2024, 9, e00231-24. [Google Scholar] [CrossRef]
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial resistance in Pasteurellaceae of veterinary origin. Antimicrob. Resist. Bact. Livest. Companion Anim. 2018, 331–363. [Google Scholar] [CrossRef]
- Dhindwal, P.; Thompson, C.; Kos, D.; Planedin, K.; Jain, R.; Jelinski, M.; Ruzzini, A. A neglected and emerging antimicrobial resistance gene encodes for a serine-dependent macrolide esterase. Proc. Natl. Acad. Sci. USA 2023, 120, e2219827120. [Google Scholar] [CrossRef]
- Yu, R.; Xu, Y.; Schwarz, S.; Shang, Y.; Yuan, X.; Zhang, Y.; Li, D.; Du, X.D. erm(T)-mediated macrolide-lincosamide resistance in Streptococcus suis. Microbiol. Spectrum 2022, 10, e01657-21. [Google Scholar] [CrossRef] [PubMed]
- Kostova, V.; Hanke, D.; Schink, A.K.; Kaspar, H.; Schwarz, S.; Krüger-Haker, H. ICE-borne erm(T)-mediated macrolide resistance in Mannheimia haemolytica. J. Antimicrob. Chemother. 2023, 78, 2379–2381. [Google Scholar] [CrossRef]
- Dayao, D.A.E.; Seddon, J.M.; Gibson, J.S.; Blackall, P.J.; Turni, C. Whole genome sequence analysis of pig respiratory bacterial pathogens with elevated minimum inhibitory concentrations for macrolides. Microb. Drug Resist. 2016, 22, 531–537. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Miao, Q.; Zhai, Y.; Pan, Y.; Yuan, L.; Yan, F.; Wu, H.; Hu, G. Genomic insight into the integrative conjugative elements from ICEHpa1 family. Front. Vet. Sci. 2022, 9, 986824. [Google Scholar] [CrossRef]
- Oliveira, S.; Galina, L.; Pijoan, C. Development of a PCR test to diagnose Haemophilus parasuis infections. J. Vet. Diagn. Investig. 2001, 13, 495–501. [Google Scholar] [CrossRef]
- Prüller, S.; Turni, C.; Blackall, P.J.; Beyerbach, M.; Klein, G.; Kreienbrock, L.; Strutzberg-Minder, K.; Kaspar, H.; Meemken, D.; Kehrenberg, C. Towards a standardized method for broth microdilution susceptibility testing of Haemophilus parasuis. J. Clin. Microbiol. 2017, 55, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Brogden, S.; Pavlović, A.; Tegeler, R.; Kaspar, H.; De Vaan, N.; Kehrenberg, C. Antimicrobial susceptibility of Haemophilus parasuis isolates from Germany by use of a proposed standard method for harmonized testing. Vet. Microbiol. 2018, 217, 32–35. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, G.; Liu, M.; Tai, C.; Deng, Z.; Song, J.; Ou, H.Y. ICEberg 3.0: Functional categorization and analysis of the integrative and conjugative elements in bacteria. Nucleic Acids Res. 2024, 52, D732–D737. [Google Scholar] [CrossRef]
- Dayao, D.A.E.; Kienzle, M.; Gibson, J.S.; Blackall, P.J.; Turni, C. Use of a proposed antimicrobial susceptibility testing method for Haemophilus parasuis. Vet. Microbiol. 2014, 172, 586–589. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Bu, M.X.; Liu, P.; Sun, J.; Liu, Y.H.; Liao, X.P. Epidemiological and PK/PD cutoff values determination and PK/PD-based dose assessment of gamithromycin against Haemophilus parasuis in piglets. BMC Vet. Res. 2020, 16, 81. [Google Scholar] [CrossRef]
- Sun, H.R.; Cui, X.D.; Liu, X.K.; Li, S.H.; Yi, K.F.; Pan, Y.S.; Wu, H.; Yuan, L.; Hu, G.Z.; He, D.D. Molecular characterization of a novel integrative conjugative element ICEHpa1 in Haemophilus parasuis. Front. Microbiol. 2020, 11, 1884. [Google Scholar] [CrossRef]
- Liu, J.; Tan, C.; Li, J.; Chen, H.; Xu, P.; He, Q.; Bei, W.; Chen, H. Characterization of ISApl1, an insertion element identified from Actinobacillus pleuropneumoniae field isolate in China. Vet. Microbiol. 2008, 132, 348–354. [Google Scholar] [CrossRef]
- Roy Chowdhury, P.; Alhamami, T.; Venter, H.; Veltman, T.; Carr, M.; Mollinger, J.; Trott, D.J.; Djordjevic, S.P. Identification and evolution of ICE-Pmu ST394: A novel integrative conjugative element in Pasteurella multocida ST394. J. Antimicrob. Chemother. 2024, 79, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xia, L.; Pan, R.; Xuan, H.; Guo, H.; Song, Q.; Wei, J.; Shao, D.; Liu, K.; Li, Z. Identification of mcr-1 and a novel chloramphenicol resistance gene catT on an integrative and conjugative element in an Actinobacillus strain of swine origin. Vet. Microbiol. 2021, 254, 108983. [Google Scholar] [CrossRef]
- An, J.; Guo, G.; Yu, D.; Zhu, K.; Zhang, C.; Li, Y. ICEHpsaHPS7, a novel multiple drug resistance integrative conjugative element in Glaesserella parasuis. Antimicrob. Agents Chemother. 2021, 65, e01716-20. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Y.; Yi, K.; Zhang, M.; Luo, X.; He, D.; Hu, G.; Wu, H. ICEGpa1804, a novel integrative and conjugative element carrying eight resistance genes, identified in Glaesserella parasuis. Int. J. Antimicrob. Agents 2023, 61, 106740. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | No. of Isolates with MICs (μg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | MIC50 | MIC90 | |
Erythromycin | 27 * | 13 | 33 | 23 | 16 | 1 | 4 | 1 | 4 | |||
Tylosin | 5 * | 4 | 3 | 8 | 20 | 36 | 22 | 17 | 1 | 1 | 8 | 32 |
Tilmicosin | 26 * | 12 | 11 | 31 | 15 | 14 | 3 | 3 | 1 | 1 | 2 | 8 |
Tulathromycin | 16 * | 18 | 26 | 27 | 22 | 5 | 1 | 0 | 2 * | 1 | 4 | |
Gamithromycin | 85 * | 13 | 11 | 4 | 2 | 2 | <0.25 | 1 |
Strains | MIC Values (μg/mL) | Resistance Gene/Mutation | Location | ||||
---|---|---|---|---|---|---|---|
ERY | TYL | TIL | TUL | GAM | |||
20 | 16 | 32 | 32 | 8 | 4 | None | None |
H62 | 64 | 128 | 128 | >128 | 64 | A2059G | 23S rRNA |
59 | 64 | 16 | 64 | 16 | 2 | erm(T) | Plasmid |
H44 | 64 | 64 | 32 | >128 | 64 | erm(T) | Chromosome |
H68tg | 64 | 32 | 32 | 8 | 2 | erm(T) | Chromosome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Li, C.; Shang, S.; Huang, T.; Liu, J.; Ge, Q.; Liao, X.; Fang, L.; Yu, Y. Antimicrobial Susceptibility of Glaesserella parasuis to Macrolides and Characterization of erm(T)-Carrying Mobile Elements on Chromosome. Animals 2025, 15, 164. https://doi.org/10.3390/ani15020164
Zhang P, Li C, Shang S, Huang T, Liu J, Ge Q, Liao X, Fang L, Yu Y. Antimicrobial Susceptibility of Glaesserella parasuis to Macrolides and Characterization of erm(T)-Carrying Mobile Elements on Chromosome. Animals. 2025; 15(2):164. https://doi.org/10.3390/ani15020164
Chicago/Turabian StyleZhang, Peng, Changmin Li, Shuna Shang, Ting Huang, Junqi Liu, Qianwen Ge, Xiaoping Liao, Liangxing Fang, and Yang Yu. 2025. "Antimicrobial Susceptibility of Glaesserella parasuis to Macrolides and Characterization of erm(T)-Carrying Mobile Elements on Chromosome" Animals 15, no. 2: 164. https://doi.org/10.3390/ani15020164
APA StyleZhang, P., Li, C., Shang, S., Huang, T., Liu, J., Ge, Q., Liao, X., Fang, L., & Yu, Y. (2025). Antimicrobial Susceptibility of Glaesserella parasuis to Macrolides and Characterization of erm(T)-Carrying Mobile Elements on Chromosome. Animals, 15(2), 164. https://doi.org/10.3390/ani15020164