Combined Infrared Thermography and Agitated Behavior in Sows Improve Estrus Detection When Applied to Supervised Machine Learning Algorithms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Data Collection and Estrus Detection
2.3. Infrared Thermography
2.4. Statistical and Machine Learning Analysis
3. Results
3.1. Signs of Estrus
3.2. Infrared Thermography Camera and Rectal Temperature
3.3. Machine Learning
4. Discussion
4.1. Estrus Signs
4.2. Rectal Temperature
4.3. Infrared Thermography Camera
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ABCS. Produção de Suínos: Teoria e Prática; Associação Brasileira de Criadores de Suínos—Coordenação técnica da Integrall Soluções em Produção Animal: Brasília, Brazil, 2014. [Google Scholar]
- Hafez, B.; Hafez, E.S.E. Reprodução Animal, 7th ed.; Editora Manole: Barueri, Brazil, 2004. [Google Scholar]
- Langendijk, P.; Van Den Brand, H.; Soede, N.M.; Kemp, B. Effect of boar contact on follicular development and on estrus expression after weaning in primiparous sows. Theriogenology 2000, 54, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Frare, A.L.; Pontili, A.D.; Bini, D.; Jacobovski, D.A.; Teixeira, E.; Malherbi, G.; Meirelles, C. Ciclo Estral dos Suínos; Faculdade Assis Gurgaz: Cascavel, Brazil, 2013. [Google Scholar]
- Godyń, D.; Herbut, P. Applications of continuous body temperature measurements in pigs—A review. Ann. Wars Univ. Life Sci—SGGW—Anim. Sci. 2018, 56, 209–220. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, T. Study on body temperature detection of pig based on infrared technology: A review. Artif. Intell. Agric. 2019, 1, 14–26. [Google Scholar] [CrossRef]
- Perez Marquez, H.J.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Evaluation of infrared thermography combined with behavioral biometrics for estrus detection in naturally cycling dairy cows. Animal 2021, 15, 100205. [Google Scholar] [CrossRef] [PubMed]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.F.; Celi, P. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef]
- De Ruediger, F.R.; Yamada, P.H.; Bicas Barbosa, L.G.; Mungai Chacur, M.G.; Pinheiro Ferreira, J.C.; De Carvalho, N.A.T.; Soriano, G.A.M.; Codognoto, V.M.; Oba, E. Effect of estrous cycle phase on vulvar, orbital area and muzzle surface temperatures as determined using digital infrared thermography in buffalo. Anim. Reprod. Sci. 2018, 197, 154–161. [Google Scholar] [CrossRef]
- Façanha, D.A.E.; Peixoto, G.C.X.; Ferreira, J.B.; Souza, J.E.R.D.; Paiva, R.D.M.; Ricarte, A.R.F. Detecting estrus in Canindé goats by two infrared thermography methods. Acta Vet. Bras. 2018, 12, 49–54. [Google Scholar] [CrossRef]
- de Freitas, A.C.B.; Vega, W.H.O.; Quirino, C.R.; Junior, A.B.; David, C.M.G.; Geraldo, A.T.; Rua, M.A.S.; Rojas, L.F.C.; Filho, J.E.d.A.; Dias, A.J.B. Surface temperature of ewes during estrous cycle measured by infrared thermography. Theriogenology 2018, 119, 245–251. [Google Scholar] [CrossRef]
- Weng, R.-C. Variations in the body surface temperature of sows during the post weaning period and its relation to subsequent reproductive performance. Asian-Australas J. Anim. Sci. 2020, 33, 1138–1147. [Google Scholar] [CrossRef]
- Sykes, D.; Couvillion, J.; Cromiak, A.; Bowers, S.; Schenck, E.; Crenshaw, M.; Ryan, P. The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology 2012, 78, 147–152. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.H.; Yun, W.; Oh, H.J.; An, J.S.; Kim, Y.G.; Kim, G.M.; Cho, J.H. Quantifiable and feasible estrus detection using the ultrasonic sensor array and digital infrared thermography. J. Anim. Sci. Technol. 2019, 61, 163–169. [Google Scholar] [CrossRef]
- Hannon, J.P.; Bossone, C.A.; Wade, C.E. Normal physiological values for conscious pigs used in biomedical research. Lab. Anim. Sci. 1990, 40, 293–298. [Google Scholar]
- Xue, H.; Chen, J.; Ding, Q.; Sun, Y.; Shen, M.; Liu, L.; Chen, X.; Zhou, J. Automatic detection of sow posture and estrus based on convolutional neural network. Front. Phys. 2022, 10, 1037129. [Google Scholar] [CrossRef]
- Arakawa, T. Possibility of Autonomous Estimation of Shiba Goat’s Estrus and Non-Estrus Behavior by Machine Learning Methods. Animals 2020, 10, 771. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Wang, J.; Zhao, K.; Li, X.; Liu, B.; Zhou, Y. Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag. Animal 2023, 17, 100811. [Google Scholar] [CrossRef]
- Cairo, F.; Pereira, L.; Campos, M.; Tomich, T.; Coelho, S.; Lage, C.; Fonseca, A.; Borges, A.; Alves, B.; Dorea, J. Applying machine learning techniques on feeding behavior data for early estrus detection in dairy heifers. Comput. Electron. Agric. 2020, 179, 105855. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Soede, N.M.; Kemp, B. Expressionof oestrus and timing of ovulation in pigs. J. Reprod. Fertil. 1997, 52, 91–103. [Google Scholar]
- Romoser, M.R.; Hale, B.J.; Seibert, J.T.; Gall, T.; Rademacher, C.J.; Stalder, K.J.; Baumgard, L.H.; Keating, A.F.; Ross, J.W. Methods for reproductive tract scoring as a tool for improving sow productivity12. Transl. Anim. Sci. 2020, 4, 275–284. [Google Scholar] [CrossRef]
- Bressers, H.P.M. Monitoring Individual Sows in Group—Housing: Possibilities for Automation. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Lei, K.; Zong, C.; Du, X.; Teng, G.; Feng, F. Oestrus Analysis of Sows Based on Bionic Boars and Machine Vision Technology. Animals 2021, 11, 1485. [Google Scholar] [CrossRef]
- JMcGlone, J.; Aviles-Rosa, E.O.; Archer, C.M.; Wilson, M.; Jones, K.D.M.; Matthews, E.; Gonzalez, A.A.; Reyes, E. Understanding Sow Sexual Behavior and the Application of the Boar Pheromone to Stimulate Sow Reproduction. In Animal Reproduction in Veterinary Medicine; Aral, F., Payan-Carreira, R., Quaresma, M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Thompson, R.; Matheson, S.M.; Plötz, T.; Edwards, S.A.; Kyriazakis, I. Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors. Comput. Electron. Agric. 2016, 127, 521–530. [Google Scholar] [CrossRef]
- Abrams, R.M.; Thatcher, W.W.; Bazer, F.W.; Wilcox, C.J. Effect of Estradiol-17β on Vaginal Thermal Conductance in Cattle. J. Dairy Sci. 1973, 56, 1058–1062. [Google Scholar] [CrossRef]
- De Oliveira, N.C.; Vieira, M.D.L.; Dos Santos, W.B.R.; Pedroso, L.B.; Ribeiro, J.C.; Cezário, A.S.; Oliveira, E.M.B.; De Souza, C.M. Influência da temperatura na produção e bem-estar de suínos. Colloq. Agrar. 2017, 13, 254–264. [Google Scholar] [CrossRef]
- Scolari, S.; Clark, S.; Knox, R.; Tamassia, M. Vulvar skin temperature changes significantly during estrus in swine as determined by digital infrared thermography. J. Swine Health Prod. 2011, 19, 151–155. [Google Scholar] [CrossRef]
- Luño, V.; Gil, L.; Jerez, R.A.; Malo, C.; González, N.; Grandía, J.; de Blas, I. Determination of ovulation time in sows based on skin temperature and genital electrical resistance changes. Vet. Rec. 2013, 172, 579. [Google Scholar] [CrossRef]
- Simões, V.G.; Lyazrhi, F.; Picard-Hagen, N.; Gayrard, V.; Martineau, G.-P.; Waret-Szkuta, A. Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation. Theriogenology 2014, 82, 1080–1085. [Google Scholar] [CrossRef]
- Schmidt, M.; Lahrmann, K.-H.; Ammon, C.; Berg, W.; Schon, P.; Hoffmann, G. Assessment of body temperature in sows by two infrared thermography methods at various body surface locations. J. Swine Health Prod. 2013, 21, 203–209. [Google Scholar] [CrossRef]
- Weng, R.-C.; Ndwandwe, S. Application of modern estrus detection protocols in small scale Hybrid Black pig production systems. J. Agric. Crop. Res. 2020, 8, 120–131. [Google Scholar] [CrossRef]
- Geers, R.; Janssens, S.; Jourquin, J.; Goedseels, V.; Goossens, K.; Ville, H.; Vandoorne, N. Measurement of Ear Base Temperature as a Tool for Sow Management. Trans. ASAE 1996, 39, 655–659. [Google Scholar] [CrossRef]
- Chem, V.; Mun, H.-S.; Ampode, K.M.B.; Mahfuz, S.; Chung, I.-B.; Dilawar, M.A.; Yang, C.-J. Heat Detection of Gilts Using Digital Infrared Thermal Imaging Camera. Adv. Anim. Vet. Sci. 2022, 10, 2142–2147. [Google Scholar] [CrossRef]
- Chang, S.-C.; Wu, X.-R.; Kuan, H.-Y.; Peng, S.-Y.; Chang, C.-Y. Using deep learning to accurately detect sow vulva size in a group pen with a single camera. J. Anim. Sci. 2024, 102, skad407. [Google Scholar] [CrossRef] [PubMed]
Category | Code | Observation | Description |
---|---|---|---|
Physical signs | VR | Vulva reddened | Vulva with a slight change in color to reddish tones |
VS | Vulva swollen | Vulva slightly swollen compared to previous assessments | |
MD | Vulva mucous discharge | The presence of mucous discharge from the vulva | |
Behavioral signs | AG | Agitated | Elevated activity levels, including inquietly in pen, pacing and increased vocalization |
RA | Reduction of appetite (leftover feed) | Noticeable decrease in feed consumption, characterized by leftovers of feed in the feeder | |
FU | Frequent urination | Increased urination, especially in the presence of the boar | |
TFB | Trembling in front of the boar | Muscular trembling observed in the presence of the boar | |
Reflex test | BPT | Back-pressure test | A positive standing and rigid reflex when pressure is applied to her back |
Signs | Cycle Phase | SEM | p-Value | |
---|---|---|---|---|
Pre-Estrus (%) | Estrus (%) | |||
VR | 42.0 | 77.0 | 0.079 | 0.0020 |
VS | 42.0 | 74.0 | 0.080 | 0.0049 |
MD | 17.0 | 51.0 | 0.075 | 0.0016 |
AG | 8.0 | 71.0 | 0.064 | <0.0001 |
RA | 0.0 | 6.0 | 0.028 | 0.1499 |
FU | 3.0 | 20.0 | 0.052 | 0.0216 |
TFB | 0.0 | 3.0 | 0.020 | 0.3139 |
BPT | 0.0 | 100 | - | - |
Region | Cycle Phase | SEM | p-Value | |
---|---|---|---|---|
Pre-Estrus | Estrus | |||
Right eye | 29.35 | 27.25 | 0.526 | 0.0058 |
Left eye | 29.30 | 27.42 | 0.512 | 0.0109 |
Right ear | 25.12 | 24.22 | 0.937 | 0.4967 |
Left ear | 25.20 | 24.38 | 1.026 | 0.5738 |
Back | 27.90 | 27.55 | 0.664 | 0.7074 |
Breast | 29.60 | 29.79 | 0.470 | 0.7742 |
Vulvar area | 31.29 | 30.72 | 0.422 | 0.3655 |
Perianal area | 32.48 | 32.25 | 0.353 | 0.6538 |
Rectal Temperature | 38.17 | 37.96 | 0.080 | 0.0708 |
Predicted | |||
---|---|---|---|
Estrus | Non-Estrus | Accuracy (±95% CI) | |
Training set (60%) | |||
Estrus | 17 | 0 | 1.0 (0.93–1.00) |
Non-estrus | 0 | 19 | |
Test set (40%) | |||
Estrus | 9 | 1 | 0.87 (0.66–0.97) |
Non-estrus | 2 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, L.C.S.; Mendes, J.P.; Ferreira, Y.M.; Amaral, R.S.V.; Oliveira, D.A.; Caldara, F.R.; Baumann, B.T.; Genova, J.L.; Kiefer, C.; Hauschild, L.; et al. Combined Infrared Thermography and Agitated Behavior in Sows Improve Estrus Detection When Applied to Supervised Machine Learning Algorithms. Animals 2025, 15, 2798. https://doi.org/10.3390/ani15192798
Moura LCS, Mendes JP, Ferreira YM, Amaral RSV, Oliveira DA, Caldara FR, Baumann BT, Genova JL, Kiefer C, Hauschild L, et al. Combined Infrared Thermography and Agitated Behavior in Sows Improve Estrus Detection When Applied to Supervised Machine Learning Algorithms. Animals. 2025; 15(19):2798. https://doi.org/10.3390/ani15192798
Chicago/Turabian StyleMoura, Leila Cristina Salles, Janaina Palermo Mendes, Yann Malini Ferreira, Rayna Sousa Vieira Amaral, Diana Assis Oliveira, Fabiana Ribeiro Caldara, Bianca Thais Baumann, Jansller Luiz Genova, Charles Kiefer, Luciano Hauschild, and et al. 2025. "Combined Infrared Thermography and Agitated Behavior in Sows Improve Estrus Detection When Applied to Supervised Machine Learning Algorithms" Animals 15, no. 19: 2798. https://doi.org/10.3390/ani15192798
APA StyleMoura, L. C. S., Mendes, J. P., Ferreira, Y. M., Amaral, R. S. V., Oliveira, D. A., Caldara, F. R., Baumann, B. T., Genova, J. L., Kiefer, C., Hauschild, L., & Santos, L. S. (2025). Combined Infrared Thermography and Agitated Behavior in Sows Improve Estrus Detection When Applied to Supervised Machine Learning Algorithms. Animals, 15(19), 2798. https://doi.org/10.3390/ani15192798