Modification of Brassica rapa L. Polysaccharide by Selenylation and Its Immune-Enhancing Activity When Combined with a Live-Attenuated Newcastle Disease Vaccine in Poultry
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of BRP
2.2. Preparation of sBRP
2.3. Determination of Carbohydrate and Selenium Content in sBRP
2.4. sBRP Characterization
2.4.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.4.2. Field Emission Electron Scanning Electron Microscope (SEM)
2.4.3. Zeta Potential and Particle Size
2.4.4. Solid-State Nuclear Magnetic Resonance (NMR)
2.5. Animals and Experimental Design
2.5.1. Effects of sBRP on Chicken Body Weight and Immune Organ Indices
2.5.2. Peripheral Lymphocyte Proliferation Assay (A570)
2.5.3. Serum HI Antibody Titre Testing
2.5.4. Serum Cytokine Content Determination
2.5.5. Density of Intestinal Mucosal Intraepithelial Lymphocytes (IELs) and Goblet Cells (GCs)
2.6. Statistical Analysis
3. Results
3.1. Yield, Sugar Content, and Selenium Content of sBRP
3.2. sBRP Characterization Results and Analysis
3.2.1. FT-IR Analysis
3.2.2. Scanning Electron Microscopy (SEM) Image Analysis
3.2.3. Zeta Potential and Particle Size Analysis
3.2.4. NMR Analysis
3.3. The Effect of sBRP on Broiler Weight and Immune Organ Indices
3.4. Changes in Peripheral Lymphocyte Proliferation
3.5. Changes in Serum Antibody Titres
3.6. Serum Cytokine Levels
3.6.1. Changes in Serum IL-2 Levels
3.6.2. Changes in Serum IL-6 Levels
3.6.3. Changes in Serum IFN-γ Levels
3.7. The Changes in the Density of Intraepithelial Lymphocytes (IELs) and Goblet Cells (GCs) in the Jejunal Tissue of Chickens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuvey, F.S.; Fink, G.; Hattendorf, J.; Mensah, G.I.; Addo, K.K.; Bonfoh, B.; Zinsstag, J. Access to vaccination services for priority ruminant livestock diseases in Ghana: Barriers and determinants of service utilization by farmers. Prev. Vet. Med. 2023, 215, 105919. [Google Scholar] [CrossRef]
- Lane, J.K.; Kelly, T.; Bird, B.; Chenais, E.; Roug, A.; Vidal, G.; Gallardo, R.; Zhou, H.; VanHoy, G.; Smith, W. A One Health Approach to Reducing Livestock Disease Prevalence in Developing Countries: Advances, Challenges, and Prospects. Annu. Rev. Anim. Biosci. 2025, 13, 277–302. [Google Scholar] [CrossRef]
- Noguera Zayas, L.P.; Rüegg, S.; Torgerson, P. The burden of zoonoses in Paraguay: A systematic review. PLoS Neglected Trop. Dis. 2021, 15, e0009909. [Google Scholar] [CrossRef]
- Laupèze, B.; Doherty, T.M. Maintaining a ‘fit’ immune system: The role of vaccines. Expert Rev. Vaccines 2023, 22, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Kardani, K.; Sadat, S.M.; Kardani, M.; Bolhassani, A. The next generation of HCV vaccines: A focus on novel adjuvant development. Expert Rev. Vaccines 2021, 20, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines 2020, 19, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Roman, F.; Burny, W.; Ceregido, M.A.; Laupèze, B.; Temmerman, S.T.; Warter, L.; Coccia, M. Adjuvant system AS01: From mode of action to effective vaccines. Expert Rev. Vaccines 2024, 23, 715–729. [Google Scholar] [CrossRef]
- Zeng, Y.; Zou, F.; Xia, N.; Li, S. In-depth review of delivery carriers associated with vaccine adjuvants: Current status and future perspectives. Expert Rev. Vaccines 2023, 22, 681–695. [Google Scholar] [CrossRef]
- Wallace, F.; Bennadji, Z.; Ferreira, F.; Olivaro, C. Structural characterisation of new immunoadjuvant saponins from leaves and the first study of saponins from the bark of Quillaja brasiliensis by liquid chromatography electrospray ionisation ion trap mass spectrometry. Phytochem. Anal. 2019, 30, 644–652. [Google Scholar] [CrossRef]
- Magedans, Y.V.; Yendo, A.C.; Costa, F.; Gosmann, G.; Fett-Neto, A.G. Foamy matters: An update on Quillaja saponins and their use as immunoadjuvants. Future Med. Chem. 2019, 11, 1485–1499. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Hou, W.; Guo, C.; Zhang, J.; Zhang, W.; Ma, L.; Song, X. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice. Int. J. Biol. Macromol. 2016, 82, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.-M.; Yue, G.G.-L.; Chan, Y.-Y.; Kwok, H.-F.; Gao, S.; Wong, C.-W.; Lau, C.B.-S. A review on the immunomodulatory activity of Acanthopanax senticosus and its active components. Chin. Med. 2019, 14, 25. [Google Scholar] [CrossRef]
- Alanazi, H.H.; Elasbali, A.M.; Alanazi, M.K.; El Azab, E.F. Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules 2023, 28, 8045. [Google Scholar] [CrossRef] [PubMed]
- Abdugafurova, D.G.; Oripova, M.Z.; Amanlikova, D.A.; Mahmudov, L.U.; Koraboeva, B.B.; Kuzieva, Z.N.; Oshchepkova, Y.I. Study of the Immunomodulatory Effect of Polysaccharides Isolated from Seeds of Turnip BRASSICA RAPA. Pharm. Chem. J. 2024, 57, 1552–1556. [Google Scholar] [CrossRef]
- Hamed, Y.S.; Ahsan, H.M.; Hussain, M.; Ahmad, I.; Tian, B.; Wang, J.; Zou, X.-G.; Bu, T.; Ming, C.; Rayan, A.M.; et al. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int. J. Biol. Macromol. 2024, 254, 128023. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, Y.; Li, Z.; Wang, X.; Qian, H. An integrated network pharmacology and metabolomics approach to reveal the immunomodulatory mechanism of Brassica rapa L. (Tibetan Turnip) in fatigue mice. Food Funct. 2022, 13, 11097–11110. [Google Scholar] [CrossRef]
- Chen, Z.-E.; Wufuer, R.; Ji, J.-H.; Li, J.-F.; Cheng, Y.-F.; Dong, C.-X.; Taoerdahong, H. Structural Characterization and Immunostimulatory Activity of Polysaccharides from Brassica rapa L. J. Agric. Food Chem. 2017, 65, 9685–9692. [Google Scholar] [CrossRef]
- Sadler, R.A.; Mallard, B.A.; Shandilya, U.K.; Hachemi, M.A.; Karrow, N.A. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024, 16, 3324. [Google Scholar] [CrossRef]
- Paiva, F.A.; Netto, A.S.; Corrêa, L.B.; Silva, T.H.; Guimarães, I.C.S.B.; Del Claro, G.R.; Cunha, J.A.; Zanetti, M.A. Organic selenium supplementation increases muscle selenium content in growing lambs compared to inorganic source. Small Rumin. Res. 2019, 175, 57–64. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Yu, L.; Zhao, M.; Liu, X. Research progress on the biological activities of selenium polysaccharides. Food Funct. 2020, 11, 4834–4852. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, S.; Ding, X.; Yue, D.; Bian, J.; Zhang, X.; Zhang, G.; Gao, P. Structural characteristics of Medicago sativa L. Polysaccharides and Se-modified polysaccharides as well as their antioxidant and neuroprotective activities. Int. J. Biol. Macromol. 2020, 147, 1099–1106. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Leng, Y.; Li, Y.; Li, N. Dietary supplementation with selenium polysaccharide from selenium-enriched Phellinus linteus improves antioxidant capacity, immunity and production performance of laying hens. J. Trace Elem. Med. Biol. 2023, 77, 127140. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, C.; Jing, L.; Feng, M.; Li, R.; Yang, Y. The structural characterization and immune modulation activitives comparison of Codonopsis pilosula polysaccharide (CPPS) and selenizing CPPS (sCPPS) on mouse in vitro and vivo. Int. J. Biol. Macromol. 2020, 160, 814–822. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Liu, L.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Fractionation, characterization and anti-fatigue activity of polysaccharides from Brassica rapa L. Process Biochem. 2021, 106, 163–175. [Google Scholar] [CrossRef]
- Oliveira, R.; Marques, F.; Azeredo, J. Purification of polysaccharides from a biofilm matrix by selective precipitation of proteins. Biotechnol. Tech. 1999, 13, 391–393. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, J.; Chen, X.; Fan, Q.; Zhang, C.; Wang, D.; Li, X.; Chen, X.; Chen, X.; Liu, C.; et al. Optimization of selenylation conditions for lycium barbarum polysaccharide based on antioxidant activity. Carbohydr. Polym. 2014, 103, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Miu, J.; Liu, F. Selenium Polysaccharide Compounds and Their Preparation Methods. Chinese Patent NO: CNn21414C, 25 July 2001. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Yu, J.; Shi, F.S.; Hu, S. Improved immune responses to a bivalent vaccine of Newcastle disease and avian influenza in chickens by ginseng stem-leaf saponins. Vet. Immunol. Immunopathol. 2015, 167, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Chen, J.; Qin, T.; Hu, Y.; Wang, D.; Fan, Q.; Zhang, C.; Chen, X.; Chen, X.; Liu, C.; et al. Effects of Selenylation Modification on Immune-Enhancing Activity of Garlic Polysaccharide. PLoS ONE 2014, 9, e86377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Zhang, W.-W.; Ni, Z.-J.; Thakur, K.; Zhang, J.-G.; Khan, M.R.; Xu, W.-D.; Wei, Z.-J. Effects of different chemical modifications on physicochemical and antioxidation properties of Lycium barbarum seed dreg polysaccharides. Food Chem. X 2024, 22, 101271. [Google Scholar] [CrossRef]
- Maciel, J.V.; Durigon, A.M.M.; Souza, M.M.; Quadrado, R.F.N.; Fajardo, A.R.; Dias, D. Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: A review. Trends Environ. Anal. Chem. 2019, 22, e00062. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; He, X.; Wei, X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int. J. Biol. Macromol. 2018, 120, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Sun, Y.; Liu, B.; Ming, J.; Wang, L.; Xu, C.; Xiao, Y.; Zhang, C.; Shang, L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023, 12, 3773. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Yue, C.; Hou, R.; Chen, J.; Lu, Y.; Li, X.; Li, R.; Liu, C.; Gao, Z.; et al. Effect of selenylation modification on immune-enhancing activity of Atractylodes macrocephala polysaccharide. Int. J. Biol. Macromol. 2015, 72, 1435–1440. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, K.; Tian, W.; Wang, H.; Liu, Z.; Li, Y.; Li, E.; Liu, C.; Li, X.; Hou, R.; et al. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage. Int. Immunopharmacol. 2015, 27, 104–109. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Wu, H.; Gou, Y.; Hu, F.; Liu, L.; Gao, X.; Zhang, P. Optimization of selenylation conditions for a pectic polysaccharide and its structural characteristic. Int. J. Biol. Macromol. 2014, 69, 244–251. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, M.; Ma, L.; Liu, X.; Ding, Q.; Chai, G.; Lu, Y.; Wei, H.; Zhang, S.; Ding, C. Structural Modification and Biological Activity of Polysaccharides. Molecules 2023, 28, 5416. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, N.; Chen, X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. J. Agric. Food Chem. 2024, 72, 3259–3276. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.-C.; Jiang, W.; Hu, J.-N. Angelica sinensis polysaccharides modified selenium nanoparticles for effective prevention of acute liver injury. Int. J. Biol. Macromol. 2024, 263, 130321. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry 2022, 87, S168–S177. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and efficacy of Zinc-l-Selenomethionine as feed additive for all animal species. EFSA J. 2018, 16, e05197. [Google Scholar] [CrossRef]
- Bao, X.; Qin, Y.; Lu, L.; Zheng, M. Transcriptional Regulation of Early T-Lymphocyte Development in Thymus. Front. Immunol. 2022, 13, 884569. [Google Scholar] [CrossRef]
- Igwe, A.O.; Ihedioha, J.I.; Eze, D.C.; Okoye, J.O.A. Pullets had higher bursal and thymic weight indices and more antibody response to La Sota vaccination than broiler chickens (Gallus gallus domesticus). Vet. Med. Sci. 2020, 6, 462–469. [Google Scholar] [CrossRef]
- Cheng, J.; Lei, H.; Xie, C.; Chen, J.; Yi, X.; Zhao, F.; Yuan, Y.; Chen, P.; He, J.; Luo, C.; et al. B Lymphocyte Development in the Bursa of Fabricius of Young Broilers is Influenced by the Gut Microbiota. Microbiol. Spectr. 2023, 11, e04799-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, J.; Xing, Z.; Chen, Y.; Chen, H.; Zhu, Y.; Wu, H. PLGA nanoparticle with Amomum longiligulare polysaccharide 1 increased the immunogenicity of infectious bursal disease virus VP2 protein. Br. Poult. Sci. 2023, 64, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A.; Golstein, P. Lymphocyte activation and effector functions. Curr. Opin. Immunol. 1991, 3, 283–286. [Google Scholar] [CrossRef]
- Jerrells, T.R.; Jarboe, D.L.; Eisemann, C.S. Cross-reactive lymphocyte responses and protective immunity against other spotted fever group rickettsiae in mice immunized with Rickettsia conorii. Infect. Immun. 1986, 51, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, J.; Qiu, S.; Li, Y.; Wang, D.; Liu, C.; Li, X.; Hou, R.; Yue, C.; Liu, J.; et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 2016, 136, 560–569. [Google Scholar] [CrossRef]
- Fox, A.; Mai Le, Q.; Thanh Le, T.; Wolbers, M.; Le Khanh Hang, N.; Thai, P.Q.; Thi Thu Yen, N.; Minh Hoa Le, N.; Bryant, J.E.; Duong, T.N.; et al. Hemagglutination inhibiting antibodies and protection against seasonal and pandemic influenza infection. J. Infect. 2015, 70, 187–196. [Google Scholar] [CrossRef]
- Gutierrez, M.P.; Huckaby, A.B.; Yang, E.; Weaver, K.L.; Hall, J.M.; Hudson, M.; Dublin, S.R.; Sen-Kilic, E.; Rocuskie-Marker, C.M.; Miller, S.J.; et al. Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice. Vaccine 2024, 42, 126084. [Google Scholar] [CrossRef]
- Carrillo, J.; Izquierdo-Useros, N.; Ávila-Nieto, C.; Pradenas, E.; Clotet, B.; Blanco, J. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem. Biophys. Res. Commun. 2021, 538, 187–191. [Google Scholar] [CrossRef]
- Bo, R.; Ji, X.; Yang, H.; Liu, M.; Li, J. The characterization of optimal selenized garlic polysaccharides and its immune and antioxidant activity in chickens. Int. J. Biol. Macromol. 2021, 182, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Y.; Jiang, P.; Lü, M.; Hu, Z.; Xu, X. [DNAM-1 regulates the proliferation and function of T regulatory type 1 cells via the IL-2/STAT5 pathway]. Nan Fang Yi Ke Da Xue Xue Bao 2022, 42, 1288–1295. [Google Scholar] [CrossRef]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef] [PubMed]
- Shifrin, D.A.; McConnell, R.E.; Nambiar, R.; Higginbotham, J.N.; Coffey, R.J.; Tyska, M.J. Enterocyte Microvillus-Derived Vesicles Detoxify Bacterial Products and Regulate Epithelial-Microbial Interactions. Curr. Biol. 2012, 22, 627–631. [Google Scholar] [CrossRef]
- Yang, S.; Yu, M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. J. Inflamm. Res. 2021, 14, 3171–3183. [Google Scholar] [CrossRef] [PubMed]
- Hoytema van Konijnenburg, D.P.; Mucida, D. Intraepithelial lymphocytes. Curr. Biol. 2017, 27, R737–R739. [Google Scholar] [CrossRef]
- Van der Weken, H.; Jahantigh, H.R.; Cox, E.; Devriendt, B. Targeted delivery of oral vaccine antigens to aminopeptidase N protects pigs against pathogenic E. coli challenge infection. Front. Immunol. 2023, 14, 1192715. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Wang, Z.; Meng, X.; Hoffmann-Sommergruber, K.; Cavallari, N.; Wu, Y.; Gao, J.; Li, X.; Chen, H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023, 170, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, J.; Kurashima, Y.; Kiyono, H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. 2012, 64, 523–530. [Google Scholar] [CrossRef]
- Takahashi, K.; Yano, A.; Watanabe, S.; Langella, P.; Bermúdez-Humarán, L.G.; Inoue, N. M cell-targeting strategy enhances systemic and mucosal immune responses induced by oral administration of nuclease-producing L. lactis. Appl. Microbiol. Biotechnol. 2018, 102, 10703–10711. [Google Scholar] [CrossRef]
- Miralles, A.; Ramis, G.; Pallarés, F.J.; Párraga-Ros, E.; Seva, J. Medium- and Long-Term Immune Responses in the Small Intestine in Piglets from Oral Vaccination against Escherichia coli. Animals 2024, 14, 2779. [Google Scholar] [CrossRef]
- Willemsen, L.; Lee, J.; Shinde, P.; Soldevila, F.; Aoki, M.; Orfield, S.; Kojima, M.; da Silva Antunes, R.; Sette, A.; Peters, B. Th1 polarization in Bordetella pertussis vaccine responses is maintained through a positive feedback loop. Nat. Commun. 2025, 16, 3132. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, S.; Jiang, X.; Yang, F.; Gao, S.; Lin, X.; Cheng, H.; van der Veen, S. Th1-polarized MtrE-based gonococcal vaccines display prophylactic and therapeutic efficacy. Emerg. Microbes Infect. 2023, 12, 2249124. [Google Scholar] [CrossRef] [PubMed]
Group | Medicines (on Days 14 and 28; Oral Gavage) | Dose |
---|---|---|
Con | normal saline | 0.5 mL |
Vac | vaccine + normal saline | 0.5 mL |
BRP | vaccine + BRP | 0.5 mL, 20 mg/kg |
sBRP-L | vaccine + sBRP | 0.5 mL, 5 mg/kg |
sBRP-M | vaccine + sBRP | 0.5 mL, 10 mg/kg |
sBRP-H | vaccine + sBRP | 0.5 mL, 20 mg/kg |
sBRPs | A Na2SeO3 (mL) | B Temp (°C) | C Time (h) | Rate of Yield (%) | Carbohydrates (%) | Se Content (mg/g) |
---|---|---|---|---|---|---|
sBRP1 | 4 | 40 | 4 | 36.66 | 65 | 28.4 |
sBRP2 | 4 | 60 | 6 | 14.72 | 60 | 6.94 |
sBRP3 | 4 | 80 | 8 | 24 | 59.5 | 21.5 |
sBRP4 | 6 | 40 | 6 | 36 | 44 | 17.9 |
sBRP5 | 6 | 60 | 8 | 11.26 | 49.5 | 30.6 |
sBRP6 | 6 | 80 | 4 | 28.57 | 18.98 | 25.7 |
sBRP7 | 8 | 40 | 8 | 18 | 23.75 | 19.8 |
sBRP8 | 8 | 60 | 4 | 12.8 | 15.88 | 10.2 |
sBRP9 | 8 | 80 | 6 | 32 | 45.02 | 14.9 |
K1 | 18.95 | 22.03 | 21.43 | |||
K2 | 24.73 | 15.91 | 13.25 | |||
K3 | 14.97 | 20.70 | 23.97 | |||
R | 9.77 | 6.12 | 10.72 |
Groups | D7 | D14 | D21 | D28 |
---|---|---|---|---|
Con | 0.10333 ± 0.001 c | 0.10067 ± 0.001 b | 0.10417 ± 0.001 b | 0.10133 ± 0.001 d |
Vac | 0.10583 ± 0.001 c | 0.10467 ± 0.001 ac | 0.10933 ± 0.001 c | 0.10367 ± 0.001 b |
BRP | 0.11683 ± 0.003 abc | 0.10650 ± 0.001 ab | 0.12833 ± 0.002 d | 0.10700 ± 0.001 ac |
sBRP-L | 0.11750 ± 0.002 ab | 0.10667 ± 0.002 ab | 0.15317 ± 0.017 abcd | 0.10633 ± 0.001 abc |
sBRP-M | 0.12233 ± 0.001 ab | 0.11283 ± 0.004 ab | 0.15383 ± 0.010 ad | 0.10867 ± 0.002 abc |
sBRP-H | 0.13467 ± 0.013 abc | 0.11500 ± 0.003 a | 0.15433 ± 0.013 acd | 0.11150 ± 0.003 ac |
Groups | D7 | D14 | D21 | D28 |
---|---|---|---|---|
Con | 2.17 ± 0.200 c | 2.67 ± 0.334 d | 2.34 ± 0.253 b | 2.33 ± 0.232 d |
Vac | 3.17 ± 0.369 bc | 3.17 ± 0.477 cd | 3.50 ± 0.514 b | 3.50 ± 0.246 cd |
BRP | 3.50 ± 0.514 abc | 3.67 ± 0.334 bcd | 3.87 ± 0.439 b | 3.83 ± 0.338 bc |
sBRP-L | 4.33 ± 0.506 ab | 3.83 ± 0.307 abc | 5.53 ± 0.600 a | 4.83 ± 0.525 abc |
sBRP-M | 4.67 ± 0.593 ab | 4.50 ± 0.342 ab | 5.67 ± 0.738 a | 5.17 ± 0.719 ab |
sBRP-H | 5.00 ± 0.693 a | 4.84 ± 0.307 a | 6.23 ± 0.738 a | 5.50 ± 0.471 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, J.; Shen, H. Modification of Brassica rapa L. Polysaccharide by Selenylation and Its Immune-Enhancing Activity When Combined with a Live-Attenuated Newcastle Disease Vaccine in Poultry. Animals 2025, 15, 2755. https://doi.org/10.3390/ani15182755
Wang S, Wang J, Shen H. Modification of Brassica rapa L. Polysaccharide by Selenylation and Its Immune-Enhancing Activity When Combined with a Live-Attenuated Newcastle Disease Vaccine in Poultry. Animals. 2025; 15(18):2755. https://doi.org/10.3390/ani15182755
Chicago/Turabian StyleWang, Sijia, Jungang Wang, and Hong Shen. 2025. "Modification of Brassica rapa L. Polysaccharide by Selenylation and Its Immune-Enhancing Activity When Combined with a Live-Attenuated Newcastle Disease Vaccine in Poultry" Animals 15, no. 18: 2755. https://doi.org/10.3390/ani15182755
APA StyleWang, S., Wang, J., & Shen, H. (2025). Modification of Brassica rapa L. Polysaccharide by Selenylation and Its Immune-Enhancing Activity When Combined with a Live-Attenuated Newcastle Disease Vaccine in Poultry. Animals, 15(18), 2755. https://doi.org/10.3390/ani15182755