Exploring the Genetic Link Between Coat Colour and Morphological Traits: The Case of Peruano de Paso Horse
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genealogical and Phenotypical Data
2.2. Population Genetic Characterisation
2.3. Estimation of Genetic Parameters
3. Results
3.1. Demographic Structure of the Breed
3.2. Phenotypic Characterisation of Chestnut and Non-Chestnut Horses
3.3. Modelling the Genetic Influence on Morphological Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PP | Peruano de Paso |
ANCPCPP | Asociación Nacional de Criadores y Propietarios del Caballo Peruano de Paso |
EBVs | Estimated Breeding Values |
HW | Height at withers |
HCr | Height at croup |
HS | Height at sternum |
WCr | Width of croup |
WC | Width of chest |
BL | Body length |
TP | Thorax perimeter |
AEG | Average number of known equivalent generations |
AMG | Average number of known maximum generations |
ACG | Average number of known complete generations |
F | Inbreeding coefficient |
AR | Average relatedness |
MCMC | Markov chain Monte Carlo |
Fe | Effective number of founders |
Fa | Effective number of ancestors |
LSM | Least Squares Means |
PM | Posterior mean |
PSD | Posterior standard deviations |
p > 0 | Marginal Posterior Probability of the contrast being larger than zero |
A.I. | Artificial insemination |
E.T. | Embryo transfer |
ART | Assisted reproductive techniques |
LD | Linkage disequilibrium |
References
- Izurieta, C.O.L.; Carpio, M.G.; Landi, V.; Hurtado, E.A.; Andrade, J.I.M.; Loor, L.E.V.; Rivadeneira, E.L.; Macas, L.F.C. Evaluation of inbreeding and genetic variability of the Peruvian Paso Horse registered in Ecuador. Rev. Investig. Vet. Peru 2022, 33, e21672. [Google Scholar] [CrossRef]
- ANCPCPP. Asociación Nacional de Criadores y Propietarios del Caballo Peruano de Paso. Available online: https://ancpcpp.org.pe/ (accessed on 14 September 2025).
- Gómez, M.D.; Molina, A.; Sanchez-Guerrero, M.J.; Valera, M. Prediction of adult conformation traits from shape characteristics of Pura Raza Español foals. Livest. Sci. 2021, 253, 104701. [Google Scholar] [CrossRef]
- Bartolome, E.; Perdomo-Gonzalez, D.I.; Ripolles-Lobo, M.; Valera, M. Basal Reactivity Evaluated by Infrared Thermography in the “Caballo de Deporte Espanol” Horse Breed According to Its Coat Color. Animals 2022, 12, 2515. [Google Scholar] [CrossRef]
- Pimentel, A.M.; de Souza, J.R.M.; Boligon, A.A.; Moreira, H.L.M.; Rechsteiner, S.M.E.F.; Pimentel, C.A.; Martins, C.F. Association of morphometric measurements with morphologic scores of Criollo horses at Freio de Ouro: A path analysis. Rev. Bras. Zootec. 2018, 47, e20180013. [Google Scholar] [CrossRef]
- Mawdsley, A.; Kelly, E.P.; Smith, F.H.; Brophy, P.O. Linear assessment of the Thoroughbred horse: An approach to conformation evaluation. Equine Vet. J. 1996, 28, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Guerrero, M.J.; Molina, A.; Gómez, M.D.; Peña, F.; Valera, M. Relationship between morphology and performance: Signature of mass-selection in Pura Raza Español horse. Livest. Sci. 2016, 185, 148–155. [Google Scholar] [CrossRef]
- Muller, V.; Moraes, B.; Carvalho, I.R.; Wendt, C.G.; Patten, R.D.; Nogueira, C.E.W. Genetic parameters of morphometric measurements in Criollo horses. J. Anim. Breed. Genet. 2021, 138, 174–178. [Google Scholar] [CrossRef]
- Ludwig, A.; Pruvost, M.; Reissmann, M.; Benecke, N.; Brockmann, G.A.; Castanos, P.; Cieslak, M.; Lippold, S.; Llorente, L.; Malaspinas, A.S.; et al. Coat color variation at the beginning of horse domestication. Science 2009, 324, 485. [Google Scholar] [CrossRef] [PubMed]
- Poyato-Bonilla, J.; Sánchez-Guerrero, M.J.; Cervantes, I.; Gutiérrez, J.P.; Valera, M. Genetic parameters for canalization analysis of morphological traits in the Pura Raza Español horse. J. Anim. Breed. Genom. 2021, 138, 482–490. [Google Scholar] [CrossRef]
- Junqueira, G.S.B.; Diaz, I.D.P.S.; da Cruz, V.A.R.; Oliveira, C.A.d.A.; de Godoi, F.N.; de Camargo, G.M.F.; Costa, R.B. Influence of coat color on genetic parameter estimates in horses. J. Appl. Genet. 2021, 62, 297–306. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.J.; Ramos, J.; Valdés, M.; Rivero, J.L.L.; Valera, M. Prevalence, environmental risk factors and heritability of body condition in Pura Raza Español horses. Livest. Sci. 2019, 230, 103851. [Google Scholar] [CrossRef]
- Marklund, L.; Moller, M.J.; Sandberg, K.; Andersson, L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MCIR) is associated with the chestnut coat color in horses. Mamm. Genome 1996, 7, 895–899. [Google Scholar] [CrossRef]
- Karlau, A.; Molina, A.; Antonini, A.; Demyda-Peyras, S. The influence of foreign lineages in the genetic component of reproductive traits in Criollo Argentino mares: A 30-year study. Livest. Sci. 2023, 267, 105153. [Google Scholar] [CrossRef]
- Azcona, F.; Valera, M.; Molina, A.; Trigo, P.; Peral-Garcia, P.; Sole, M.; Demyda-Peyras, S. Impact of reproductive biotechnologies on genetic variability of Argentine Polo horses. Livest. Sci. 2020, 231, 103848. [Google Scholar] [CrossRef]
- Sánchez Guerrero, M.J.; Cervantes, I.; Valera, M.; Gutiérrez, J.P. Modelling genetic evaluation for dressage in pura raza español horses with focus on the rider effect. J. Anim. Breed. Genom. 2014, 131, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Bramante, G.; Cito, A.M.; Ciani, E.; Pieragostini, E. Multi-trait animal model estimation of genetic parameters for morphometric measurements in the Murgese horse breed. Livest. Sci. 2016, 191, 139–142. [Google Scholar] [CrossRef]
- Sole, M.; Cervantes, I.; Gutierrez, J.P.; Gomez, M.D.; Valera, M. Estimation of genetic parameters for morphological and functional traits in a Menorca horse population. Sp. J. Agric. Res. 2014, 12, 125–132. [Google Scholar] [CrossRef]
- Wellmann, R. Optimum contribution selection for animal breeding and conservation: The R package optiSel. BMC Bioinform. 2019, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- R-Core-Team R: A Language and Environment for Statistical Computing V4.5 “How About a Twenty-Six”. Available online: https://www.R-project.org/ (accessed on 14 September 2025).
- Gutierrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef]
- Sorensen, D.; Gianola, D. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics; Springer: New York, NY, USA, 2007; p. 764. [Google Scholar]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Tsuruta, S.; Misztal, I. THRGIBBS1F90 for estimation of variance components with threshold and linear models. J. Anim. Sci. 2006, 89, 27–31. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: New York, NY, USA, 2016. [Google Scholar]
- Medeiros, B.R.; Bertoli, C.D.; Garbade, P.; McManus, C.M. Brazilian Sport Horse: Pedigree Analysis of the Brasileiro de Hipismo Breed. Ital. J. Anim. Sci. 2016, 13, 657–664. [Google Scholar] [CrossRef]
- Gomez, M.D.; Sanchez, M.J.; Bartolome, E.; Cervantes, I.; Poyato-Bonilla, J.; Demyda-Peyras, S.; Valera, M. Phenotypic and genetic analysis of reproductive traits in horse populations with different breeding purposes. Animal 2020, 14, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- da Silva Faria, R.A.; Vicente, A.P.A.; dos Santos, R.I.D.G.; Maiorano, A.M.; Curi, R.A.; Chardulo, L.A.L.; Vasconcelos Silva, J.A., II. Genetic Diversity of Lusitano Horse in Brazil Using Pedigree Information. J. Equine Vet. Sci. 2018, 69, 149–158. [Google Scholar] [CrossRef]
- de Oliveira Bussiman, F.; Perez, B.C.; Ventura, R.V.; Peixoto, M.G.C.D.; Curi, R.A.; Balieiro, J.C.C. Pedigree analysis and inbreeding effects over morphological traits in Campolina horse population. Animal 2018, 12, 2246–2255. [Google Scholar] [CrossRef]
- Poyato-Bonilla, J.; Laseca, N.; Demyda-Peyras, S.; Molina, A.; Valera, M. 500 years of breeding in the Carthusian Strain of Pura Raza Espanol horse: An evolutional analysis using genealogical and genomic data. J. Anim. Breed. Genet. 2022, 139, 84–99. [Google Scholar] [CrossRef]
- Giontella, A.; Sarti, F.M.; Biggio, G.P.; Giovannini, S.; Cherchi, R.; Pieramati, C.; Silvestrelli, M. Genetic Parameters and Inbreeding Effect of Morphological Traits in Sardinian Anglo Arab Horse. Animals 2020, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Ducro, B.J.; Bovenhuis, H.; Back, W. Heritability of foot conformation and its relationship to sports performance in a Dutch Warmblood horse population. Equine Vet. J. 2009, 41, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Sole, M.; Valera, M.; Gomez, M.D.; Cervantes, I.; Fernandez, J. Implementation of Optimum Contributions selection in endangered local breeds: The case of the Menorca Horse population. J. Anim. Breed. Genet. 2013, 130, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Jakubec, V.; Vostrý, L.; Schlote, W.; Majzlík, I.; Mach, K. Selection in the genetic resource: Genetic variation of the linear described type traits in the Old Kladrub horse. Arch. Anim. Breed. 2009, 52, 343–355. [Google Scholar] [CrossRef]
- Raffa, J.D.; Thompson, E.A. Power and Effective Study Size in Heritability Studies. Stat. Biosci. 2016, 8, 264–283. [Google Scholar] [CrossRef]
- Petersen, J.L.; Mickelson, J.R.; Valberg, S.J.; McCue, M.E. Genome-wide SNP data show little differentiation between the Appaloosa and other American stock horse breeds. Anim. Genet. 2015, 46, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Perdomo-González, D.I.; García de Paredes, R.D.L.A.; Valera, M.; Bartolomé, E.; Gómez, M.D. Morpho-Functional Traits in Pura Raza Menorquina Horses: Genetic Parameters and Relationship with Coat Color Variables. Animals 2022, 12, 2319. [Google Scholar] [CrossRef]
- Bellone, R.R.; Brooks, S.A.; Sandmeyer, L.; Murphy, B.A.; Forsyth, G.; Archer, S.; Bailey, E.; Grahn, B. Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 2008, 179, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Tensen, L.; Fischer, K. Heterozygosity is low where rare color variants in wild carnivores prevail. Ecol. Evol. 2024, 14, e10881. [Google Scholar] [CrossRef] [PubMed]
- Hofreiter, M.; Schöneberg, T. The genetic and evolutionary basis of colour variation in vertebrates. Cell. Mol. Life Sci. 2010, 67, 2591–2603. [Google Scholar] [CrossRef]
- Mariat, D.; Taourit, S.; Guérin, G. A mutation in the MATP gene causes the cream coat colour in the horse. Genet. Sel. Evol. 2003, 35, 119–133. [Google Scholar] [CrossRef]
- Holl, H.M.; Pflug, K.M.; Yates, K.M.; Hoefs-Martin, K.; Shepard, C.; Cook, D.G.; Lafayette, C.; Brooks, S.A. A candidate gene approach identifies variants in SLC45A2 that explain dilute phenotypes, pearl and sunshine, in compound heterozygote horses. Anim. Genet. 2019, 50, 271–274. [Google Scholar] [CrossRef]
- Sundström, E.; Imsland, F.; Mikko, S.; Wade, C.; Sigurdsson, S.; Rosengren Pielberg, G.; Golovko, A.; Curik, I.; Seltenhammer, M.H.; Sölkner, J.; et al. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genom. 2012, 13, 365. [Google Scholar] [CrossRef]
- Finn, J.L.; Haase, B.; Willet, C.E.; van Rooy, D.; Chew, T.; Wade, C.M.; Hamilton, N.A.; Velie, B.D. The relationship between coat colour phenotype and equine behaviour: A pilot study. Appl. Anim. Behav. Sci. 2016, 174, 66–69. [Google Scholar] [CrossRef]
- Brunberg, E.; Gille, S.; Mikko, S.; Lindgren, G.; Keeling, L.J. Icelandic horses with the Silver coat colour show altered behaviour in a fear reaction test. Appl. Anim. Behav. Sci. 2013, 146, 72–78. [Google Scholar] [CrossRef]
- Jakubec, V.; Rejfková, M.; Volenec, J.; Majzlík, I.; Vostrý, L. Analysis of linear description of type traits in the varieties and studs of the Old Kladrub horse. Czech J. Anim. Sci. 2007, 52, 299–307. [Google Scholar] [CrossRef]
- Sanchez-Guerrero, M.J.; Negro-Rama, S.; Demyda-Peyras, S.; Sole-Berga, M.; Azor-Ortiz, P.J.; Valera-Cordoba, M. Morphological and genetic diversity of Pura Raza Espanol horse with regard to the coat colour. Anim. Sci. J. 2019, 90, 14–22. [Google Scholar] [CrossRef]
- Bellone, R.R. Pleiotropic effects of pigmentation genes in horses. Anim. Genet. 2010, 41 (Suppl. 2), 100–110. [Google Scholar] [CrossRef] [PubMed]
- Ablondi, M.; Summer, A.; Vasini, M.; Simoni, M.; Sabbioni, A. Genetic parameters estimation in an Italian horse native breed to support the conversion from agricultural uses to riding purposes. J. Anim. Breed. Genet. 2020, 137, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Baena, M.M.; Diaz, S.; Moura, R.S.; Meirelles, S.L.C. Genetic Characterization of Mangalarga Marchador Breed Horses Based on Microsatellite Molecular Markers. J. Equine Vet. Sci. 2020, 95, 103231. [Google Scholar] [CrossRef]
- Correa, M.J.; da Mota, M.D. Genetic evaluation of performance traits in Brazilian Quarter Horse. J. Appl. Genet. 2007, 48, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Bresinska, A.; Szwaczkowski, T. Genetic and permanent environmental variability of twinning in Thoroughbred horses estimated via three threshold models. J. Anim. Breed. Genet. 2006, 123, 186–190. [Google Scholar] [CrossRef]
- Novotna, A.; Birovas, A.; Vostra-Vydrova, H.; Vesela, Z.; Vostry, L. Genetic Parameters of Performance and Conformation Traits of 3-Year-Old Warmblood Sport Horses in the Czech Republic. Animals 2022, 12, 2975. [Google Scholar] [CrossRef]
- Trachsel, D.S.; Giraudet, A.; Maso, D.; Hervé, G.; Hauri, D.D.; Barrey, E.; Robert, C. Relationships between body dimensions, body weight, age, gender, breed and echocardiographic dimensions in young endurance horses. BMC Vet. Res. 2016, 12, 226. [Google Scholar] [CrossRef]
- de Oliveira Bussiman, F.; da Costa Perez, B.; Vieira Ventura, R.; Fonseca e Silva, F.; Campolina Diniz Peixoto, M.G.; Guimarães Vizoná, R.; Chicaroni Mattos, E.; Bento Sterman Ferraz, J.; Pereira Eler, J.; Abdallah Curi, R.; et al. Genetic analysis of morphological and functional traits in Campolina horses using Bayesian multi-trait model. Livest. Sci. 2018, 216, 119–129. [Google Scholar] [CrossRef]
- Pimentel, F.; McManus, C.; Soares, K.; Caetano, A.R.; de Faria, D.A.; Paiva, S.R.; Ianella, P. Landscape Genetics for Brazilian Equines. J. Equine Vet. Sci. 2023, 126, 104251. [Google Scholar] [CrossRef]
- Bonow, S.; Eriksson, S.; Thorén Hellsten, E.; Gelinder Viklund, Å. Consequences of specialized breeding in the Swedish Warmblood horse population. J. Anim. Breed. Genom. 2023, 140, 79–91. [Google Scholar] [CrossRef]
- Welker, V.; Stock, K.F.; Schöpke, K.; Swalve, H.H. Genetic parameters of new comprehensive performance traits for dressage and show jumping competitions performance of German riding horses. Livest. Sci. 2018, 212, 93–98. [Google Scholar] [CrossRef]
- Doyle, J.L.; Carroll, C.J.; Corbally, A.F.; Fahey, A.G. An overview of international genetic evaluations of show jumping in sport horses1. Transl. Anim. Sci. 2022, 6, txac038. [Google Scholar] [CrossRef]
- Perdomo-González, D.I.; Sánchez-Guerrero, M.J.; Bartolomé, E.; Guedes Dos Santos, R.; Molina, A.; Valera, M. Designing an early selection morphological traits index for reproductive efficiency in Pura Raza Española mares. J. Anim. Sci. 2024, 102, skad409. [Google Scholar] [CrossRef]
- Villela Velarde, J.L.; Quintana Dolores, P.G.M.; Velarde Marcos, M.L.; Vargas Rodriguez, T.; Gonzales Lecaros, R.; Dextre Chacón, J. Preliminary analysis of the development of a breeding program of the Peruvian Paso horse in field conditions. Rev. Mex. Cienc. Pecu. 2025, 16, 194–207. [Google Scholar] [CrossRef]
- Ziadi, C.; Demyda-Peyrás, S.; Valera, M.; Perdomo-González, D.; Laseca, N.; Rodríguez-Sainz de los Terreros, A.; Encina, A.; Azor, P.; Molina, A. Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses. Genes 2025, 16, 131. [Google Scholar] [CrossRef]
- Zimmermann, E.; Distl, O. SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses. Animals 2023, 13, 1462. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.D.; Cervantes, I.; Molina, A.; Medina, C.; Valera, M. Influence of the foreign trotter populations in the Spanish Trotter Horse assessed via pedigree analysis. In Proceedings of the 60th EAAP Meeting, Barcelona, Spain, 24–27 August 2009. [Google Scholar]
- Poyato-Bonilla, J.; Perdomo-Gonzalez, D.I.; Sanchez-Guerrero, M.J.; Varona, L.; Molina, A.; Casellas, J.; Valera, M. Genetic inbreeding depression load for morphological traits and defects in the Pura Raza Española horse. Genet. Sel. Evol. 2020, 52, 62. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.W.; McGivney, B.A.; MacHugh, D.E. Inbreeding depression and durability in the North American Thoroughbred horse. Anim. Genet. 2023, 54, 408–411. [Google Scholar] [CrossRef]
Trait | Definition | ± SD | |||
---|---|---|---|---|---|
Chestnut | Non-Chestnut | Males | Females | ||
Height at withers (HW) | Perpendicular distance from the withers that descend vertically to the ground profile. | 146.20 ± 3.00 | 146.90 ± 2.92 | 147.20 ± 2.92 | 146.00 ± 2.97 |
Height at croup (HCr) | Perpendicular distance from the point of highest elevation of the sacroiliac angle to the ground profile. | 145.50 ± 2.83 | 145.80 ± 2.84 | 145.80 ± 2.84 | 145.40 ± 2.83 |
Height at sternum (HS) | Perpendicular distance from the middle third of the sternum (at the level of the olecranon) to the ground. | 74.90 ± 2.66 | 75.46 ± 2.64 | 76.35 ± 2.15 | 74.44 ± 2.52 |
Width of croup (WCr) | Distance between the most lateral points of the iliac crests. | 47.77 ± 2.20 | 47.78 ± 2.39 | 46.61 ± 2.13 | 48.25 ± 2.10 |
Width of chest (WC) | Distance between the most cranial and lateral points of the scapulohumeral point. | 33.71 ± 2.80 | 33.81 ± 2.79 | 34.54 ± 2.76 | 33.39 ± 2.75 |
Body length (BL) | Line from the most cranial and lateral point on the scapulohumeral joint to the extreme angle of the ischium. | 153.10 ± 5.06 | 153.30 ± 4.74 | 151.90 ± 5.07 | 153.60 ± 4.90 |
Thorax perimeter (TP) | Line that goes around the thorax at the level of the spinous process of the seventh to eighth dorsal vertebrae and the lower sternal region. | 180.80 ± 6.03 | 180.80 ± 6.14 | 178.60 ± 5.58 | 181.70 ± 6.01 |
Parameter | Chestnut | Non-Chestnut | ||||
---|---|---|---|---|---|---|
± SD | Min | Max | ± SD | Min | Max | |
AMG | 15.67 ± 1.90 | 8 | 21 | 14.91 ± 2.71 | 3 | 19 |
ACG | 4.74 ± 0.76 | 2 | 7 | 4.46 ± 0.99 | 1 | 6 |
AEG | 7.50 ± 0.70 | 4 | 9.52 | 7.20 ± 1.10 | 2 | 8.97 |
AR | 19.60 ± 4.16 | 5.77 | 28.81 | 14.80 ± 3.83 | 0.59 | 23.05 |
F | 9.51 ± 4.55 | 0 | 32.05 | 7.09 ± 4.14 | 0 | 30.77 |
Trait | LSM | Contrast Between Coat Colour Classes (Chestnut–Non-Chestnut) | Contrast Between Sex Classes (Males–Females) | ||
---|---|---|---|---|---|
PM ± PSD | PM ± PSD | p > 0 | PM ± PSD | p > 0 | |
HW | 146.85 ± 0.72 | −0.50 ± 0.59 | 0.19 | 1.19 ± 0.19 | 1.00 |
HCr | 145.55 ± 0.71 | −0.27 ± 0.58 | 0.32 | 0.48 ± 0.18 | 1.00 |
HS | 76.09 ± 0.59 | −0.49 ± 0.51 | 0.16 | 1.87 ± 0.17 | 1.00 |
WCr | 46.72 ± 0.49 | −0.21 ± 0.46 | 0.32 | −1.62 ± 0.14 | 0.00 |
WC | 32.89 ± 0.59 | −0.36 ± 0.57 | 0.26 | 1.12 ± 0.18 | 1.00 |
BL | 151.02 ± 1.03 | −0.63 ± 1.06 | 0.27 | −1.73 ± 0.34 | 0.00 |
TP | 176.57 ± 1.46 | −0.98 ± 1.34 | 0.23 | −2.97 ± 0.38 | 0.00 |
Trait | Overall | Chestnut | Non-Chestnut |
---|---|---|---|
PM ± PSD | PM ± PSD | PM ± PSD | |
HW | 0.56 ± 0.07 | 0.56 ± 0.08 | 0.56 ± 0.08 |
HCr | 0.61 ± 0.08 | 0.61 ± 0.08 | 0.62 ± 0.08 |
HS | 0.40 ± 0.07 | 0.41 ± 0.08 | 0.42 ± 0.09 |
WCr | 0.30 ± 0.08 | 0.28 ± 0.08 | 0.44 ± 0.08 |
WC | 0.32 ± 0.06 | 0.33 ± 0.07 | 0.34 ± 0.09 |
BL | 0.23 ± 0.09 | 0.26 ± 0.10 | 0.21 ± 0.09 |
TP | 0.58 ± 0.08 | 0.59 ± 0.08 | 0.61 ± 0.08 |
Trait | PM | PSD |
---|---|---|
HW | 0.93 | 0.10 |
HCr | 0.93 | 0.09 |
HS | 0.90 | 0.15 |
WCr | 0.89 | 0.17 |
WC | 0.82 | 0.23 |
BL | 0.70 | 0.41 |
TP | 0.86 | 0.15 |
Trait | Chestnut | Non-Chestnut | ||
---|---|---|---|---|
PM ± PSD | p > 0 | PM ± PSD | p > 0 | |
HW | −2.56 ± 2.75 | 0.18 | −1.24 ± 6.04 | 0.43 |
HCr | −4.26 ± 2.67 | 0.06 | −4.08 ± 5.93 | 0.25 |
HS | 2.65 ± 2.33 | 0.87 | 0.32 ± 5.24 | 0.53 |
WCr | −1.29 ± 1.86 | 0.25 | −6.76 ± 4.79 | 0.08 |
WC | −0.94 ± 2.50 | 0.35 | −1.24 ± 5.62 | 0.42 |
BL | −1.33 ± 4.64 | 0.38 | −2.02 ± 9.66 | 0.42 |
TP | −10.83 ± 5.52 | 0.02 | −16.91 ± 13.09 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlau, A.; Azcona, F.; Molina, A.; Trigo, P.; Sánchez-Serrano, J.P.; Demyda-Peyrás, S. Exploring the Genetic Link Between Coat Colour and Morphological Traits: The Case of Peruano de Paso Horse. Animals 2025, 15, 2720. https://doi.org/10.3390/ani15182720
Karlau A, Azcona F, Molina A, Trigo P, Sánchez-Serrano JP, Demyda-Peyrás S. Exploring the Genetic Link Between Coat Colour and Morphological Traits: The Case of Peruano de Paso Horse. Animals. 2025; 15(18):2720. https://doi.org/10.3390/ani15182720
Chicago/Turabian StyleKarlau, Ayelen, Florencia Azcona, Antonio Molina, Pablo Trigo, Juan Pablo Sánchez-Serrano, and Sebastián Demyda-Peyrás. 2025. "Exploring the Genetic Link Between Coat Colour and Morphological Traits: The Case of Peruano de Paso Horse" Animals 15, no. 18: 2720. https://doi.org/10.3390/ani15182720
APA StyleKarlau, A., Azcona, F., Molina, A., Trigo, P., Sánchez-Serrano, J. P., & Demyda-Peyrás, S. (2025). Exploring the Genetic Link Between Coat Colour and Morphological Traits: The Case of Peruano de Paso Horse. Animals, 15(18), 2720. https://doi.org/10.3390/ani15182720