Grape Marc as a Functional Feed Ingredient for Farmed Snails (Cornu aspersum maximum): Effects on Production Performance, Parasitological Status, and Meat Quality
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experimental Snails and Culture
2.3. Snail Sampling
2.4. Parasitological Analysis
2.5. Chemical Analysis
2.6. Qualitative Properties of Snail Fillets
2.7. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Parasitological Analysis
3.3. Chemical Analysis
3.4. Qualitative Properties of Fillets
4. Discussion
4.1. Production Results
4.2. Animal Health
4.3. Product Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GM | Grape Marc |
FI | Feed Intake per snail (g) |
FII | Feed Intake Index(g/day/snail) |
GP | Growth Performance |
EPG | number of nematode Eggs Per Gram of feces |
AAI | Antioxidant Activity Index |
TAA | Total Antioxidant Activity |
GAE | Gallic Acid Equivalents |
TPA | Texture Profile Analysis |
References
- Food and Agriculture Organization. FAOSTAT: Livestock Primary—Snail Production Data; FAO: Rome, Italy, 2011; Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 20 January 2025).
- Prates, J.A.M. Enhancing meat quality and nutritional value in monogastric livestock using sustainable novel feed ingredients. Foods 2025, 14, 146. [Google Scholar] [CrossRef]
- Sateriale, D.; Forgione, G.; Di Rosario, M.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Pagliarulo, C. Vine-Winery byproducts as precious resource of natural antimicrobials: In vitro antibacterial and antibiofilm activity of grape pomace extracts against foodborne pathogens. Microorganisms 2024, 12, 437. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of Dietary Polyphenol-Rich Grape Products on Intestinal Microflora and Gut Morphology in Broiler Chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lomillo, J.; Gonzalez-San Jose, M. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2016, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Gai, F.; Ortoffi, M.; Giancotti, V.; Medana, C.; Peiretti, P.G. Effect of Red Grape Pomace Extract on the Shelf Life of Refrigerated Rainbow Trout (Oncorhynchus mykiss) Minced Muscle. J. Aquat. Food Prod. Technol. 2014, 24, 468–480. [Google Scholar] [CrossRef]
- Makris, D.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic Content and In Vitro Antioxidant Characteristics of Wine Industry and Other Agri-Food Solid Waste Extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Bullon, N.; Alfaro, A.C.; Guo, J.; Copedo, J.; Nguyen, T.V.; Seyfoddin, A. Expanding the menu for New Zealand farmed abalone: Dietary inclusion of insect meal and grape marc (effects on gastrointestinal microbiome, digestive morphology, and muscle metabolome). N. Z. J. Mar. Freshw. Res. 2025, 59, 31–60. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Edible Snails: Production and Management Techniques; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/3/a-i3288e.pdf (accessed on 20 January 2025).
- Apostolou, K.; Staikou, A.; Sotiraki, S.; Hatziioannou, M. An Assessment of Snail-Farm Systems Based on Land Use and Farm Components. Animals 2021, 11, 272. [Google Scholar] [CrossRef]
- Hatziioannou, M.; Kokkinos, K. Evaluation of Sustainability Determinants of Small Farming Systems via Participatory Modeling and Fuzzy Multi-Criteria Processes: The Case Study of Heliciculture in Greece. Front. Sustain. 2021, 2, 629408. [Google Scholar] [CrossRef]
- Rygało-Galewska, A.; Zglińska, K.; Roguski, M.; Roman, K.; Bendowski, W.; Bień, D.; Niemiec, T. Effect of different levels of calcium and addition of magnesium in the diet on garden snails’ (Cornu aspersum) condition, production, and nutritional parameters. Agriculture 2023, 13, 2055. [Google Scholar] [CrossRef]
- Jimoh; Abubakar, O.; Akinola, M.O. Reproductive performance of laying snails (Archachatina marginata) fed on roughages and different concentrate mixes. Bull. Natl. Res. Cent. 2020, 44, 118. [Google Scholar] [CrossRef]
- Segade, P.; Kher, C.P.; Lynn, D.H.; Iglesias, R. Parasitic Infections in Mixed System-Based Heliciculture Farms: Dynamics and Key Epidemiological Factors. J. Parasitol. 2013, 140, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Segade, P.; Garcia-Estevez, J.; Arias, C.; Iglesias, R. Morphological and Molecular Characterization of Renal Ciliates Infecting Farmed Snails in Spain. J. Parasitol. 2009, 136, 771–782. [Google Scholar] [CrossRef]
- Ferro, D.; Taticchi, A.; Servili, M. Diet and immune response in edible snails: Preliminary results on olive oil by-products. Ital. J. Anim. Sci. 2015, 14, 4121. [Google Scholar]
- Nkansah, M.A.; Agyei, E.A.; Opoku, F. Mineral and proximate composition of the meat and shell of three snail species. Heliyon 2021, 7, e08149. [Google Scholar] [CrossRef] [PubMed]
- Garkov, M.; Nikovska, K. Health and sustainability: The nutritional value of snail meat. Croat. J. Food Sci. Technol. 2024, 16, 236–245. [Google Scholar] [CrossRef]
- Milinsk, M.C.; Padre, R.; Hayashi, C.; De Oliveira, C.C.; Visentainer, J.V.; De Souza, N.E.; Matsushita, M. Effect of Feed Protein and Lipid Contents on Fatty Acid Profile of Snail (Helix aspersa maxima) Meat. J. Food Compos. Anal. 2006, 19, 212–216. [Google Scholar] [CrossRef]
- Zymantiene, J.; Zelvyte, R.; Jukna, C.; Jukna, V.; Jonaitis, E.; Sederevicius, A.; Mazeikiene, Z.; Pampariene, I.; Zinkeviciene, J. Selected Features of Vineyard Snails Shell, Their Movement and Physico-Chemical Composition of Foot Meat. Biotechnol. Biotechnol. Equip. 2006, 20, 82–87. [Google Scholar] [CrossRef]
- Schubring, R.; Meyer, C. Quality Factors of Terrestrial Snail Products as Affected by the Species. J. Food Sci. 2002, 67, 3148–3151. [Google Scholar] [CrossRef]
- Kougiagka, E.; Apostologamvrou, C.; Giannouli, P.; Hatziioannou, M. Quality Factors of Commercial Snail Fillets as Affected by Species. Food Technol. Biotechnol. 2022, 60, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Moate, P.J.; Williams, S.R.O.; Torok, V.A.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.H.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape Marc Reduces Methane Emissions When Fed to Dairy Cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [PubMed]
- Ragni, M.; Vicenti, A.; Melodia, L.; Marsico, G. Use of Grape Seed Flour in Feed for Lambs and Effects on Performance and Meat Quality. APCBEE Procedia 2013, 8, 59–64. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of Polyphenol-Rich Grape By-Products in Monogastric Nutrition. A Review. Anim. Feed Sci. Technol. 2015, 211, 1–17. [Google Scholar] [CrossRef]
- Apostolou, K.; Klaoudatos, D.; Staikou, A.; Sotiraki, S.; Hatziioannou, M. Evaluation of production performance between two heliciculture farming systems. Molluscan Res. 2023, 43, 211–221. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations and the World Health Organization (FAO/WHO). Epidemiology, Diagnosis and Control of Helminth Parasites of Swine; FAO: Rome, Italy, 1998. [Google Scholar]
- Valente, R.; Diaz, J.I.; Salomon, O.D.; Navone, G.T. Natural Infection of the Feline Lungworm Aelurostrongylus abstrusus in the Invasive Snail Achatina fulica from Argentina. Vet. Parasitol. 2017, 235, 17–19. [Google Scholar] [CrossRef]
- Franco-Acuna, D.O.; Pinheiro, J.; Torres, E.J.L.; Lanfredi, R.M.; Brandolini, S.V.P.B. Nematode Cysts and Larvae Found in Achatina fulica Bowdich, 1822. J. Invertebr. Pathol. 2009, 100, 106–110. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis; AOAC: Arlington, TX, USA, 1990; p. 684. [Google Scholar]
- Pasias, I.N.; Farmaki, E.G.; Thomaidis, N.S.; Piperaki, E.A. Elemental Content and Total Antioxidant Activity of Salvia fruticosa. Food Anal. Methods 2010, 3, 195–204. [Google Scholar] [CrossRef]
- Kougiagka, E.; Apostologamvrou, C.; Hatziioannou, M.; Giannouli, P. Quality Characteristics and Microstructure of Boiled Snail Fillet Meat. J. Food Process. Preserv. 2022, 46, e17079. [Google Scholar] [CrossRef]
- CIE. Colorimetry, (Publication 15); Bureau Central de la Commission Internationale de l’Éclairage: Vienna, Austria, 1976. [Google Scholar]
- Şahin, M.D.; Aybek, E.C. Jamovi: An easy-to-use statistical software for the social scientists. Int. J. Assess. Tools Educ. 2019, 6, 670–692. [Google Scholar] [CrossRef]
- Proca, A.C.; Horodincu, L.; Solcan, C.; Solcan, G. The Potential of Grape Polyphenols Additive in Pig Nutrition: Chemical Structure, Bioavailability and Their Effect on Intestinal Health of Pigs. Agriculture 2024, 14, 1142. [Google Scholar] [CrossRef]
- Goni, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebole, A.; Arija, I.; Estevez, R. Effect of Dietary Grape Pomace and Vitamin E on Growth Performance, Nutrient Digestibility, and Susceptibility to Meat Lipid Oxidation in Chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Kougiagka, E.; Gkafas, G.A.; Exadactylos, A.; Hatziioannou, M. Morphology and Genetic Structure Profile of Farmed Snails Cornu aspersum aspersum and Cornu aspersum maximum in Greece. Sustainability 2022, 14, 15965. [Google Scholar] [CrossRef]
- Derbali, H.; Ben Saïd, S.; Abid, K.; Aroua, M.; Jabri, J.; Dhaouafi, J.; Mahouachi, M. Valorization of dehydrated grape pomace waste as a low-cost feed additive to improve reproduction and growth performance of male rabbits. Waste Biomass Valorization 2024, 15, 3987–3996. [Google Scholar] [CrossRef]
- Massaro, F.L.; Bumbieris, V.H.; Pereira, E.S.; Zanin, E.; Horst, E.H.; Calixto, O.P.P.; Mizubuti, I.Y. Grape pomace silage on growth performance, carcass, and meat quality attributes of lambs. Sci. Agric. 2021, 79, e20200343. [Google Scholar] [CrossRef]
- Eder, K.; Ringseis, R.; Gessner, D.K. Effects of Grape By-Products on Oxidative Stress and Inflammation in Farm Animals: An Overview of Studies Performed in Pigs, Chickens, and Cattle. Animals 2025, 15, 1536. [Google Scholar] [CrossRef]
- Apostolou, K.; Hatziioannou, M.; Sotiraki, S. Scientific Committee. Potential Risks of Nematode Parasitism in Farmed Snails in Greece. In Book of Proceedings of 70th Annual Meeting of the European Federation of Animal Science (EAAP); Wageningen Academic Publishers: Wageningen, Belgium, 2019; pp. 26–30. [Google Scholar] [CrossRef]
- Mena, M.O.; Trevise, G.G.; Silva, T.N.; Moellmann, V.M.; Bassetto, C.C.; Gatti, B.S.; Amarante, A.F. Evaluation of Grape Pomace Supplementation in Lamb Diets to Mitigate Haemonchus contortus Infection. Agriculture 2025, 15, 341. [Google Scholar] [CrossRef]
- Rama, J.L.R.; Mallo, N.; Biddau, M.; Fernandes, F.; de Miguel, T.; Sheiner, L.; Lores, M. Exploring the powerful phytoarsenal of white grape marc against bacteria and parasites causing significant diseases. Environ. Sci. Pollut. Res. 2021, 28, 24270–24278. [Google Scholar] [CrossRef]
- Soares, S.C.S.; de Lima, G.C.; Laurentiz, A.C.; Féboli, A.; Dos Anjos, L.A.; de Paula Carlis, M.S.; de Laurentiz, R.D.S. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. Int. J. Vet. Sci. Med. 2018, 6, 243–247. [Google Scholar] [CrossRef]
- Hao, R.; Li, Q.; Zhao, J.; Li, H.; Wang, W.; Gao, J. Effects of Grape Seed Procyanidins on Growth Performance, Immune Function and Antioxidant Capacity in Weaned Piglets. Livest. Sci. 2015, 178, 237–242. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, P.; Zhang, F.; Shishir, M.S.R.; Chauhan, S.S.; Rugoho, I.; Cheng, L. Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep. Animals 2022, 12, 225. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Yu, B.; Luo, Y.; Huang, Z.; Zheng, P.; He, J. Dietary supplementation of grape seed proanthocyanidins improves growth performance, carcass traits, and meat quality in growing-finishing pigs. Anim. Nutr. 2025, 20, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, D.; Zhao, X.; Xiao, Z.; Sun, J.; Yuan, T.; Yu, T. Dietary grape pomace extract supplementation improved meat quality, antioxidant capacity, and immune performance in finishing pigs. Front. Microbiol. 2023, 14, 1116022. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of Dietary Supplementation with Polyphenols on Meat Quality in Saanen Goat Kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef]
- Blasi, F.; Trovarelli, V.; Mangiapelo, L.; Ianni, F.; Cossignani, L. Grape pomace for feed enrichment to improve the quality of animal-based foods. Foods 2024, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Bertol, T.Μ.; Ludke, J.V.; de Campos, R.M.L.; Kawski, V.L.; Junior, A.C.; de Figueiredo, E.A.P. Inclusion of grape pomace in the diet of pigs on pork quality and oxidative stability of omega-3 enriched fat. Ciência Rural 2017, 47, e20150358. [Google Scholar] [CrossRef]
Chemical Analysis | GM | CF0 | CF7 | CF14 |
---|---|---|---|---|
DM (%) | 83 | 87.9 | 87.6 | 87.5 |
CP (%) | 13.78 | 20.33 | 19.08 | 18.64 |
CF (%) | 7.05 | 4.03 | 4.01 | 3.98 |
GE (KJ/g) | 21.11 | 16.39 | 16.76 | 16.86 |
Ash (%) | 3.99 | 6.39 | 6.35 | 6.65 |
Chemical Analysis | (%) | Vitamins and Minerals | (Additives per kg) |
---|---|---|---|
DM (%) | 82 | BIT A | 12,000,000 IU |
CP (%) | 21 | BIT D3 | 4,000,000 IU |
CF (%) | 3.7 | BIT E | 100,000 mg |
Crude fiber (%) | 4.5 | BIT K3 | 9000 mg |
Ash (%) | 5.6 | BIT B1 | 3000 mg |
Calcium (%) | 1.2 | BIT B2 | 7000 mg |
Total phosphorus (%) | 0.7 | BIT B6 | 6000 mg |
Lysine (%) | 1.1 | BIT B12 | 35 mg |
Methionine (%) | 0.48 | Biotin | 200 mg |
Sodium (%) | 0.18 | Iron | 50,000 mg |
Carbohydrates (%) | 12.8 | Iodine | 1500 mg |
GE (KJ/g) | 17.2 | Cobalt | 250 mg |
Copper | 20,000 mg | ||
Manganese | 150,000 mg | ||
Zinc | 100,000 mg | ||
Selenium | 350 mg | ||
Folic Acid | 1500 mg | ||
Pantothenic Acid | 15,000 mg | ||
Nicotinic Acid | 70,000 mg | ||
Vit. Stay-C 35% | 50,000 mg |
Production Performance | CF0 | CF7 | CF14 | p-Value |
---|---|---|---|---|
FII (g/d/snail) | 0.10 ± 0.02 A | 0.11 ± 0.01 B | 0.11 ± 0.01 B | <0.001 |
FI * (g/snail) | 16.75 ± 1.56 A | 17.34 ± 1.20 B | 17.82 ± 1.33 B | <0.05 |
GP (g) | 9.93 ± 3,84 | 9.06 ± 3.50 | 9.21 ± 3.75 | ns |
FI/GP | 1.69 | 1.91 | 1.93 | ns |
BW at d 0 (g) | 1.79 ± 0.03 | 1.79 ± 0.03 | 1.8 ± 0.04 | ns |
BW at d 15 (g) | 3.19 ± 0.29 A | 3.18 ± 0.08 A | 2.84 ± 0.15 B | <0.001 |
BW at d 30 (g) | 6.69 ± 0.78 A | 6.19 ± 0.48 B | 6.19 ± 0.53 B | <0.001 |
BW at d 45 (g) | 10.31 ± 0.75 A | 9.77 ± 0.92 B | 10.00 ± 0.68 A,B | <0.001 |
FBW at d 60 (g) | 11.72 ± 0.61 A | 10.86 ± 0.55 B | 11.03 ± 0.63 B | <0.001 |
Nutritional Composition of Fillets | CF0 | CF7 | CF14 | p Value |
---|---|---|---|---|
DM (%) | 21.14 A | 21.35 A | 24.14 B | <0.001 |
CP (%) | 13.91 | 13.23 | 13.06 | ns |
CF (%) | 0.62 | 0.58 | 0.55 | ns |
CH (Brix) | 2.4 | 2.1 | 2.2 | ns |
Ash (%) | 6.46 | 6.67 | 6.84 | ns |
GE (KJ/g) | 20.95 | 20.57 | 20.52 | ns |
pH | 8.68 | 8.72 | 8.53 | ns |
Qualitative Properties of Fillets | CF0 | CF7 | CF14 | p Value |
---|---|---|---|---|
FW (g) | 1.27 ± 0.44 | 1.37 ± 0.31 | 1.29 ± 0.41 | ns |
FT (mm) | 6.63 ± 1.04 A | 6.64 ± 0.93 A | 5.43 ± 1.07 Β | p < 0.05 |
EP (%) | 18.11 ± 2.74 | 20.25 ± 4.72 | 19.04 ± 4.39 | ns |
HV (N) | 9.04 ± 1.19 A | 6.14 ± 1.06 B | 6.02 ± 0.58 B | p < 0.01 |
CP | L* 55.83 ± 3.39 | 54.66 ± 6.53 | 54.62 ± 1.26 | ns |
a* 3.08 ± 0.89 | 2.77 ± 0.54 | 2.53 ± 0.75 | ns | |
b* 12.00 ± 2.05 | 11.13 ± 1.87 | 13.03 ± 3.14 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatziioannou, M.; Theodorou, A.; Apostolou, K.; Kougiagka, E.; Giannouli, P.; Karapanagiotidis, I.T.; Sotiraki, S.; Exadactylos, A. Grape Marc as a Functional Feed Ingredient for Farmed Snails (Cornu aspersum maximum): Effects on Production Performance, Parasitological Status, and Meat Quality. Animals 2025, 15, 2680. https://doi.org/10.3390/ani15182680
Hatziioannou M, Theodorou A, Apostolou K, Kougiagka E, Giannouli P, Karapanagiotidis IT, Sotiraki S, Exadactylos A. Grape Marc as a Functional Feed Ingredient for Farmed Snails (Cornu aspersum maximum): Effects on Production Performance, Parasitological Status, and Meat Quality. Animals. 2025; 15(18):2680. https://doi.org/10.3390/ani15182680
Chicago/Turabian StyleHatziioannou, Marianthi, Alexandros Theodorou, Konstantinos Apostolou, Efkarpia Kougiagka, Persephoni Giannouli, Ioannis T. Karapanagiotidis, Smaragda Sotiraki, and Athanasios Exadactylos. 2025. "Grape Marc as a Functional Feed Ingredient for Farmed Snails (Cornu aspersum maximum): Effects on Production Performance, Parasitological Status, and Meat Quality" Animals 15, no. 18: 2680. https://doi.org/10.3390/ani15182680
APA StyleHatziioannou, M., Theodorou, A., Apostolou, K., Kougiagka, E., Giannouli, P., Karapanagiotidis, I. T., Sotiraki, S., & Exadactylos, A. (2025). Grape Marc as a Functional Feed Ingredient for Farmed Snails (Cornu aspersum maximum): Effects on Production Performance, Parasitological Status, and Meat Quality. Animals, 15(18), 2680. https://doi.org/10.3390/ani15182680