Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Care and Use of Animals
2.2. Animal Management and Experimental Design
2.3. RNA Extraction, RNA Sequencing, and Data Analyses
2.4. Differential Expression Analysis
2.5. Co-Expression and Regulatory Network Analyses
2.6. Functional Over-Representation Analysis
2.7. Gene Set Enrichment Analysis
3. Results
3.1. Impact of VTM Supplementation on Maternal and Fetal Phenotypes
3.2. Maternal Supplementation Alters Neonatal Liver Gene Expression and Transcription Factor Rewiring
3.3. Differentially Expressed Genes Were Involved with Oxidative Phosphorylation, Vitamin Digestion and Absorption, and Metabolism Processes
4. Discussion
4.1. Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism
4.2. The Vitamin Digestion and Absorption Pathway Is Over-Represented by Positively Ranked Genes
4.3. The Oxidative Phosphorylation Pathway Was Over-Represented by Downregulated Genes in the Liver of Calves Born to VTM Supplemented Dams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Biological processes |
BW | Body weight |
CON | Control |
DEG | Differentially expressed genes |
DK | Differential Connectivity |
FC | Fold Change |
GSEA | Gene Set Enrichment Analysis |
log2FC | log 2-fold change |
K | Connectivity |
NES | Normalized Enrichment Score |
PCIT | Partial Correlation and Information Theory |
RIF | Regulatory Impact Factor |
TF | Transcription Factors |
VTM | Vitamin and mineral supplementation |
References
- King, J.C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 2000, 71, 1218S–1225S. [Google Scholar] [CrossRef]
- Barker, D.J.P. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Greene, L.W. Designing mineral supplementation of forage programs for beef cattle. J. Anim. Sci. 2000, 77, 1–20. [Google Scholar] [CrossRef]
- Wessels, I. Epigenetics and minerals: An overview. In Handbook of Nutrition, Diet, and Epigenetics; Patel, V., Preedy, V., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–19. ISBN 9783319311432. [Google Scholar]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and mineral supplementation and rate of gain in beef heifers I: Effects on dam hormonal and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids at d 83 of gestation. Animals 2022, 12, 1757. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Ward, A.K.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Reynolds, L.P.; Borowicz, P.P.; Sedivec, K.K.; Kirsch, J.D.; Dorsam, S.T.; et al. Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes. Animals 2023, 13, 600. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, J.L.; Baumgaertner, F.; Menezes, A.C.B.; Bochantin, K.A.; Diniz, W.J.S.; Underdahl, S.R.; Dorsam, S.T.; Kirsch, J.D.; Sedivec, K.K.; Dahlen, C.R. Supplementing vitamins and minerals to beef heifers during gestation: Impacts on mineral status in the dam and offspring, and growth and physiological responses of female offspring from birth to puberty. J. Anim. Sci. 2024, 102, skae002. [Google Scholar] [CrossRef]
- Hurlbert, J.L.; Menezes, A.C.B.; Baumgaertner, F.; Bochantin-Winders, K.A.; Jurgens, I.M.; Kirsch, J.D.; Amat, S.; Sedivec, K.K.; Swanson, K.C.; Dahlen, C.R. Vitamin and mineral supplementation to beef heifers during gestation: Impacts on morphometric measurements of the neonatal calf, vitamin and trace mineral status, blood metabolite and endocrine profiles, and calf organ characteristics at 30 h after birth. J. Anim. Sci. 2024, 102, skae116. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-27335-0. [Google Scholar]
- Diniz, W.J.S.; Reynolds, L.P.; Borowicz, P.P.; Ward, A.K.; Sedivec, K.K.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; et al. Maternal vitamin and mineral supplementation and rate of maternal weight gain affects placental expression of energy metabolism and transport-related genes. Genes 2021, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Dávila Ruiz, B.J.; Dahlen, C.R.; McCarthy, K.L.; Caton, J.S.; Hurlbert, J.L.; Baumgaertner, F.; Menezes, A.C.B.; Diniz, W.J.S.; Underdahl, S.R.; Kirsch, J.D.; et al. Influence of maternal supplementation with vitamins, minerals, and (or) protein/energy on placental development and angiogenic factors in beef heifers during pregnancy. Vet. Sci. 2024, 11, 111. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and mineral supplementation and rate of gain during the first trimester of gestation affect concentrations of amino acids in maternal serum and allantoic fluid of beef heifers. J. Anim. Sci. 2021, 99, skab024. [Google Scholar] [CrossRef]
- McCarthy, K.L.; Menezes, A.C.B.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and mineral supplementation and rate of gain in beef heifers II: Effects on concentration of trace minerals in maternal liver and fetal liver, muscle, allantoic, and amniotic fluids at day 83 of gestation. Animals 2022, 12, 1925. [Google Scholar] [CrossRef]
- Maloney, C.A.; Rees, W.D. Gene-nutrient interactions during fetal development. Reproduction 2005, 130, 401–410. [Google Scholar] [CrossRef]
- Kalra, A.; Yetiskul, E.; Wehrle, C.J.; Tuma, F. Physiology, Liver. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535438/ (accessed on 2 April 2025).
- Sookoian, S.; Gianotti, T.F.; Burgueño, A.L.; Pirola, C.J. Fetal metabolic programming and epigenetic modifications: A systems biology approach. Pediatr. Res. 2013, 73, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Ward, A.K.; Caton, J.S. Epigenetics and developmental programming in ruminants: Long-term impacts on growth and development. In Biology of Domestic Animals; Scanes, C.G., Hill, R.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 85–120. ISBN 9781315152080. [Google Scholar]
- Caton, J.S.; Crouse, M.S.; McLean, K.J.; Dahlen, C.R.; Ward, A.K.; Cushman, R.A.; Grazul-Bilska, A.T.; Neville, B.W.; Borowicz, P.P.; Reynolds, L.P. Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J. Anim. Sci. 2020, 98, skaa358. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.J.S.; Reynolds, L.P.; Ward, A.K.; Caton, J.S.; Dahlen, C.R.; McCarthy, K.L.; Menezes, A.C.B.; Cushman, R.A.; Crouse, M.S. Epigenetics and Nutrition: Molecular Mechanisms and Tissue Adaptation in Developmental Programming. In Epigenetics and Human Health; Springer: Berlin/Heidelberg, Germany, 2024; Volume 12, pp. 49–69. ISBN 9783031542152. [Google Scholar]
- Crouse, M.S.; McCarthy, K.L.; Menezes, A.C.B.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; et al. Vitamin and mineral supplementation and rate of weight gain during the first trimester of gestation in beef heifers alters the fetal liver amino acid, carbohydrate, and energy profile at day 83 of gestation. Metabolites 2022, 12, 696. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.C.B.; Dahlen, C.R.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; et al. Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at day 83 of Gestation. Metabolites 2023, 13, 175. [Google Scholar] [CrossRef]
- Braz, C.U.; Taylor, T.; Namous, H.; Townsend, J.; Crenshaw, T.; Khatib, H. Paternal diet induces transgenerational epigenetic inheritance of DNA methylation signatures and phenotypes in sheep model. PNAS Nexus 2022, 1, pgac040. [Google Scholar] [CrossRef]
- Lamb, G.C.; Dahlen, C.R.; Larson, J.E.; Marquezini, G.; Stevenson, J.S. Control of the estrous cycle to improve fertility for fixed-time artificial insemination in beef cattle: A review. J. Anim. Sci. 2010, 88, E181–E192. [Google Scholar] [CrossRef]
- Craner, A.J.; Dahlen, C.R.; Hurlbert, J.L.; Menezes, A.C.B.; Banerjee, P.; Baumgaertner, F.; Bochantin-Winders, K.A.; Amat, S.; Sedivec, K.K.; Swanson, K.C.; et al. Early life programming of the neonatal bovine jejunum in response to maternal vitamin and mineral supplementation. J. Dev. Orig. Health Dis. 2025, 16, e24. [Google Scholar] [CrossRef]
- Andrews, S. FASTQC. A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 12 April 2025).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://cran.r-project.org/package=factoextra (accessed on 15 April 2025).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Reverter, A.; Hudson, N.J.; Nagaraj, S.H.; Pérez-Enciso, M.; Dalrymple, B.P. Regulatory impact factors: Unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 2010, 26, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Fortes, M.R.S.; Reverter, A.; Diniz, W.J.d.S.; Cesar, A.S.M.; Lima, A.O.d.; Petrini, J.; de Souza, M.M.; Coutinho, L.L.; Mourão, G.B.; et al. Genetic regulators of mineral amount in Nelore cattle muscle predicted by a new co-expression and regulatory impact factor approach. Sci. Rep. 2020, 10, 8436. [Google Scholar] [CrossRef]
- Shen, W.-K.; Chen, S.-Y.; Gan, Z.-Q.; Zhang, Y.-Z.; Yue, T.; Chen, M.-M.; Xue, Y.; Hu, H.; Guo, A.-Y. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 2023, 51, D39–D45. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Crouse, M.S.; Cushman, R.A.; McLean, K.J.; Caton, J.S.; Dahlen, C.R.; Reynolds, L.P.; Ward, A.K. Cerebrum, liver, and muscle regulatory networks uncover maternal nutrition effects in developmental programming of beef cattle during early pregnancy. Sci. Rep. 2021, 11, 2771. [Google Scholar] [CrossRef]
- Reverter, A.; Chan, E.K.F. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 2008, 24, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Fuller, T.F.; Ghazalpour, A.; Aten, J.E.; Drake, T.a.; Lusis, A.J.; Horvath, S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm. Genome 2007, 18, 463–472. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Ziemann, M. Pathway Analysis: DAVID Versus GSEA. Available online: https://genomespot.blogspot.com/2016/02/pathway-analysis-david-versus-gsea.html (accessed on 1 May 2025).
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; Baumgaertner, F.; Hurlbert, J.L.; Bochantin, K.A.; Kirsch, J.D.; Dorsam, S.; Sedivec, K.K.; Swanson, K.C.; Dahlen, C.R. Feeding a Se-containing trace mineral supplement during pregnancy: Effects on mitochondrial oxygen consumption in liver and small intestine of neonatal calves. In Proceedings of the 12th International Symposium on Selenium in Biology and Medicine, Honolulu, HI, USA, 16–20 February 2022. [Google Scholar]
- Thayer, Z.M.; Rutherford, J.; Kuzawa, C.W. Maternal nutritional buffering model: An evolutionary framework for pregnancy nutritional intervention. Evol. Med. Public Health 2020, 2020, 14–27. [Google Scholar] [CrossRef]
- Harvey, K.M.; Cooke, R.F.; Colombo, E.A.; Rett, B.; de Sousa, O.A.; Harvey, L.M.; Russell, J.R.; Pohler, K.G.; Brandão, A.P. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: Physiological and productive response of cows and their offspring until weaning. J. Anim. Sci. 2021, 99, skab095. [Google Scholar] [CrossRef]
- Baumgaertner, F.; Darío Ramírez-Zamudio, G.; Clara, A.; Menezes, B.; Jurgens, I.M.; Hirchert, M.R.; Hurlbert, J.L.; Bochantin-Winders, K.A.; Diniz, W.J.S.; Reynolds, L.P.; et al. Rate of body weight gain during early gestation in F0 beef heifers has effects that extend multigenerationally to the F2 fetuses. J. Anim. Sci. 2024, 102, skae295. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, C.; Antipatis, C. Micronutrient programming of development throughout gestation. Reproduction 2001, 122, 527–535. [Google Scholar] [CrossRef]
- Beckett, E.L.; Yates, Z.; Veysey, M.; Duesing, K.; Lucock, M. The role of vitamins and minerals in modulating the expression of microRNA. Nutr. Res. Rev. 2014, 27, 94–106. [Google Scholar] [CrossRef]
- Baik, M.; Yu, J.H.; Hennighausen, L. Growth hormone–STAT5 regulation of growth, hepatocellular carcinoma, and liver metabolism. Ann. N. Y. Acad. Sci. 2011, 1229, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.; De Vita, F.; Lauretani, F.; Buttò, V.; Bondi, G.; Cattabiani, C.; Nouvenne, A.; Meschi, T.; Dall’Aglio, E.; Ceda, G.P. IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty. Nutrients 2013, 5, 4184–4205. [Google Scholar] [CrossRef]
- Bailes, J.; Soloviev, M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Wade, H.; Pan, K.; Su, Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol. Nutr. Food Res. 2021, 65, 2000771. [Google Scholar] [CrossRef]
- Yang, Z.; Roth, K.; Agarwal, M.; Liu, W.; Petriello, M.C. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J. Nutr. Biochem. 2021, 95, 108633. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 176, 177–197. [Google Scholar] [CrossRef]
- Dasgupta, P.; Dorsey, N.J.; Li, J.; Qi, X.; Smith, E.P.; Yamaji-Kegan, K.; Keegan, A.D. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation. Sci. Signal. 2016, 9, aad6724. [Google Scholar] [CrossRef]
- Ma, H.; Yuan, J.; Ma, J.; Ding, J.; Lin, W.; Wang, X.; Zhang, M.; Sun, Y.; Wu, R.; Liu, C.; et al. BMP7 improves insulin signal transduction in the liver via inhibition of mitogen-activated protein kinases. J. Endocrinol. 2019, 243, 97–110. [Google Scholar] [CrossRef]
- An, L.; Shi, Q.; Zhu, Y.; Wang, H.; Peng, Q.; Wu, J.; Cheng, Y.; Zhang, W.; Yi, Y.; Bao, Z.; et al. Bone morphogenetic protein 4 (BMP4) promotes hepatic glycogen accumulation and reduces glucose level in hepatocytes through mTORC2 signaling pathway. Genes Dis. 2021, 8, 531–544. [Google Scholar] [CrossRef]
- Underwood, K.R.; Means, W.J.; Zhu, M.J.; Ford, S.P.; Hess, B.W.; Du, M. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Meat Sci. 2008, 79, 394–402. [Google Scholar] [CrossRef]
- Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, X.; Xu, L. The roles of zinc finger proteins in non-alcoholic fatty liver disease. Liver Res. 2020, 4, 35–39. [Google Scholar] [CrossRef]
- Ocampo, D.; Damon, L.J.; Sanford, L.; Holtzen, S.E.; Jones, T.; Allen, M.A.; Dowell, R.D.; Palmer, A.E. Cellular zinc status alters chromatin accessibility and binding of p53 to DNA. Life Sci. Alliance 2024, 7, e202402638. [Google Scholar] [CrossRef]
- Narayan, V.; Ravindra, K.C.; Liao, C.; Kaushal, N.; Carlson, B.A.; Prabhu, K.S. Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J. Nutr. Biochem. 2015, 26, 138–145. [Google Scholar] [CrossRef]
- Yoo, E.J.; Chung, J.-J.; Choe, S.S.; Kim, K.H.; Kim, J.B. Down-regulation of Histone Deacetylases Stimulates Adipocyte Differentiation. J. Biol. Chem. 2006, 281, 6608–6615. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Park, Y.-K.; Lee, J.-Y.; Bae, M. Roles of Histone Deacetylase 4 in the Inflammatory and Metabolic Processes. Diabetes Metab. J. 2024, 48, 340–353. [Google Scholar] [CrossRef]
- Anas, M.; Ward, A.K.; McCarthy, K.L.; Borowicz, P.P.P.; Reynold, L.P.P.; Caton, J.S.; Dahlen, C.R.; Diniz, W.J.j.S. 131 DNA methylation profile in bovine fetal liver is affected by maternal vitamin and mineral supplementation during early gestation. J. Anim. Sci. 2024, 102, 54–55. [Google Scholar] [CrossRef]
- Quigley, J.D.; Drewry, J.J. Nutrient and Immunity Transfer from Cow to Calf Pre- and Postcalving. J. Dairy Sci. 1998, 81, 2779–2790. [Google Scholar] [CrossRef]
- Lipinski, D.M.; Thake, M.; MacLaren, R.E. Clinical applications of retinal gene therapy. Prog. Retin. Eye Res. 2013, 32, 22–47. [Google Scholar] [CrossRef]
- Cousins, R.J. Nutritional regulation of gene expression. Am. J. Med. 1999, 106, 20–23. [Google Scholar] [CrossRef]
- Harris, C.L.; Wang, B.; Deavila, J.M.; Busboom, J.R.; Maquivar, M.; Parish, S.M.; McCann, B.; Nelson, M.L.; Du, M. Vitamin A administration at birth promotes calf growth and intramuscular fat development in Angus beef cattle. J. Anim. Sci. Biotechnol. 2018, 9, 55. [Google Scholar] [CrossRef]
- Ladeira, M.M.; Oliveira, J.M., Jr.; Casagrande, D.R.; Salinas, S.; Horta, A.; Souza, M.; Dias, M.; Souza, P.; Vale, R. 261 Vitamin A administration in pregnant cows or newborn calves: Growth performance and carcass traits. J. Anim. Sci. 2024, 102, 86–87. [Google Scholar] [CrossRef]
- Li, P.; Zhu, Z.; Wang, Y.; Zhang, X.; Yang, C.; Zhu, Y.; Zhou, Z.; Chao, Y.; Long, Y.; Gao, Y.; et al. Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3. Nat. Commun. 2024, 15, 10924. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Weiss, W.P. Effect of Biotin on Activity and Gene Expression of Biotin-Dependent Carboxylases in the Liver of Dairy Cows. J. Dairy Sci. 2007, 90, 1460–1466. [Google Scholar] [CrossRef]
- Sharma, L.K.; Subramanian, C.; Yun, M.K.; Frank, M.W.; White, S.W.; Rock, C.O.; Lee, R.E.; Jackowski, S. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat. Commun. 2018, 9, 4399. [Google Scholar] [CrossRef]
- Leonardi, R.; Rehg, J.E.; Rock, C.O.; Jackowski, S. Pantothenate Kinase 1 Is Required to Support the Metabolic Transition from the Fed to the Fasted State. PLoS ONE 2010, 5, e11107. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, M.; Polanuyer, B.; Farrell, M.; Scholle, M.; Lykidis, A.; de Crécy-Lagard, V.; Osterman, A. Complete Reconstitution of the Human Coenzyme A Biosynthetic Pathway via Comparative Genomics. J. Biol. Chem. 2002, 277, 21431–21439. [Google Scholar] [CrossRef]
- Suttle, N. Nutrients, Digestion and Absorption | Absorption of Minerals and Vitamins. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2011; pp. 996–1002. ISBN 9780123744029. [Google Scholar]
- Spears, J.W.; Weiss, W.P. INVITEd REVIEW: Mineral and vitamin nutrition in ruminants. Prof. Anim. Sci. 2014, 30, 180–191. [Google Scholar] [CrossRef]
- Rutsch, F.; Gailus, S.; Miousse, I.R.; Suormala, T.; Sagné, C.; Toliat, M.R.; Nürnberg, G.; Wittkampf, T.; Buers, I.; Sharifi, A.; et al. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat. Genet. 2009, 41, 234–239. [Google Scholar] [CrossRef]
- Amin, A.S.M.A.; Gupta, V. Vitamin B12 (Cobalamin). Available online: https://www.ncbi.nlm.nih.gov/books/NBK559132/ (accessed on 2 April 2025).
- Duplessis, M.; Girard, C.L. Effect of maternal biotin, folic acid, and vitamin B12 supplementation before parturition on colostral and Holstein calf plasma concentrations in those vitamins. Anim. Feed Sci. Technol. 2019, 256, 114241. [Google Scholar] [CrossRef]
- Yin, M.; O’Neill, L.A.J. The role of the electron transport chain in immunity. FASEB J. 2021, 35, e21974. [Google Scholar] [CrossRef] [PubMed]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, O.A.; Mohiuddin, S.S. Biochemistry, Oxidative Phosphorylation. Available online: https://pubmed.ncbi.nlm.nih.gov/31985985/ (accessed on 5 April 2025).
- Killilea, D.W.; Killilea, A.N. Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation. Free Radic. Biol. Med. 2022, 182, 182–191. [Google Scholar] [CrossRef]
- Xu, W.; Barrientos, T.; Andrews, N.C. Iron and Copper in Mitochondrial Diseases. Cell Metab. 2013, 17, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Abrosimov, R.; Baeken, M.W.; Hauf, S.; Wittig, I.; Hajieva, P.; Perrone, C.E.; Moosmann, B. Mitochondrial complex I inhibition triggers NAD+-independent glucose oxidation via successive NADPH formation, “futile” fatty acid cycling, and FADH2 oxidation. GeroScience 2024, 46, 3635–3658. [Google Scholar] [CrossRef]
- Lesner, N.P.; Wang, X.; Chen, Z.; Frank, A.; Menezes, C.J.; House, S.; Shelton, S.D.; Lemoff, A.; McFadden, D.G.; Wansapura, J.; et al. Differential requirements for mitochondrial electron transport chain components in the adult murine liver. Elife 2022, 11, e80919. [Google Scholar] [CrossRef]
- Lai, A.Y.; Wade, P.A. Cancer biology and NuRD: A multifaceted chromatin remodelling complex. Nat. Rev. Cancer 2011, 11, 588–596. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F.; Li, C.; Nan, P.; Song, Y.; Wan, X.; Mo, H.; Wang, J.; Zhou, Y.; Guo, Y.; et al. MTA1, a Novel ATP Synthase Complex Modulator, Enhances Colon Cancer Liver Metastasis by Driving Mitochondrial Metabolism Reprogramming. Adv. Sci. 2023, 10, 2300756. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craner, A.J.; Dahlen, C.R.; Hurlbert, J.L.; Menezes, A.C.B.; Banerjee, P.; Baumgaertner, F.; Bochantin-Winders, K.A.; Amat, S.; Sedivec, K.K.; Swanson, K.C.; et al. Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism. Animals 2025, 15, 2664. https://doi.org/10.3390/ani15182664
Craner AJ, Dahlen CR, Hurlbert JL, Menezes ACB, Banerjee P, Baumgaertner F, Bochantin-Winders KA, Amat S, Sedivec KK, Swanson KC, et al. Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism. Animals. 2025; 15(18):2664. https://doi.org/10.3390/ani15182664
Chicago/Turabian StyleCraner, Audrey J., Carl R. Dahlen, Jennifer L. Hurlbert, Ana Clara B. Menezes, Priyanka Banerjee, Friederike Baumgaertner, Kerri A. Bochantin-Winders, Samat Amat, Kevin K. Sedivec, Kendall C. Swanson, and et al. 2025. "Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism" Animals 15, no. 18: 2664. https://doi.org/10.3390/ani15182664
APA StyleCraner, A. J., Dahlen, C. R., Hurlbert, J. L., Menezes, A. C. B., Banerjee, P., Baumgaertner, F., Bochantin-Winders, K. A., Amat, S., Sedivec, K. K., Swanson, K. C., & Diniz, W. J. S. (2025). Maternal Vitamin and Mineral Supplementation Affected Neonatal Gene Expression and Rewired Key Regulatory Genes Underlying Hepatic Metabolism. Animals, 15(18), 2664. https://doi.org/10.3390/ani15182664